左麗薇, 黃 朋, 王 雄
東馬努斯弧后盆地中酸性火山巖巖漿演化中的鋰同位素特征
左麗薇1, 2, 黃 朋1, 王 雄1, 2
(1.中國科學(xué)院海洋研究所海洋地質(zhì)與環(huán)境重點實驗室, 山東 青島 266071; 2.中國科學(xué)院大學(xué), 北京 100049)
通過分析東馬努斯海盆中酸性火山巖的全巖主量、微量元素以及鋰同位素組成, 并結(jié)合前人數(shù)據(jù), 討論盆地巖漿體系的演化過程。分析數(shù)據(jù)顯示, 東馬努斯海盆主、微量元素與SiO2含量之間呈線性變化關(guān)系, 表明巖漿結(jié)晶分異過程控制東馬努斯海盆巖漿演化過程。東馬努斯弧后盆地火山巖富集流體相關(guān)元素, 指示東馬努斯弧后盆地巖漿源區(qū)可能經(jīng)歷了俯沖流體的交代作用。在巖漿移出源區(qū)之后的演化階段, 巖漿體系演化以結(jié)晶分異過程為主。鋰同位素與流體示蹤指數(shù)具相關(guān)性, δ7Li隨俯沖流體加入呈現(xiàn)升高趨勢, 而與巖漿結(jié)晶分異程度無相關(guān)性, 表明鋰同位素分餾受控于流體交代作用。
東馬努斯海盆; 中酸性火山巖; 演化過程; 鋰同位素特征
西南太平洋馬努斯海盆是一個快速擴張的弧后盆地, 巖漿作用強烈, 發(fā)育有從玄武巖到流紋巖的連續(xù)系列火山巖[1-4]。海盆產(chǎn)出的中酸性火山巖, 對于研究擴張環(huán)境下中酸性巖漿演化過程至關(guān)重要[4]。固體地球系統(tǒng)中, 中酸性巖漿的形成主要通過以下4種方式: 上地幔水飽和條件下的部分熔融[5-7]; 蝕變洋殼或蝕變輝長巖的部分熔融[8-9]; 分離結(jié)晶作用以及由基性鎂鐵質(zhì)巖漿和高硅巖漿的混合作用產(chǎn)生[10-15]。馬努斯弧后盆地構(gòu)造環(huán)境復(fù)雜, 其巖漿成因, 特別是中酸性巖漿成因, 一直受到廣泛關(guān)注[4, 16-18]。
馬努斯弧后盆地作為洋底快速擴張中心, 同時受俯沖作用影響。鋰作為非?;钴S的流體活動性元素[19], 在俯沖帶中可以作為各種地質(zhì)作用的良好示蹤劑。本文在前人研究的基礎(chǔ)上, 依據(jù)東馬努斯盆地火山巖鋰元素與同位素組成, 以及其他相關(guān)元素分布特征, 初步探討東馬努斯火山巖的物質(zhì)組分起源和演化過程。
馬努斯海盆位于西南太平洋俾斯麥海東部, 海盆北側(cè)為不活動的馬努斯海溝, 南側(cè)為活動的新不列顛海溝, 其構(gòu)造性質(zhì)屬于快速擴張的弧后盆地[1, 3, 17, 20-21]。海盆中部有一條近東西向展布的、被轉(zhuǎn)換斷層錯斷的伸展擴張帶, 分布馬努斯擴張轉(zhuǎn)換帶(Manus Extensional Transform Zone; ETZ)、馬努斯擴張中心(Manus Spreading Center; MSC)、南部海脊(South Ridge; SR)和東南海脊(Southeast Ridge; SER)等構(gòu)造單元[21-23]。
馬努斯海盆可進一步劃分為西、中和東馬努斯盆地。本次研究區(qū)位于東馬努斯盆地, 其構(gòu)造性質(zhì)上屬于拉張裂谷, 產(chǎn)出從玄武巖到流紋巖的連續(xù)序列火山巖[1, 3, 20, 24](圖1)。區(qū)內(nèi)分布著PACMANUS、DESMOS和Susu Knolls等活躍熱液區(qū)并發(fā)育廣泛的多金屬硫化物礦化作用[2, 20, 25-31]。
馬努斯海盆基底年齡超過40 Ma, 記錄了漸新世以來復(fù)雜的俯沖過程[24]。10 Ma以前, 海盆北部的太平洋板塊沿馬努斯海溝向南俯沖。大約在10 Ma, 新愛爾蘭島與翁通爪哇洋底高原碰撞造成俯沖方向倒轉(zhuǎn), 所羅門海板塊開始沿新不列顛海溝向北俯沖[18]。所羅門板塊年齡較為年輕(24~44 Ma), 巖石圈相對較熱, 但可能包含較少的遠洋沉積物。4 Ma以來, 俾斯麥海打開, 沿ETZ和MSC發(fā)生擴張[18, 21-22]。2~3 Ma以來, 馬努斯盆地沿MSC進行了復(fù)雜擴張[24], 在海盆中形成Willaumez、Djaul、Weitin等左旋轉(zhuǎn)換斷層。0.78 Ma以后開始抬升并產(chǎn)生了海底擴張[16-18]。
圖1 馬努斯盆地地質(zhì)背景圖及巖石采樣位置
注: 地質(zhì)圖根據(jù)[20, 25, 27]; 其中樣品32和33-1采自PACMANUS熱液區(qū), 其他樣品采自DESMOS熱液區(qū)
文中使用的火山巖樣品獲取自“科學(xué)號”考察船201501航次。樣品采集區(qū)域位于東馬努斯海盆的PACMANUS及DESMOS熱液區(qū)(圖1), 樣品相關(guān)信息見表1。
