• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Syntheses, Crystal Structures and DNA-Binding Properties of Zn(II) and Mn(II) Complexes Based on Imidazole Derivatives and Carboxylic Acid

    2022-04-16 03:06:42GUANHuiChaoSONGXiaoTong
    結(jié)構(gòu)化學(xué) 2022年3期

    GUAN Hui-Chao SONG Xiao-Tong

    LIU Gui-Bao YUE Shu-Mei①

    (College of Chemistry, Changchun Normal University, Changchun 130032, China)

    ABSTRACT Complexes [Zn(pbm)(5-hip)3] (1), [Zn(pbm)(5-nip)3] (2), [Mn(pbm)(H3btc)2(H2O)] (3) and[Mn(pbm)(5-nip)3] (4), where H2HIPA = 5-hydroxyisophthalic acid, H2nip = 5-nitroisophthalic acid, H3btc = trimesic acid and pbm (pyridine benzene chelate material) = 2-(2-pyridyl)benzimidazole, were identified via single-crystal XRD analyses. 1, 2 and 4 pertain to the monoclinic space group C2/c, while 3 belongs to the triclinic space group P1. The interplay of CT-DNA with those complexes was delineated using ultraviolet, fluorescence, and circular dichroism (CD) spectroscopy and viscosity measurements. Complexes 1, 2, 3 and 4 interact with CT-DNA in an electrostatic or grooving mode. We wish to offer a theory-wise foundation for developing anti-tumor medicines.

    Keywords: single-crystal structures, spectroscopy, CT-DNA binding, 2-(2-pyridyl)benzimidazole;

    1 INTRODUCTION

    The researches on the designing and synthesis of metallic complexes have aroused extensive academic interest, which focus on the studies on worldwide coordination chemistry.Those derivatives of imidazole heterocyclic N-donor ligands have attracted substantial attention due to their frameworks and reactivity in the complex synthesis process as well as their magnetic and luminescent properties[1-6]. Nitrogen-containing heterocyclic metal complexes with special chemical structures and unique physicochemical features have been applied in functional materials, medicines and other fields[7-13]. At present, the antitumor activity of transition metal complexes is studied from the interaction modes between transition metal complexes and DNA. Researches on the DNA binding of metallic complexes, which is a vital and major challenge in life science, are particularly important for the exploration of DNA molecular probe and new therapeutic reagents. The interactions of metal complexes with DNA mainly include noncovalent interactions, covalent interactions and cutting action intercalation. Among them, the possible binding modes of the complexes to DNA include noncovalent interactions[14-18]. At present, substantial research about the interplay process of metallic ion metal complexes and DNA has been finished[19-22]. Sama has reported that mononuclear Cu complexes have the apparent binding ability towards CT-DNA[23]. Bian Lin adopted agarose gel electrophoresis for researching PBR322 DNA cleavage with complexes[24]. The interplay of metal compounds with DNA has been broadly researched. Zhou Qing-Huaet al.reported imidazole metal complexes. Meanwhile, the interplay of compounds and calf thymus DNA was explored[25-27]. Thus, the binding modes of metal complexes and DNA have become an academic hotspot.

    Our research team has committed to exploring the synthetic method of metallic complexes and their DNA-binding properties[28]. Qi Shuang et al. reported the success in synthesizing transition metal compounds with 2-(2-pyridyl)benzothiazole as ligands in 2018. Besides, a study revealed the binding properties exhibited by these complexes with DNA[29].

    In this research, our team reported the synthetic process and structural characterization of Zn(II) and Mn(II) complexes having 2-(2-pyridinyl)benzimidazole as a ligand. Interactions between four complexes and calf thymus DNA were investigated by means of spectroscopy (ultraviolet spectrum, fluorescence spectrum and circular dichroism spectrum)and viscometric analysis.

    2 EXPERIMENTAL

    2. 1 Materials

    All chemicals and solvents were applied without purification unless noted. Aladdin provided 5-hydroxyisophthalic acid, 5-nitroisophthalic acid, 2-(2-pyridyl)benzimidazole,trimesic acid, tris-HCl and CT-DNA. The CT-DNA was refrigerated at 2~8 °C and a TU-1901 spectrophotometer was used to measure visible and ultraviolet photoelectron absorption spectra. Besides, fluorescence was measured by a RF-5301PC spectrometer.

    2. 2 Synthetic processes of complexes 1~4

    2. 2. 1 Synthetic process of [Zn(pbm)(5-hip)3] (1)

    The mixture with ZnCl2·2H2O (0.1 mmol, 0.0197 g), DMF(4 mL), 2-(2-pyridyl)benzimidazole (0.2 mmol, 0.3900 g), H2O(2 mL), and 5-hydroxyisophthalic acid (0.1 mmol, 0.0182 g)was placed into a stainless-steel autoclave which was heated under 80 °C for seventy-two hours. When the reactor was cooled towards room temperature, the pale yellow crystals of complex 1 were obtained with 61% productivity on the basis of pbm. Anal. Calcd. (%) in C22H13N4O5Zn: H, 2.72; C, 55.23; N,11.72. Found (%): H, 2.70; C, 55.14; N, 11.43.