表1 樣品編號和位置
樣品手標(biāo)本照片見圖2, 均為致密塊狀火山巖, 黑色, 隱晶質(zhì)結(jié)構(gòu), 巖石表面氣孔構(gòu)造發(fā)育良好。本文對樣品進行了全巖主量、微量及鋰同位素測試。雖然樣品新鮮, 未發(fā)現(xiàn)海水蝕變跡象, 但在測試分析之前對樣品進行了嚴(yán)格的預(yù)處理。挑選最新鮮的塊狀樣品, 蒸餾水初步清洗, 去除表面黏附沉積物; 切割巖塊, 去除表層可能發(fā)生風(fēng)化、蝕變的部分; 取中心部分, 切割成小于0.1 cm的巖片, 再分別置于無水乙醇、稀鹽酸中, 并水浴加熱, 以去除有機物和沉積碳酸鹽; 最后, 將巖片浸泡于超純水中7 d, 每日超聲清洗2次并更換超純水, 以去除殘留海水和試劑的影響。最后將樣品烘干、研磨成粉末[27, 32]。
樣品全巖主微量元素含量測試和鋰同位素組成測試由北京核工業(yè)地質(zhì)研究所的實驗室完成。主量元素含量測試使用AB104L, Axios-mAX WDXFR, 方法依據(jù)國標(biāo)GB/T 14506.28-2010[33], 燒矢量依據(jù)常規(guī)巖石礦物分析流程[29]。微量元素測試使用DRC-E ICP- MS, 方法依據(jù)國標(biāo)GB/T 14506.30-2010[34]。
在鋰同位素分析測試前, 要對樣品進行溶解和分離提純。首先據(jù)樣品鋰含量, 稱取相應(yīng)質(zhì)量樣品放置PFA消解罐中, 加入適量濃氫氟酸-濃硝酸(體積比3︰1)混合酸, 密封后于電熱板加熱24 h。打開消解罐, 蒸干后加入濃硝酸, 超聲10 min, 再次蒸干, 重復(fù)2~3次, 直至白色沉淀變?yōu)樽攸S色。再次加入濃硝酸, 加熱12 h, 蒸干; 加入濃鹽酸, 加熱12 h至溶液澄清, 蒸干。最后加入鹽酸溶解。將準(zhǔn)備好的樣品進行兩次過柱, 使用干凈Teflon燒杯收集淋洗液, 蒸干后冷卻, 加入硝酸, 置于干凈離心管中[35]。
鋰同位素使用PlasmaⅡ MC-ICP-MS測試。以2%的硝酸為介質(zhì)將分離純化后的樣品引入儀器, 使用2個法拉利杯分別收集6Li和7Li信號。鋰僅有2個穩(wěn)定同位素, 在測試中無法進行質(zhì)量分餾的內(nèi)部校正, 所以按照空白-標(biāo)樣-空白-標(biāo)樣-空白-標(biāo)樣流程進行測試[35]。測試結(jié)果表示為δ7Li=[(樣品/標(biāo)準(zhǔn))–1]×1 000‰, 其中樣品為樣品7Li和6Li的同位素豐度之比7Li/6Li,標(biāo)準(zhǔn)為樣品相鄰兩次標(biāo)樣7Li/6Li的平均值, 采用的Li同位素標(biāo)準(zhǔn)為NIST-LSVEC, 測試精確度2SD<0.6‰。
圖2 樣品手標(biāo)本照片
火山巖樣品主量元素含量見表2。根據(jù)火山巖TAS分類(圖3a), 樣品34-1, 40-1, 40-2為玄武質(zhì)安山巖, 樣品32, 33-1為英安巖。所有樣品均落入中鉀鈣堿性系列區(qū)域內(nèi)(圖3b)。樣品SiO2的范圍在54.32 wt.%~67.40 wt.%之間, MgO在6.03 wt.%~0.93 wt.%之間, K2O在0.65 wt.%~1.75 wt.%之間, TiO2均大于0.50 wt.%, 其中wt.%表示質(zhì)量百分比。
表2 東馬努斯盆地火山巖主量元素含量
圖3 東馬努斯火山巖全堿圖解和K2O vs.SiO2圖解
注: 圖a巖石類型邊界根據(jù)[36]; 圖b陰影帶引自[37]。東馬努斯海盆(eastern Manus Basin, EMB)數(shù)據(jù)引用自[4, 16-17, 38], 馬努斯擴張中心(Manus spreading center, MSC)數(shù)據(jù)引自[4, 16], 此后同。
火山巖樣品微量元素含量見表3。樣品稀土元素(REE)總含量處于37.25~90.55 μg·g–1之間。經(jīng)球粒隕石標(biāo)準(zhǔn)化, 稀土元素分布模式顯示明顯的右傾特征, 即輕稀土元素相對重稀土元素富集(圖4a)。樣品原始地幔標(biāo)準(zhǔn)化蛛網(wǎng)圖(圖4b)顯示, 虧損高場強元素(Th, Nb, Ta等), 而富集大離子親石元素(Pb, K, Rb, Ba, U等), 顯著區(qū)別于MSC的MORB, 具有典型的島弧熔巖特征[4, 16-17, 38]。
表3 東馬努斯盆地火山巖微量元素含量
續(xù)表
圖4 馬努斯火山巖球粒隕石標(biāo)準(zhǔn)化稀土元素模式圖和原始地幔標(biāo)準(zhǔn)化微量元素蛛網(wǎng)圖
注: 球粒隕石和原始地幔數(shù)據(jù)引自[39]。