    2. 2. 2 Synthesis process of [Zn(pbm)(5-nip)3] (2)

    A mixture of 2-(2-pyridyl)benzimidazole (0.3900 g, 0.2 mmol) and 5-nitroisophthalic acid (0.0211 g, 0.1 mmol) was added into 5 mL water solution of ZnCl2·2H2O (0.1 mmol,0.01757 g). The mixture was put into the aforesaid reactor and heated under 160 °C for three days. The reactor was cooled towards room temperature to produce yellow crystals of complex 2 with 62% yield on the foundation of pbm. Anal.Calcd. (%) for C21H12N3O6Zn: H, 2.57; C, 53.88; N, 8.98.Found (%): H, 2.46; C, 53.54; N, 8.63.

    2. 2. 3 Synthetic process of [Mn(pbm)(H3btc)2(H2O)] (3)

    To his dismay and astonishment1 he found a Giant lying at the entrance of the wood; he was about to run off as fast as his legs could carry him, when the Giant called out: Don t be afraid, I won t harm you

    2-(2-Pyridyl)benzimidazole (0.3900 g, 0.2 mmol) and trimesic acid (0.0214 g, 0.1 mmol) were supplemented into 5 mL water of MnCl2·2H2O (0.1 mmol, 0.0197 g). The mixture was put into the aforesaid reactor and heated under 160 °C for 72 hours. The reactor was cooled to room temperature,and the colorless crystals of complex 3 were acquired with 60% yield based on pbm. Anal. Calcd. (%) for C21H14N3O7Mn: H, 2.95; C, 53.02; N, 8.84. Found (%): H,2.46; C, 52.14; N, 8.23.

    2. 2. 4 Synthetic process of [Mn(pbm)(5-nip)3] (4)

    Complex 4 was obtained in roughly the same way as complex 2. ZnCl2·2H2O (0.01757 g, 0.1 mmol) was utilized by taking the place of MnCl2·2H2O (0.0197 g, 0.1 mmol). It gained light yellow crystals of complex 4 with 62% yield on the foundation of pbm. Anal. Calcd. (%) for C20H12N4O6Mn:H, 2.61; C, 52.26; N, 12.19. Found (%): H, 2.46; C, 52.14; N,12.09.

    2. 3 X-ray crystallographic analysis

    Single-crystal XRD data for complexes 1~4 were documented via the Bruker Apex CCD diffractometer apparatus,and the graph item is monochromatism radiation with 296(2)K. Multistage technology was used for absorption correction.All structures were settled by Direct Method of SHELXS-97,and specified with the full-matrix least-squares method using the SHELXL-97 program in wings[30]. Table 1 shows the summary of experimental details, crystal data as well as refinement findings. Tables 2~5 list the selected bond lengths together with the bond angles.

    Table 1. Crystal Data and Structure Refinement for Complexes 1~4

    α/° 90 90 112.668(15) 90 β/° 105.0120(10) 113.863(2) 102.560(17) 114.0330(10)γ/° 90 90 96.464(17) 90 Volume/?3 4611.1(6) 3623.8(7) 1377(2) 3698.8(3)Z 8 8 2 8 ρcalc (g/cm3) 1.379 1.715 1.146 1.649 μ/mm-1 1.104 1.405 0.516 0.764 F(000) 1944.0 1896.0 484.0 1864.0 Crystal size/mm3 0.25 × 0.2 × 0.2 0.12 × 0.11 × 0.1 0.14 × 0.13 × 0.1 0.13 × 0.11 × 0.1 Radiation MoKα (λ = 0.71073) MoKα (λ = 0.71073) MoKα (λ = 0.71073) MoKα (λ = 0.71073)2θ range for data collection/° 3.666 to 52.744 3.642 to 62.534 3.742 to 55.59 3.622 to 56.54 Reflections collected 14728 15504 7023 13478 Independent reflections 4714 (Rint = 0.0397,Rsigma = 0.0440)4580 (Rint = 0.0178,Rsigma = 0.0195)2524 Data/restraints/parameters 4714/42/318 5730/4/292 5991/394/305 4580/0/328 Goodness-of-fit on F2 1.085 1.064 1.119 1.105 5730 (Rint = 0.0456,Rsigma = 0.0626)5991 (Rint = 0.0719,Rsigma = 0.1668)Final R indexes (I > 2σ(I)) R = 0.0534 R = 0.0562 R = 0.1353, R = 0.0347 Final R indexes (all data) R = 0.0718 R = 0.1042 R = 0.2209 R = 0.0461 wR (all data) 0.1721 0.1771 0.3940 0.1131 Largest diff. peak/hole / e·?-3 1.29/-0.39 0.87/-0.87 1.42/-1.11 0.40/-0.38

    Table 2. Selected Bond Lengths (?) and Bond Angles (°) of Complex 1

    Table 3. Selected Bond Lengths (?) and Bond Angles (°) of Complex 2

    Table 4. Selected Bond Lengths (?) and Bond Angles (°) of Complex 3

    Table 5. Selected Bond Lengths (?) and Bond Angles (°) of Complex 4

    2. 4 DNA binding studies

    DNA binding experiments included ultraviolet, fluorescent,and CD spectroscopic analyses and viscometric analyses. The level of CT-DNA should be continuously increased and was added into the mixed solution when measuring the ultraviolet spectroscopy and fluorescence spectrum. The measuring of viscosity was completed via an Ubbelohde viscometric device in the water bath sustained at 20 °C to increase the concentration of the metal complex.