馬努斯盆地火山巖Li含量見表3。樣品Li含量在3.55~12.4 μg·g–1之間。其中玄武質(zhì)安山巖(34-1, 40-1, 40-2)的Li含量在3.55~5.1 μg·g–1之間, 英安巖(32, 33-1)的Li含量在12.1~12.4 μg·g–1之間。樣品Li同位素特征見表4。所有火山巖樣品δ7Li在2.9‰~6.1‰之間變化, 2SD在0.03‰~0.56‰之間。Li屬于中等不相容元素, 分配系數(shù)在0.25~ 0.35之間[19, 40], 因此隨著巖漿分異作用, 火山巖的Li含量會升高。圖5顯示, 在馬努斯弧后盆地巖漿巖中, 隨著SiO2、Rb、Y含量的升高, 火山巖的Li含量升高; 隨著MgO含量的升高, 火山巖的Li含量降低。
表4 東馬努斯盆地火山巖Li同位素特征
圖5 SiO2、MgO、 Rb、Y濃度分別對Li濃度作圖
相對于玄武巖, 中酸性火山巖可能經(jīng)歷了更長、更復(fù)雜的演化過程。馬努斯盆地作為俯沖環(huán)境下的弧后擴張中心, 對于研究擴張環(huán)境內(nèi)中酸性火山巖演化具有重要意義。Li為不相容元素, 并易富集于富水流體內(nèi); 此外, Li元素包含6Li和7Li兩種穩(wěn)定同位素, 其相對質(zhì)量差達17%。因此, Li元素及穩(wěn)定同位素組成可以很好地示蹤馬努斯盆地巖漿演化過程。
根據(jù)微量元素蛛網(wǎng)圖(圖4b)可知, 馬努斯盆地火山巖大離子親石元素(large ion lithophile element, LILE: K, Rb, Ba)及流體活動性元素(fluid mobile element, FME: U, Pb)富集, 高場強元素(high field strength element, HFSE: Nb, Ta, Ti)虧損, 具有島弧熔巖的典型特征[41]。根據(jù)圖6的鋰元素及同位素特征, 馬努斯弧后盆地火山巖主要落入島弧火山巖范圍。樣品的Nd/Pb(~3)比值遠低于典型MORB(虧損)地幔(~24)所代表的地幔, 表明樣品中Pb組成明顯受俯沖組分影響。此外, Sr/Nd(15.12~59.66)和Ba/La(29.83~ 36.75)比值明顯高于N-MORB(Sr/Nd: 12.32; Ba/La: 2.52[39]), 表明盆地巖漿體系明顯受俯沖流體影響, 大量Sr、Ba進入到巖漿源區(qū)。
圖6 δ7Li vs.(Li–1)/10–6圖解(圖修改自[42])
俯沖物質(zhì)通過俯沖熔體或/和流體向島弧之下巖漿源區(qū)運移。但實驗結(jié)果表明, 在典型的俯沖區(qū)域, 古老的俯沖板片組分不會熔融, 因為溫度太低; 只有年輕的、熱的巖石圈俯沖時, 熔融才是一個可行的過程[43]。而俯沖流體可以來自于俯沖巖石圈和上覆沉積物含水礦物的分解。隨著深度增加, 環(huán)境溫度-壓力升高, 流體溶解度增高而元素與殘余礦物結(jié)合力降低, 流體和板片巖石的反應(yīng)可以造成FME和LILE的有選擇富集于流體相[40]。
Ba/La-Th/Yb可以用來指示板片流體或沉積物熔體的輸入狀況。熔巖的高Ba/La值代表板片來源流體的加入, 而高Th/Yb代表了沉積物或沉積物熔體的加入[44]。馬努斯火山巖Ba/La比高于MORB, 表明了板片來源流體的影響; 而采自MSC的玄武巖與MORB值相似(圖7實心菱形圖標(biāo)所示), 表明受俯沖組分影響較小或不受其影響。本次分析樣品在圖中位置與新不列顛弧受到俯沖流體影響的島弧熔巖相近, 也印證了馬努斯弧后火山巖受俯沖流體影響。
圖7 Th/Yb vs.Ba/La圖解(圖參照[44], 數(shù)據(jù)引自[40, 45-48])
鋰同位素組成與流體活動指標(biāo)間具有一定相關(guān)性(圖8)。Ba在流體和熔體中均為活動性元素。而Nb相對穩(wěn)定, 不受流體和熔體活動影響。Th僅優(yōu)先富集于熔體。Ba/Nb值指示俯沖物質(zhì)的輸入; Th/Nb指示俯沖熔體輸入; 相應(yīng)地, Ba/Th指示俯沖流體的輸入。隨著δ7Li增加, Ba/Nb和Ba/Th呈現(xiàn)增加趨勢, 而Th/Nb保持穩(wěn)定, 表明俯沖流體的輸入影響馬努斯弧后火山巖鋰同位素組成。但經(jīng)受俯沖流體交代的東馬努斯火成巖, 其鋰同位素組成與大洋中脊玄武巖(1.5‰~5.6‰)相近(圖6)。在前人相關(guān)研究中, 也存在上述現(xiàn)象。其原因在于鋰離子與鎂、鐵離子半徑相似, 可優(yōu)先置換進入鎂鐵質(zhì)硅酸鹽。在俯沖脫水過程中, Li大量保留于俯沖板片中, 并被運移至地球深部, 并未釋放到弧下熔融區(qū); 或是在流體向熔融區(qū)域運移的過程中, 與地幔反應(yīng), Li優(yōu)先進入地幔橄欖巖中, 僅有少量Li到達弧下熔融區(qū)[49]。