    3 RESULTS AND DISCUSSION

    3. 1 Crystal structure description

    Single-crystal X-ray diffraction analyses reveal that complex 1 crystallizes in space groupC2/c. The asymmetric unit of 1 contains one central metal atom Zn, three HIPA2-anions,and one pbm ligand, as shown in Fig. 1. The Zn2+center is regarded as a typical five-coordinate environment coordinated with three oxygen atoms from three HIPA2-anions and two nitrogen atoms from a pbm ligand. The Zn-O and Zn-N bonds are various from 1.981(3) to 2.019(3) ? and from 2.071(4) to 2.275(4) ?, which can be compared to the reported complexes. The asymmetric units are linked together through bridging acid ligand with two different coordination modes from two carboxylic groups, i.e.,μ1-?1andμ2-?2bidentate bridging respectively, creating an infinite chain running along with the [101] orientation, as depicted in Fig. 2.Besides, the chelating pbm ligand with a dihedral angle of 2.016(92)° is nearly parallel to each other.

    Fig. 1. Molecular structure of complex 1 showing 50% displacement ellipsoids

    Fig. 2. Packing diagram of complex 1 in a unit cell viewed along the a axis

    The geometry of the Zn center is between the ideal square pyramidal (SP) and trigonal bipyramidal (TBP) configuration withτindex of 26.65% (τ= 0% for perfect SP andτ= 100%for ideal TBP geometry). Thus, the Zn center could be regarded as SP coordination geometry with some distortion, in which the O(1) atom acts as the apical axis, and N(1), N(2),O(4) and O(5) atoms as the low plane. The adjacent angles in the equatorial plane atoms are 82.2(2)°~93.45(19)°.

    Fig. 3. Molecular structure of complex 2 showing 50% displacement ellipsoids

    Fig. 4. Packing diagram of complex 2 in a unit cell viewed along the a axis

    Fig. 5. Molecular structure of complex 3showing 50% displacement ellipsoids

    Fig. 6. Molecular structure of complex 4 showing 50% displacement ellipsoids

    Fig. 7. Packing diagram of complex 3 in a unit cell viewed along the a axis

    Fig. 8. Packing diagram of complex 4 in a unit cell viewed along the a axis

    Complexes 3 and 4 crystallize in monoclinic space groupP1andC2/c,respectively. The asymmetric units of them contain one pbm ligand. Besides, complex 3 consists of one crystallographically unique Mn(II) atom, one pbm ligand,two carboxylic acid ligands and one coordinated water molecule. Complex 4 contains one center metal atom Mn, three nip2-anions and one pbm ligand, as shown in Figs. 5 and 6.As a typical five-coordinate environment, Mn2+coordinates with three nip2-anions, two nitrogen atoms, and three oxygen atoms in a pbm ligand. For 3, the Mn-O bonds are various from 2.180(8) to 2.237(7) ?, and the Mn-N bonds from 2.209(8) to 2.351(8) ?. For complex 4, the Mn-O bonds change from 2.0291(14) to 2.1415(15) ? and the Mn-N bonds fall in the 2.1853(14)~2.2446(15) ?. In fact, the oxygen atoms on two carboxyl groups connect two Mn(II) ions in order to form the 1D chain. In addition, neighboring one-dimensional chains are linked with a nitrogen atom to generate a two-dimensional plane (Figs. 7 and 8).

    3. 2 Characterization of the complex

    3. 2. 1 Thermal analysis

    The thermostability of complexes 1~4 was investigated by TGA measurement (Fig. 9), finished using specimens comprising substantial single crystals of complexes 1~4 in N2environment at a heating rate of 10 °C·h-1. For 1, no apparent weight loss was observed before the decomposition of the framework occurring at ca. 325 °C, with the remaining weight corresponding to the formation of ZnO. Complex 1 shows a weight loss of 83.08%. For 2, the framework decomposes at ca. 340 °C. The remaining weight corresponds to the formation of ZnO. For 3, the organic composition is decomposed completely at ca. 380 °C, and the remaining weight comes from the formation of MnO. Complex 3 shows a weight loss of 84.5%. Complex 4 experienced a two-step weight loss. The first one at about 296 °C with a weight loss from 296 to 416 °C is due to the decomposition of carboxylic acid ligand with a weight loss of 46.44% (theoretical value:46.83%). The second one between 416 and 513 °C is 35.61%,corresponding to the decomposition of nitrogen-containing ligand (theoretical value: 37.78%).

    3. 2. 2 XRD analysis

    The experimental and simulated powder XRD patterns of complexes 1~4 are shown in Fig. 10, indicating the practical powder of XRD patterns is consistent with the powder XRD patterns simulated according to the structural data, and the pure phase of the synthesized product is determined.

    Fig. 9. TG curves of complexes 1~4

    Fig. 10. Simulated and experimental XRPD patterns of complexes 1~4

    3. 3 Absorption spectral studies of DNA binding

    Ultraviolet spectroscopy plays an essential role in detecting the interaction mode between complexes with DNA[31]. Under normal circumstances, the absorption peak of the complex will show a decreased intensity, and the wavelength will exhibit an obvious red shift phenomenon after adding the DNA[32]. In the meantime, the energy level decreased after coupling leads to the weakening ofπ-π* transition and the red shift phenomenon. In addition, when molecules react with DNA in the groove mode, the wavelength is red-shifted, and the color decrease role is not distinct[33,34]. Meanwhile, with the increase of DNA concentration, the DNA helical structure is destroyed due to the combination of the complex, and its absorption spectrum is increased artificially with the rise of DNA concentration[35]. The UV-visible spectra were measured after the interaction of complexes 1~4 of DNA, as shown in Fig. 11. The picture shows that the maximum absorption peak of the complex increases with increasing the amount of DNA. The complexes have an excellent absorption band at 310 nm, but there is no blue or red shift. Hence, these complexes may have electrostatic effects on DNA.

    Fig. 11. Absorption spectra of complexes 1~4, corresponding to (a) to (d) in turn, in tris-HCl buffer (pH 7.0)in the absence and presence of increasing amount of DNA at room temperature

    3. 4 Fluorescent fluorescence measurements of DNA binding

    The interplay between the complex and CT-DNA was studied through emission titration. In complex solution with a specific concentration, the emission spectra of complexes 1~4 are shown in Fig. 12. With increasing the concentration of CT-DNA, the complex shows strong fluorescence at 395 nm when excited at 285 nm at room temperature. In addition,when the concentration of CT-DNA is increased to a certain amount, the fluorescence emission intensity increases continuously due to the environment of the metal complex changes and the different degree of the internal hydrophobic environment when the compound interacts with DNA, but the location of the emission band does not change significantly. It avoids the quenching effect of solvent water molecules and limits the fluidity of compounds at the binding site, thus reducing the relaxation vibration mode and increasing the emission intensity.

    Fig. 12. Emission spectra of complexes 1~4, corresponding to (a) to (d) in turn, in tris-HCl buffer (pH 7.0)in the absence and presence of increasing amount of DNA at room temperature

    3. 5 Viscosity studies of DNA binding

    To study the interplay of the complexes with CT-DNA,viscosity tests were carried out. This method is more convincing than the spectroscopic method, which can better indicate whether the interaction model between the complexes and DNA is in an intercalated manner[36]. If the complex is inserted into DNA and interacted with it, the distance between the base pairs will increase to allow the ligand to enter,therefore resulting in an increase in the solution viscosity.When the complex binds to DNA in a non-insertion mode,the DNA spirals away, which shortens the length and results in little change in the viscosity of DNA at different concentrations[37,38]. The viscometer was placed in a constant temperature water bath at 30.0 ± 0.1 °C. The blank solution was 15 mL tris and the flow time (t0) was determined. Then measure the flow time (t) of 15 mL CT-DNA and metal complex mixture solution through the capillary tube in different proportions ([complex]/[DNA] = 0.0~1.0). The relative viscosity was calculated according to the following formula:?=(t - t0)/t0.

    The viscosity curve of the interplay between complexes 1~4 and DNA is depicted in Fig. 13. It fluctuates up and down in a straight line, indicating that the interplay mode between the complex and DNA is electrostatic interaction or groove binding and it is very similar to the results obtained by spectral analysis.

    Fig. 13. Relative viscosity of CT-DNA upon the addition of increasing amounts of complexes 1~4 (r = 0.0~1.0). η is the viscosity of DNA in the presence of complex, and η0 is the viscosity of DNA alone

    Fig. 14. Circular dichromatic spectra of interactions between complexes 1~4 and DNA

    3. 6 Circular dichromatic (CD) spectroscopy

    CD spectroscopy is one of the methods to study the conformational change of DNA[39]. The CT-DNA has two apparent peaks in the CD spectrum. The negative peak at 246 nm is mainly caused by the right-handed helicity of DNA, and a positive peak at 272 nm is due to base stacking[40]. The interaction model of DNA and metal complex is determined by the change of peak position of the CD spectrum. If the binding model of the complex and DNA displays an insertion manner, the parts of the two peaks will change obviously. In case of electrostatic interaction or groove binding, the parts of the two peaks will not change significantly[41]. The concentration of CT-DNA is fixed at 100 μmol·L-1, and the concentration of the complex gradually increases. The reaction system is placed at room temperature for 1 h, and the circular dichroism spectrum of DNA is determined. With or without complexes 1~4, the CD spectra are shown in Fig. 14, where the negative and positive peaks at 246 and 272 nm respectively do not change significantly after interacting with DNA. The results show that complexes 1~4 only have a weak effect on the helicity and base pair stacking of DNA, and the interaction between these complexes and DNA can be determined as groove binding or electrostatic interaction.

    4 CONCLUSION

    In this study, four new complexes with 2-(2-pyridyl)benzimidazole as the main ligand were synthesized and their crystal structures were studied. The interaction between CT-DNA and the complex was studied by absorption spectrum, fluorescence spectrum, circular dichromatic spectroscopy and viscosity measurement. The results showed that the interaction mode between CT-DNA and the complex is electrostatic interaction or groove bonding. As these findings harbor certain potential implications for researches on anticancer drugs, we wish to offer some meaningful enlightenment for the exploration of anti-tumor medicines.