圖8 流體示蹤指數(shù)vs.δ7Li圖解
Tomascak等[50]研究發(fā)現(xiàn), 由于鋰與鎂硅酸鹽的相容性, 板片流體和地幔橄欖巖反應(yīng)會使得流體B/Li升高, 大部分板片來源的重鋰同位素組分優(yōu)先保留在地幔中, 島弧火山巖的δ7Li類似MORB, 并且跨越島弧沒有系統(tǒng)性變化。全球大洋中脊玄武巖研究顯示, 上地幔包含大量鋰, 其同位素組成較為均一[51]。因此, 無論是何種地質(zhì)過程產(chǎn)生的上地幔熔體, 都具有與其他幔源熔體相似的鋰同位素特征。大多數(shù)俯沖相關(guān)熔巖具有與MORB或OIB相似的δ7Li值, 支持上述觀點。這一方面表明其巖漿的幔源成因, 另一方面也指示了源自俯沖板片的物質(zhì)不足夠富集Li, 或者δ7Li未發(fā)生顯著分餾, 從而明顯改變鋰同位素特征。
Halama等[52]對勘察加島弧的弧下地幔研究顯示盡管存在來自板片物質(zhì)的交代作用, 弧下地幔和MORB地幔仍然具有相似的δ7Li值??辈旒訊u弧捕虜體研究也發(fā)現(xiàn), 盡管巖石學(xué)證據(jù)表明存在流體交代作用, 但沒有證據(jù)顯示流體顯著影響了弧下淺部橄欖巖地幔的鋰元素及同位素, 其δ7Li值與MORB相似[53]。進一步研究表明, Li在板片流體釋放時分餾, 但不會導(dǎo)致大量Li移出板片[54], 純粹的固/流體過程導(dǎo)致深俯沖板塊δ7Li下降不超過3‰[55]。
因此, 在馬努斯弧后盆地巖漿演化過程中, 盡管流體活動性元素顯示其巖漿源區(qū)受到俯沖板片流體的影響, 但鋰同位素并未在流體交代過程中顯著增加。
結(jié)晶分異作用是巖漿體系最可能經(jīng)歷的地質(zhì)過程。封閉體系條件下, 結(jié)晶分異作用的進行會對巖漿物質(zhì)組成產(chǎn)生特定影響, 可通過火山巖元素和同位素組成的變化趨勢, 確定巖漿體系所經(jīng)歷的地質(zhì)過程。
哈克圖解(圖9)顯示, 馬努斯盆地火山巖Al2O3、TiO2、P2O5的含量隨SiO2含量增加先呈現(xiàn)增加趨勢, 后呈現(xiàn)降低趨勢(圖9a, g, h), 表明斜長石、鈦鐵礦和磷灰石發(fā)生明顯結(jié)晶分異; 而CaO、Fe2O3和MgO的含量隨SiO2含量增加而減少(圖9b, c, e), 則指示橄欖石、輝石發(fā)生結(jié)晶分異。上述主量元素含量變化趨勢, 與封閉體系內(nèi)巖漿結(jié)晶分異作用所引起的巖漿組成變化相一致。
據(jù)前人研究顯示, 影響鋰同位素平衡分餾的關(guān)鍵因素是溫度。在低溫條件下, 巖石和流體體系內(nèi)鋰同位素分餾強烈[56]; 溫度高于350 ℃時, 鋰同位素分餾較弱[51]; 而在大于1 050 ℃的高溫巖漿分異過程中, 幾乎不顯示鋰同位素分餾[57-58]。
鋰同位素平衡分餾是由于鍵能的差異導(dǎo)致6Li和7Li在不同相之間的分配不同。7Li傾向于進入鍵能高的位置中。鍵能與配位數(shù)有關(guān), 低配位數(shù)位置具有高鍵能。Li在硅酸鹽礦物中主要以6次配位的形式存在, 而在熔體中大約以4.5次配位的形式存在。因此在巖漿結(jié)晶分異過程中,6Li應(yīng)優(yōu)先進入早期結(jié)晶的礦物相中, 而7Li會傾向于富集在殘余熔體當(dāng)中[54, 56, 59-60]。所以在巖漿分異后期結(jié)晶的礦物中應(yīng)富集7Li, δ7Li隨著巖漿分異程度的增加而增加。對于東馬努斯弧后盆地火山巖, 隨著SiO2含量的升高, δ7Li呈現(xiàn)降低趨勢; 隨著MgO含量升高, δ7Li呈現(xiàn)升高趨勢(圖10)。這說明鋰同位素的分餾不是受巖漿分異作用所控制。這與前人關(guān)于鋰同位素分餾機制的研究結(jié)果相吻合[50, 56, 58, 61-62]。
圖10 SiO2, MgO vs.δ7Li
根據(jù)所獲取的火山巖元素、鋰穩(wěn)定同位素組成特征, 可以確定采自馬努斯海盆的巖石樣品歸屬中鉀鈣堿性系列, 巖性為玄武質(zhì)安山巖和英安巖。區(qū)內(nèi)巖漿保持幔源巖漿特征, 巖漿演化過程主要受結(jié)晶分異作用的控制, 并且在巖漿源區(qū)有俯沖流體的加入。馬努斯弧后盆地火山巖的鋰同位素分餾不受巖漿結(jié)晶分異影響, 而受控于俯沖流體交代作用。
[1] MOSS R, SCOTT S D.Geochemistry and mineralogy gold-rich hydrothermal precipitates from the eastern Manus basin, Papua New Guinea[J].The Canadian Mi-neralogist, 2001, 39(4): 957-978.