    午夜精品一区二区三区免费看| 欧美极品一区二区三区四区| 老鸭窝网址在线观看| 亚洲国产欧美人成| 日韩欧美三级三区| 国内揄拍国产精品人妻在线| 一区二区三区国产精品乱码| 老司机午夜福利在线观看视频| 99在线视频只有这里精品首页| 亚洲av第一区精品v没综合| 欧美黑人精品巨大| 国产午夜福利久久久久久| 免费在线观看日本一区| 欧美色欧美亚洲另类二区| 性色av乱码一区二区三区2| 日韩欧美一区二区三区在线观看| 老司机靠b影院| 久久久久久久久中文| 99久久国产精品久久久| 深夜精品福利| 亚洲成人精品中文字幕电影| 久久香蕉精品热| 99国产精品99久久久久| www.精华液| 国产成人aa在线观看| 国产精品自产拍在线观看55亚洲| 在线视频色国产色| 伊人久久大香线蕉亚洲五| 又紧又爽又黄一区二区| 国内精品一区二区在线观看| 制服人妻中文乱码| 亚洲人与动物交配视频| 日韩av在线大香蕉| 黄色视频不卡| 中文字幕人成人乱码亚洲影| 不卡一级毛片| 韩国av一区二区三区四区| 国产精品 欧美亚洲| 在线观看免费午夜福利视频| 男女视频在线观看网站免费 | 91av网站免费观看| 久久久久久人人人人人| 一区二区三区激情视频| www日本在线高清视频| 超碰成人久久| 日韩欧美国产在线观看| 亚洲人成电影免费在线| 欧美在线一区亚洲| 嫩草影院精品99| 五月玫瑰六月丁香| 色噜噜av男人的天堂激情| 日本五十路高清| 在线观看www视频免费| 久久精品亚洲精品国产色婷小说| 日日摸夜夜添夜夜添小说| 最新美女视频免费是黄的| 99久久精品国产亚洲精品| 毛片女人毛片| 男人的好看免费观看在线视频 | 啦啦啦观看免费观看视频高清| 精品第一国产精品| e午夜精品久久久久久久| 久久久久九九精品影院| 久久中文字幕人妻熟女| 亚洲男人天堂网一区| 欧美在线黄色| 国内少妇人妻偷人精品xxx网站 | 国产亚洲精品av在线| 中文在线观看免费www的网站 | 日韩欧美 国产精品| 亚洲专区国产一区二区| 中文资源天堂在线| 久久久精品大字幕| 精品日产1卡2卡| 亚洲人成伊人成综合网2020| 九色成人免费人妻av| 丰满人妻一区二区三区视频av | 婷婷六月久久综合丁香| 国产一区二区三区视频了| 国产精品98久久久久久宅男小说| 欧美高清成人免费视频www| 成人精品一区二区免费| 欧美另类亚洲清纯唯美| bbb黄色大片| 中亚洲国语对白在线视频| 久久人妻福利社区极品人妻图片| www.999成人在线观看| 久久这里只有精品中国| 村上凉子中文字幕在线| 久久久久久人人人人人| 亚洲熟女毛片儿| 色老头精品视频在线观看| 一区二区三区国产精品乱码| 亚洲人成网站高清观看| 成人18禁在线播放| 成人国语在线视频| 国产麻豆成人av免费视频| 久久九九热精品免费| 又大又爽又粗| 俄罗斯特黄特色一大片| 久久久精品欧美日韩精品| 在线观看美女被高潮喷水网站 | 国产亚洲精品一区二区www| 麻豆av在线久日| 久久亚洲真实| 男女视频在线观看网站免费 | 午夜日韩欧美国产| 麻豆一二三区av精品| 国产探花在线观看一区二区| 一级毛片女人18水好多| 久久久久性生活片| 别揉我奶头~嗯~啊~动态视频| 一本久久中文字幕| 日韩av在线大香蕉| 亚洲av第一区精品v没综合| 免费电影在线观看免费观看| 黄片小视频在线播放| 久久精品影院6| 露出奶头的视频| 男女做爰动态图高潮gif福利片| 国产三级在线视频| 亚洲精品在线观看二区| 久久久久亚洲av毛片大全| 婷婷精品国产亚洲av在线| 久久欧美精品欧美久久欧美| 久久欧美精品欧美久久欧美| 国产精品久久久人人做人人爽| 亚洲欧美日韩无卡精品| 亚洲欧美日韩无卡精品| 久久人人精品亚洲av| 国内揄拍国产精品人妻在线| 国产精品一区二区三区四区久久| videosex国产| av在线天堂中文字幕| 亚洲九九香蕉| 精品国产乱码久久久久久男人| 少妇裸体淫交视频免费看高清 | 91国产中文字幕| 午夜精品在线福利| 欧美成人一区二区免费高清观看 | 90打野战视频偷拍视频| 视频区欧美日本亚洲| 亚洲精品粉嫩美女一区| 久久99热这里只有精品18| 日韩欧美精品v在线| 人人妻人人澡欧美一区二区| 一区福利在线观看| 精华霜和精华液先用哪个| 每晚都被弄得嗷嗷叫到高潮| 好男人电影高清在线观看| 午夜福利高清视频| 亚洲乱码一区二区免费版| 婷婷精品国产亚洲av在线| 日韩欧美国产一区二区入口| 