[2] ORTEGA-OSORIO A, SCOTT S D.Morphological and chemical characterization of neutrally buoyant plume- derived particles at the eastern Manus basin hydrothermal field, Papua New Guinea[J].Canadian Mineralogist, 2001, 39: 17-31.
[3] YANG K, SCOTT S D.Magmatic degassing of volatiles and ore metals into a hydrothermal system on the modern sea floor of the eastern Manus back-arc basin, western Pacific[J].Economic Geology, 2002, 97(5): 1079-1100.
[4] SINTON J M, FORD L L, CHAPPELL B, et al.Magma genesis and mantle heterogeneity in the Manus back- arc basin, Papua New Guinea[J].Journal of Petrology, 2003, 44(1): 159-195.
[5] KAWAMOTO T.Melting temperature and partial melt chemistry of H2O-saturated mantle peridotite to 11 Gigapascals[J].Science, 1997, 276(5310): 240-243.
[6] CARMICHAEL I S.The andesite aqueduct: perspectives on the evolution of intermediate magmatism in west-central (105-99°W) Mexico[J].Contributions to Mineralogy and Petrology, 2002, 143: 641-663.
[7] GROVE T, TILL C, KRAWCZYNSKI M J.The role of H2O in subduction zone magmatism[J].Annual Review of Earth and Planetary Sciences, 2012, 40: 413-439.
[8] COOGAN L A, Mitchell N C, O’Hara M J.Roof assi-mi-lation at fast spreading ridges: An investigation combining geophysical, geochemical, and field evidence[J].Journal of Geophysical Research Solid Earth, 2003, 108: 1-14.
[9] KOEPKE, BERNDT J, FEIG S, et al.The formation of SiO2-rich melts within the deep oceanic crust by hydrous partial melting of gabbros[J].Contributions to Mineralogy and Petrology, 2007, 153: 67-84.
[10] GILL J B.Orogenic andesites and plate tectonics[M].New York: Springer, 1981.
[11] LE ROUX P J, SHIREY S B, HAURI E H, et al.The effects of variable sources, processes and contaminants on the composition of northern EPR MORB (8–10 °N and 12–14 °N): evidence from volatiles (H2O, CO2, S) and halogens (F, Cl)[J].Earth and Planetary Science Letters, 2006, 25: 209-231.
[12] JAGOYTZ O, BURG J P, HUSSAIN S, et al.Construction of the granitoid crust of an island arc part I: geochronological and geochemical constraints from the plu-tonic Kohistan (NW Pakistan)[J].Contributions to Mineralogy and Petrology, 2009, 158: 739-755.
[13] DESSIMOZ M, MüNTERNER O and ULMER P.A case for hornblende dominated fractionation of arc ma-g-mas: the Chelan complex (Washington Cascades)[J].Contributions to Mineralogy and Petrology, 2012, 163: 567-589.
[14] HILDRETH W, MOORBATH S.Crustal contributions to arc magmatism in the Andes of central Chile[J].Con-tri-bu-tions to Mineralogy and Petrology, 1988, 98: 455-489.
[15] DUNGAN M, DAVIDSON J.Partial assimilative recycling of the mafic plutonic roots of arc volcanoes: an example from the Chilean Andes[J].Geology, 2004, 32: 773-776.
[16] BEIER C, BACH W, TURNER S, et al.Origin of silicic magmas at spreading centres?an example from the south east rift, Manus basin[J].Journal of Petrology, 2015, 56(2): 255-272.
[17] PARK S H, LEE S M, KAMENOV G D, et al.Tracing the origin of subduction components beneath the south east rift in the Manus basin, Papua New Guinea[J].Chemical Geology, 2010, 269(3/4): 339-349.
[18] BEIER C, TURNER S P, SINTON J M, et al.Influence of subducted components on back-arc melting dynamics in the Manus basin[J].Geochemistry Geophysics Geosystems, 2010, 11: Q0AC03.doi.org/10.1029/2010GC003037.