精品电影一区二区在线| 精品电影一区二区在线| 嫩草影视91久久| 欧美又色又爽又黄视频| 亚洲精品一区av在线观看| 免费看a级黄色片| 午夜福利18| www日本黄色视频网| 中文字幕人成人乱码亚洲影| av欧美777| 国产av一区二区精品久久| 婷婷六月久久综合丁香| 国产欧美日韩一区二区三| 久久精品国产清高在天天线| 国产精品av视频在线免费观看| 99久久精品热视频| 日韩欧美三级三区| 十八禁网站免费在线| 国产午夜精品久久久久久| 九九热线精品视视频播放| 国产一区二区三区在线臀色熟女| 露出奶头的视频| 国产黄色小视频在线观看| 母亲3免费完整高清在线观看| 好男人在线观看高清免费视频| 成年人黄色毛片网站| 午夜福利在线观看吧| 久久精品成人免费网站| 好男人在线观看高清免费视频| x7x7x7水蜜桃| 成熟少妇高潮喷水视频| 欧美大码av| 男男h啪啪无遮挡| 日韩精品中文字幕看吧| 少妇粗大呻吟视频| 天天躁狠狠躁夜夜躁狠狠躁| 色噜噜av男人的天堂激情| 国产蜜桃级精品一区二区三区| 一进一出好大好爽视频| 日韩欧美三级三区| 国产精品九九99| 国产一区二区三区在线臀色熟女| 欧美日韩乱码在线| 亚洲国产欧美一区二区综合| 俺也久久电影网| 精品熟女少妇八av免费久了| 99久久精品国产亚洲精品| 人妻久久中文字幕网| 国产99白浆流出| 国产爱豆传媒在线观看 | 18美女黄网站色大片免费观看| 嫁个100分男人电影在线观看| 99在线视频只有这里精品首页| 免费在线观看亚洲国产| 国产v大片淫在线免费观看| 高清在线国产一区| 日韩大尺度精品在线看网址| 成人精品一区二区免费| 亚洲最大成人中文| 精品不卡国产一区二区三区| 午夜免费成人在线视频| 国产主播在线观看一区二区| 少妇裸体淫交视频免费看高清 | 少妇的丰满在线观看| 欧美中文综合在线视频| 亚洲精品国产一区二区精华液| 观看免费一级毛片| 麻豆一二三区av精品| 激情在线观看视频在线高清| 老汉色∧v一级毛片| 免费看a级黄色片| 久久中文看片网| 亚洲九九香蕉| 黄频高清免费视频| 俺也久久电影网| 欧美黄色淫秽网站| 亚洲天堂国产精品一区在线| 特级一级黄色大片| 国产爱豆传媒在线观看 | 91国产中文字幕| 桃色一区二区三区在线观看| 亚洲人成网站高清观看| 午夜日韩欧美国产| 亚洲精品在线美女| 男人舔女人下体高潮全视频| 国产一区二区激情短视频| 亚洲五月天丁香| 亚洲色图 男人天堂 中文字幕| 国产69精品久久久久777片 | 国产精品亚洲av一区麻豆| 久久久久精品国产欧美久久久| 中文字幕高清在线视频| 777久久人妻少妇嫩草av网站| 午夜视频精品福利| 久久国产乱子伦精品免费另类| 在线永久观看黄色视频| 女生性感内裤真人,穿戴方法视频| 18禁美女被吸乳视频| 嫁个100分男人电影在线观看| 亚洲欧美激情综合另类| 国产av一区在线观看免费| 天堂av国产一区二区熟女人妻 | 久久久国产欧美日韩av| 他把我摸到了高潮在线观看| 淫秽高清视频在线观看| av超薄肉色丝袜交足视频| 国产成人av教育| www.熟女人妻精品国产| 日韩欧美在线乱码| 亚洲人成网站在线播放欧美日韩| 女人高潮潮喷娇喘18禁视频| 日韩三级视频一区二区三区| 亚洲av第一区精品v没综合| 成人av在线播放网站| 欧美极品一区二区三区四区| 香蕉久久夜色| 国产精品影院久久| 一进一出好大好爽视频| 久久久久久国产a免费观看| 最近最新免费中文字幕在线| 色综合欧美亚洲国产小说| 搡老熟女国产l中国老女人| 国产三级中文精品| 美女高潮喷水抽搐中文字幕| 99久久无色码亚洲精品果冻| 国产精品久久电影中文字幕| 久久 成人 亚洲| 亚洲精品一卡2卡三卡4卡5卡| 国产一区在线观看成人免费| 欧美黑人欧美精品刺激| 啪啪无遮挡十八禁网站| 夜夜夜夜夜久久久久| 欧美一级a爱片免费观看看 | 欧美一区二区国产精品久久精品 | 狂野欧美激情性xxxx| 国产激情欧美一区二区| 一级黄色大片毛片| 午夜福利18| 国产午夜精品久久久久久| 色精品久久人妻99蜜桃| 欧美3d第一页| 国产精品野战在线观看| 成人特级黄色片久久久久久久| 国产不卡一卡二| 老鸭窝网址在线观看| 欧美日韩亚洲国产一区二区在线观看| 欧美日韩瑟瑟在线播放| 亚洲精品中文字幕在线视频| 久久精品夜夜夜夜夜久久蜜豆 | 久久九九热精品免费| 欧美另类亚洲清纯唯美| 欧美日本视频| 18禁观看日本| 国产高清视频在线观看网站| 又大又爽又粗| 国产成人啪精品午夜网站| 五月玫瑰六月丁香| 亚洲五月天丁香| 亚洲国产精品久久男人天堂| 国产精品1区2区在线观看.| 一区福利在线观看| 欧美黑人巨大hd| aaaaa片日本免费| 国产99久久九九免费精品| 一级黄色大片毛片| 午夜福利欧美成人| 欧美性猛交╳xxx乱大交人| 午夜精品久久久久久毛片777| 亚洲欧洲精品一区二区精品久久久| 无限看片的www在线观看| 成人国产一区最新在线观看| 亚洲18禁久久av| 久久精品成人免费网站| 精品午夜福利视频在线观看一区| 亚洲国产欧美网| 国产爱豆传媒在线观看 | 色av中文字幕| 欧美乱色亚洲激情| 亚洲 国产 在线| 长腿黑丝高跟| 国产精华一区二区三区| 丰满人妻熟妇乱又伦精品不卡| 欧美精品啪啪一区二区三区| 2021天堂中文幕一二区在线观| 露出奶头的视频| 国产成人av教育| 久久久久免费精品人妻一区二区| 嫩草影视91久久| 亚洲av熟女| 人妻久久中文字幕网| 国产亚洲精品av在线| 亚洲自拍偷在线| 免费人成视频x8x8入口观看| 久久精品国产99精品国产亚洲性色| 中文资源天堂在线| 亚洲精品在线观看二区| 一个人免费在线观看的高清视频| 热99re8久久精品国产| 99国产精品99久久久久| 亚洲全国av大片| 91成年电影在线观看| 无人区码免费观看不卡| 日韩欧美在线乱码| 亚洲美女黄片视频| 大型av网站在线播放| 色av中文字幕| 亚洲成人免费电影在线观看| 国产黄a三级三级三级人| 桃色一区二区三区在线观看| 人人妻人人看人人澡| av天堂在线播放| 欧美日韩亚洲综合一区二区三区_| 成人国语在线视频| 亚洲自偷自拍图片 自拍| 国产一区二区在线观看日韩 | 亚洲成a人片在线一区二区| 黑人操中国人逼视频| 日本五十路高清| 久久中文字幕人妻熟女| 国产69精品久久久久777片 | 日日摸夜夜添夜夜添小说| 免费在线观看影片大全网站| 长腿黑丝高跟| 亚洲成人久久爱视频| 一级毛片精品| 18禁观看日本| or卡值多少钱| 国产亚洲欧美98| 老司机深夜福利视频在线观看| 18禁黄网站禁片免费观看直播| 制服丝袜大香蕉在线| 可以免费在线观看a视频的电影网站| 老司机深夜福利视频在线观看| 亚洲国产精品sss在线观看| 亚洲欧美一区二区三区黑人| 午夜福利成人在线免费观看| www日本在线高清视频| 一a级毛片在线观看| 亚洲黑人精品在线| 久久伊人香网站| 亚洲中文字幕日韩| 亚洲熟妇中文字幕五十中出| 日韩有码中文字幕| 国产亚洲精品综合一区在线观看 | av福利片在线| 亚洲国产欧美网| 日韩成人在线观看一区二区三区| 日日干狠狠操夜夜爽| 欧美一级毛片孕妇| 在线a可以看的网站| 波多野结衣高清作品| 在线看三级毛片| 国产黄片美女视频| 床上黄色一级片| 免费看日本二区| 香蕉久久夜色| 搡老岳熟女国产| 日本 欧美在线| 50天的宝宝边吃奶边哭怎么回事| 午夜视频精品福利| 午夜亚洲福利在线播放| 日本在线视频免费播放| 国产精品久久久久久久电影 | 美女扒开内裤让男人捅视频| 精品不卡国产一区二区三区| 国产欧美日韩精品亚洲av| 热99re8久久精品国产| 特级一级黄色大片| 草草在线视频免费看| 成人手机av| netflix在线观看网站| 男人舔女人下体高潮全视频| 国产亚洲av嫩草精品影院| 欧美日本视频| 美女黄网站色视频| 两人在一起打扑克的视频| 国产精品一区二区精品视频观看| 久久精品国产清高在天天线| 麻豆国产av国片精品| 91九色精品人成在线观看| av欧美777| 在线观看日韩欧美| 欧美精品啪啪一区二区三区| 男女床上黄色一级片免费看| 亚洲免费av在线视频| 日日摸夜夜添夜夜添小说| 亚洲美女黄片视频| 桃红色精品国产亚洲av| 亚洲中文日韩欧美视频| 亚洲精品久久成人aⅴ小说| 精品熟女少妇八av免费久了| 又黄又粗又硬又大视频| 日本精品一区二区三区蜜桃| 欧美中文日本在线观看视频| 麻豆成人av在线观看| 女生性感内裤真人,穿戴方法视频| 丰满的人妻完整版| 欧美人与性动交α欧美精品济南到| 欧美日本视频| 国产蜜桃级精品一区二区三区| tocl精华| 国产精品亚洲美女久久久| 丰满的人妻完整版| 亚洲人与动物交配视频| 欧美激情久久久久久爽电影| 美女黄网站色视频| aaaaa片日本免费| 三级男女做爰猛烈吃奶摸视频| 黄色视频不卡| 婷婷丁香在线五月| 99久久久亚洲精品蜜臀av| 