[19] RYAN J G, LANGMUIR C H.The systematics of lithium abundances in young volcanic-rocks[J].Geochi-mica Et Cosmochimica Acta, 1987, 51(6): 1727-1741.
[20] BINNS R A, SCOTT S D.Actively forming polymetallic sulfide deposits associated with felsic volcanic rocks in the eastern Manus back-arc basin, Papua New Gui-nea[J].Economic Geology, 1993, 88(8): 2226-2236.
[21] MARTINEZ F, TAYLOR B.Backarc spreading, rifting, and microplate rotation, between transform faults in the Manus basin[J].Marine Geophysical Research, 1996, 18(2/4): 203-224.
[22] TAYLOR B.Bismarck Sea: Evolution of a back-arc basin[J].Geology, 1979, 7(4): 171-174.
[23] BEAUDOIN Y, SCOTT S D.Pb in the PACMANUS sea-floor hydeothermal system, eastern Manus basin: numerical modeling of a magmatic versus leached origin[J].Economic Geology, 2009, 104(5): 749-758.
[24] KAMENETSKY V S, BINNS R A, GEMMELL J B, et al.Parental basaltic melts and fluids in eastern Manus backarc basin: implications for hydrothermal mineralisation[J].Earth and Planetary Science Letters, 2001, 184(3): 685-702.
[25] 馬瑤.東馬努斯弧后盆地巖漿巖地球化學(xué)特征及其對熱液活動中Cu的物質(zhì)供給研究[D].青島: 中國科學(xué)院研究生院(中國科學(xué)院海洋研究所), 2016.
MA Yao.Geochemistry of igneous rocks and material contribution of Cu to seafloor hydrothermal system in eastern Manus basin[D].Qingdao: The University of Chinese Academy of Sciences(The Institute of Ocea-no-logy, Chinese Academy of Sciences), 2016.
[26] 馬瑤, 殷學(xué)博, 王曉媛等.構(gòu)造-巖漿作用對熱液活動的控制機理: 馬努斯海盆為例[J].海洋科學(xué), 2018, 42(5): 163-171.
MA Yao, YIN Xuebo, WANG Xiaoyuan et al.Influence of tectonic-magmatism on hydrothermal activity: a case study of the Manus basin[J].Marine Sciences, 2018, 42(5): 163-171.
[27] 趙霞, 黃朋, 胡寧靜等.東馬努斯盆地高鎂安山巖物質(zhì)來源及演化過程——基于全巖主微量和同位素分析[J].海洋與湖沼, 2017, 48(1): 8-21.
ZHAO Xia, HUANG Peng, HU Ningjing et al.Magma source and evolution of high-Mg andesite from eastern Manus basin-geochemical and istopic constrains[J].Oceanologia et Limnologia Sinica, 2017, 48(1): 8-21.
[28] 趙霞, 黃朋, 胡寧靜等.東馬努斯盆地?zé)嵋何g變火山巖元素遷移特征及影響因素[J].海洋地質(zhì)與第四紀(jì)地質(zhì), 2017, 37(3): 86-101.
ZHAO Xia, HUANG Peng, HU Ningjing, et al.Gharacteristics and influence factors of element migration of hydrothermal altered rock in eastern Manus basin[J].Marine Geology and Quaternary Geology, 2017, 37(3): 86-101.
[29] 趙霞.東馬努斯盆地普通火山巖、高鎂安山巖及蝕變巖石地球化學(xué)特征研究[D].青島: 中國科學(xué)院大學(xué)(中國科學(xué)院海洋研究所), 2017.
ZHAO Xia.The study of geochemical characteristics of general volcanic rocks, high-Mg andesite and altered rock in eastern Manus basin[D].Qingdao: The University of Chinese Academy of Sciences (The Institute of Oceanology, Chinese Academy of Sciences), 2017.
[30] 曾志剛, 陳帥, 王曉媛, 等.東馬努斯海盆PACMANUS熱液區(qū)Si-Fe-Mn羥基氧化物的礦物學(xué)和微形貌特征[J].中國科學(xué): 地球科學(xué), 2013, 43(1): 61-71.
ZENG Zhigang, CHEN Shuai, WANG Xiaoyuan, et al.Mineralogical and micromorphological characteristics of Si-Fe-Mn oxyhydroxides from the PACMANUS hydrothermal field, eastern Manus basin[J].Science China: Earth Sciences, 2013, 43(1): 61-71.
[31] 楊寶菊.東馬努斯海盆PACMANUS熱液區(qū)Si-Fe- Mn氧化物的形成機制及其對熱液活動的指示[D].青島: 中國科學(xué)院研究生院(中國科學(xué)院海洋研究所), 2015.
YANG Baoju.The forming mechanism of Si-Fe-Mn oxides and implications for hydrothermal activity at the PACMANUS hydrothermal field, eastern Manus basin[D].Qingdao: The University of Chinese Academy of Sciences (The Institute of Oceanology, Chinese Academy of Sciences), 2015.
[32] 黃朋.沖繩海槽火山活動及其構(gòu)造意義[D].青島: 中國科學(xué)院研究生院(中國科學(xué)院海洋研究所), 2005.