青草久久国产| 国产精品免费视频内射| 亚洲av第一区精品v没综合| 成人18禁高潮啪啪吃奶动态图| 婷婷精品国产亚洲av在线| av超薄肉色丝袜交足视频| 日日摸夜夜添夜夜添小说| 色噜噜av男人的天堂激情| 国产熟女午夜一区二区三区| 老司机在亚洲福利影院| 国产欧美日韩精品亚洲av| 欧美黄色淫秽网站| 久久久久久九九精品二区国产 | 国产aⅴ精品一区二区三区波| 亚洲成人精品中文字幕电影| 精品熟女少妇八av免费久了| 免费无遮挡裸体视频| 国产av不卡久久| 国产成人啪精品午夜网站| 又粗又爽又猛毛片免费看| 在线观看午夜福利视频| 国产亚洲精品一区二区www| 十八禁网站免费在线| 亚洲国产中文字幕在线视频| 欧美又色又爽又黄视频| 午夜福利视频1000在线观看| 少妇熟女aⅴ在线视频| 色综合站精品国产| 久久午夜综合久久蜜桃| 少妇人妻一区二区三区视频| 狂野欧美白嫩少妇大欣赏| 欧美不卡视频在线免费观看 | 精品第一国产精品| 男人舔女人下体高潮全视频| 国产97色在线日韩免费| 悠悠久久av| 丝袜人妻中文字幕| 超碰成人久久| 女生性感内裤真人,穿戴方法视频| 亚洲天堂国产精品一区在线| 亚洲自拍偷在线| 在线观看免费午夜福利视频| 国产精品亚洲一级av第二区| 亚洲一码二码三码区别大吗| 9191精品国产免费久久| 男女床上黄色一级片免费看| 国产激情久久老熟女| 亚洲av成人不卡在线观看播放网| 1024视频免费在线观看| 女人爽到高潮嗷嗷叫在线视频| 波多野结衣高清作品| www.精华液| 久久人人精品亚洲av| 99在线视频只有这里精品首页| 精品福利观看| 国内毛片毛片毛片毛片毛片| 国产精品电影一区二区三区| 久久亚洲精品不卡| 亚洲一区高清亚洲精品| 老熟妇仑乱视频hdxx| 18禁裸乳无遮挡免费网站照片| 国产免费男女视频| 亚洲国产欧美人成| 日本一本二区三区精品| 国产主播在线观看一区二区| 欧美黄色淫秽网站| 伊人久久大香线蕉亚洲五| 两性夫妻黄色片| 国产精品1区2区在线观看.| 精品国产乱码久久久久久男人| 日日爽夜夜爽网站| 久久久久久久久久黄片| 午夜成年电影在线免费观看| 午夜福利18| 在线观看日韩欧美| 亚洲中文字幕日韩| 男女视频在线观看网站免费 | 国产午夜精品久久久久久| 久久午夜综合久久蜜桃| avwww免费| 精品久久蜜臀av无| 国产精品影院久久| 亚洲一卡2卡3卡4卡5卡精品中文| 一边摸一边做爽爽视频免费| 99久久无色码亚洲精品果冻| 亚洲专区字幕在线| 欧美日韩亚洲综合一区二区三区_| 久久久久久久久中文| 19禁男女啪啪无遮挡网站| 黑人欧美特级aaaaaa片| 午夜免费观看网址| 精品久久久久久久久久久久久| 一区福利在线观看| 亚洲男人的天堂狠狠| 日韩精品免费视频一区二区三区| 国产69精品久久久久777片 | 又紧又爽又黄一区二区| 免费搜索国产男女视频| 欧美精品啪啪一区二区三区| 舔av片在线| 亚洲av中文字字幕乱码综合| 亚洲国产欧美人成| 波多野结衣巨乳人妻| 久久香蕉国产精品| 中文字幕久久专区| 波多野结衣高清作品| 国产在线精品亚洲第一网站| 精品国产美女av久久久久小说| 欧美中文综合在线视频| 国产精品久久久av美女十八| 成人国语在线视频| 国产野战对白在线观看| 老司机午夜十八禁免费视频| 国内少妇人妻偷人精品xxx网站 | 欧美成人一区二区免费高清观看 | 特级一级黄色大片| 免费看美女性在线毛片视频| 91在线观看av| 欧美性猛交╳xxx乱大交人| 亚洲av成人一区二区三| 一个人免费在线观看的高清视频| 一区二区三区国产精品乱码| 国产三级黄色录像| 日日摸夜夜添夜夜添小说| 亚洲熟妇熟女久久| 中亚洲国语对白在线视频| 欧美精品啪啪一区二区三区| а√天堂www在线а√下载| 在线十欧美十亚洲十日本专区| 亚洲av第一区精品v没综合| 天天一区二区日本电影三级| 日日干狠狠操夜夜爽| 欧美精品啪啪一区二区三区| 欧美成人性av电影在线观看| 757午夜福利合集在线观看| 成人午夜高清在线视频| 国产精品国产高清国产av| 大型av网站在线播放| 国产精品乱码一区二三区的特点| 制服丝袜大香蕉在线| 欧美 亚洲 国产 日韩一| 最近最新中文字幕大全免费视频| 国产成+人综合+亚洲专区| 性色av乱码一区二区三区2| 欧美日韩瑟瑟在线播放| 亚洲一码二码三码区别大吗| 婷婷亚洲欧美| a在线观看视频网站| 悠悠久久av| 精品无人区乱码1区二区|