HUANG Peng.The volcanic activities and their implications in the Okinawa trough[D].Qingdao: The University of Chinese Academy of Sciences (The Institute of Oceanology, Chinese Academy of Sciences), 2005.
[33] 中華人民共和國國家質(zhì)量監(jiān)督檢驗檢疫總局, 中國國家標(biāo)準(zhǔn)化管理委員會.硅酸鹽巖石化學(xué)分析方法第28部分: 16個主次成分量測定 GB/T 14506.28—2010[S].北京: 中國標(biāo)準(zhǔn)出版社, [2010-11-10].
General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, the China National Standardization Management Com-mittee.Methods for chemical analysis of silicate rocks — Part 28: Determination of 16 major and minor elements content GB/T 14506.28—2010[S].Beijing: Standards Press of China, [2010-11-10].
[34] 中華人民共和國國家質(zhì)量監(jiān)督檢驗檢疫總局, 中國國家標(biāo)準(zhǔn)化管理委員會.硅酸鹽巖石化學(xué)分析方法第30部分: 44個元素量測定 GB/T 14506.30-2010[S].北京: 中國標(biāo)準(zhǔn)出版社, [2010-11-10].
General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, the China National Standardization Management Com-mittee.Methods for chemical analysis of silicate rocks - Part 30: Determination of 44 elements GB/T 14506.30-2010[S].Beijing: Standards Press of China, [2010-11-10].
[35] 張俊文, 孟俊倫, 趙志琦, 等.多接收電感耦合等離子質(zhì)譜法準(zhǔn)確測定天然地質(zhì)樣品中的鋰同位素組成[J].分析化學(xué), 2019, 47(3): 415-422.
ZHANG Junwen, MENG Junlun, ZHAO Zhiqi, et al.Accurate determination of lithium isotopic compositions in geological samples by multi-collector inductively coupled plasmon-mass spectrometry[J].Chinese Journal of Analytical Chemistry, 2019, 47(3): 415-422.
[36] LE MAITRE R W, BATEMAN P, DUDEK A, et al.A classification of igneous rocks and glossary of terms: recommendations of the international union of geological sciences subcommission on the systematic of igneous rocks[M].Blackwell, Oxford, 1989: 193.
[37] RICKWOOD P C.Boundary lines within petrologic dia-grams which use oxides of major and minor elements[J].Lithos, 1989, 22: 247-263.
[38] SUN W, BINNS R, FAN A C, et al.Chlorine in submarine volcanic glasses from the eastern Manus basin[J].Geochimica et Cosmochimica Acta, 2007, 71(6): 1542- 1552.
[39] SUN S S, MCDONOUGH W F.Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes[J].Geological Society London Special Publications, 1989, 42: 313-345.
[40] CHAN L H, LEEMAN W P, YOU C F.Lithium isotopic composition of central American volcanic arc lavas: Implications for modification of subare mantle by slab-derived fluids[J].Chemical Geology, 1999, 160(4): 255-280.
[41] WOODHEAD J D, JOHNSON R W.Isotopic and trace- element profiles across the new Britain island arc, Papua New Guinea[J].Contributions to Mineralogy and Petrology, 1993, 113(4): 479-491.
[42] 湯艷杰, 張宏福, 英基豐.地幔中EM1端員成因的鋰同位素制約[J].礦物巖石地球化學(xué)通報, 2011, 30(1): 13-19.
TANG Yanjie, ZHANG Hongfu, YING Jifeng.Sr-Nd-Li isotopic constraints on the origin of EM1 end-member[J].Bulletin of Mineralogy, Petrology and Geochemistry, 2011, 30(1): 13-19.
[43] PEACOCK S M, RUSHMER T, THOMPSON A B.Par-tial melting of subducting oceanic crust[J].Earth and Planetary Science Letters, 1994, 121: 227-244.
[44] WOODHEAD J D, HERGT J M, DAVIDSON J P, et al.Hafnium isotope evidence for ‘conservative’ element mobility during subduction processes[J].Earth and Planetary Science Letters, 2001, 192(3): 331-346.
[45] WOODHEAD J D, EGGINS S M, JOHNSON R W.Magma genesis in the new Britain island arc: further insights into melting and mass transfer processes[J].Journal of Petrology, 1998, 39(9): 1641-1668.
[46] MAGNA T, WIECHERT U, GROVE T L, et al.Lithium isotope fractionation in the southern Cascadia subduc-tion zone[J].Earth and Planetary Science Letters, 2006, 250(3/4): 428-443.
[47] AREVALO R and MCDONOUGH W F.Chemical variations and regional diversity observed in MORB[J].Chemical Geology, 2001, 271(1/2): 70-85.
[48] GUO K, ZHAI S, YU Z, et al.Geochemical and Sr-Nd- Pb-Li isotopic characteristics of volcanic rocks from the Okinawa trough: Implications for the influence of subduction components and the contamination of cru-s-tal materials[J].Journal of Marine Systems, 2018, 180: 140-151.
[49] MORIGUTI T, SHIBATA T, NAKAMURA E.Lithium, boron and lead isotope and trace element systematic of Quaternary basaltic volcanic rocks in northeastern Japan: mineralogical controls on slab-derived fluid composition[J].Chemical Geology, 2004, 212(1/2): 81-100.
[50] TOMASCAK, PAUL B, RYAN, et al.Lithium isotope evidence for light element decoupling in the Panama subarc mantle[J].Geology, 2000, 28(6): 507-510.
[51] TOMASCAK P B, LANGMUIR C H, ROUX P, et al.Lithium isotopes in global mid-ocean ridge basalts[J].Geochemica et Cosmochimica Acta, 2008, 72(6): 1626- 1637.
[52] HALAMA R, SAVOV I P, RUDNICK R L, et al.Insights into Li and Li isotope cycling and sub-arc metasomatism from veined mantle xenoliths, Kamcha-tka[J].Contributions to Mineralogy & Petrology, 2009, 158(2): 197-222.
[53] IONOV D A, SEITZ H M.Lithium abundances and isotopic compositions in mantle xenoliths from subduction and intra-plate settings: mantle sources vs.eruption histories[J].Earth & Planetary Science Letters, 2008, 266(3/4): 316-331.
[54] WUNDER B, MEIXNER A, ROMER R L, et al.Temperature-dependent isotopic fractionation of lit-hium between clinopyroxene and high-pressure hydrous fluids[J].Contributions to Mineralogy & Petrology, 2006, 151(1): 112-120.
[55] MARSCHALL H R, STRANDMANN P, SEITZ H M, et al.The lithium isotopic composition of orogenic ec-lo-gites and deep subducted slabs[J].Earth & Planetary Science Letters, 2007, 262(3/4): 563-580.
[56] 劉海洋.俯沖變質(zhì)作用與巖漿過程中的鋰同位素地球化學(xué)[D].合肥: 中國科學(xué)技術(shù)大學(xué), 2018.
LIU Haiyang.Lithium isotope geochemistry in sub-du-c-tion zone metamorphism and magmatic process[D].Hefei: University of Science and Technology of China, 2018.
[57] TOMASCAK P B, TERA F, HELZ R T, et al.The absence of lithium isotope fractionation during basalt dif-ferentiation: new measurements by multicollector sector ICP-MS[J].Geochimica et Cosmochimica Acta, 1999, 63(6): 907-910.
[58] CHAN L H, FREY F A.Lithium isotope geoche-mistry of the Hawaiian plume: results from the Hawaii scientific drilling project and koolau volcano[J].Geochemistry Geophysics Geosystems, 2003, 4: 8707.
[59] TENG F Z, MCDONOUGH W F, RUDNICK R L, et al.Lithium isotopic systematic of granites and pegmatites from the Black Hills, South Dakota[J].American Mine-ralogist, 2006, 91(10): 1488-1498.
[60] CACIAGLI N, BRENAN J M, MCDONOUGH W F, et al.Mineral-fluid partitioning of lithium and implica-tions for slab-mantle interaction[J].Chemical Geology, 2011, 280(3/4): 384-398.
[61] TENG F Z, RUDNICK R L, MCDONOUGH W F, et al.Lithium isotopic systematic of A-type granites and their mafic enclaves: further constraints on the Li iso-topic composition of the continental crust[J].Che-mical Geology, 2009, 262(3/4): 370-379.
[62] ELLIOTT T, THOMAS A, JEFFCOATE A, et al.Lithium isotope evidence for subduction-enriched mantle in the source of mid-ocean-ridge basalts[J].Nature, 2006, 443(7111): 565-568.
Lithium isotopic composition of intermediate volcanic rocks in eastern Manus Basin during magma evolution
ZUO Li-wei1.2, HUANG Peng1, WANG Xiong1, 2
(1.Key Laboratory of Marine Geology and Environment, Institute of Oceanology, Chinese Academy of Science, Qingdao 266071, China; 2.University of Chinese Academy of Sciences, Beijing 100049, China)
eastern Manus Basin; intermediate volcanic rocks; evolution process; lithium isotopic composition
Major and trace elements and the Li isotopic composition were analyzed for intermediate volcanic rocks in the eastern Manus Basin.Previous data were combined to explore the origination and evolution process.The variation of major and trace elements with the content of SiO2increases, and the ratio of La/Sm remains stable as the differentiation of magma, indicating that the volcanic rocks were controlled by fractional crystallization.According to the characteristics of trace elements, the rocks were enriched with fluid mobile elements and were affected by the metasomatism of subduction fluids.Along with the increase of slab fluids, δ7Li showed an increasing trend, indicating that the variation of the lithium isotope was caused by fluid metasomatism.No significant correlation between the lithium isotopic composition and the extent of fractional crystallization was observed.Hence, crystallization was not the main factor that controlled the fractionation of lithium isotopes.
May 21, 2021
[National Natural Science Foundation of China, No.41576055; National Basic Research Program of China, No.2013CB429702]
P736.4
A
1000-3096(2022)03-0001-13
10.11759/hykx20210521002
2021-05-21;
2021-09-21
國家自然科學(xué)基金項目(41576055); 國家重點基礎(chǔ)研究計劃(2013CB429702)
左麗薇(1993—), 女, 河北邢臺人, 碩士研究生, 主要從事海洋巖石學(xué)研究, E-mail: 798609808@qq.com; 黃朋(1972—), 通信作者, 碩士生導(dǎo)師, 主要從事海洋巖石學(xué)和海洋沉積學(xué)研究, E-mail: huangpeng@qdio.ac.cn
(本文編輯: 趙衛(wèi)紅)