• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Strong chirality in twisted bilayer α-MoO3

    2022-04-12 03:44:16BiYuanWu吳必園ZhangXingShi石章興FengWu吳豐MingJunWang王明軍andXiaoHuWu吳小虎
    Chinese Physics B 2022年4期
    關(guān)鍵詞:王明

    Bi-Yuan Wu(吳必園) Zhang-Xing Shi(石章興) Feng Wu(吳豐)Ming-Jun Wang(王明軍) and Xiao-Hu Wu(吳小虎)

    1School of Automation and Information Engineering,Xi’an University of Technology,Xi’an 710048,China

    2Shandong Institute of Advanced Technology,Jinan 250100,China

    3School of Optoelectronic Engineering,Guangdong Polytechnic Normal University,Guangzhou 510665,China

    4School of Physics and Telecommunications Engineering,Shaanxi University of Technology,Hanzhong 723001,China

    Keywords: chirality,twisted bilayer,α-MoO3

    1. Introduction

    Chirality means that an object cannot coincide with its mirror image through any rotation or translation operation,which is widespread in nature.[1-3]Like human hands,the left hand does not overlap with the right hand that mirrors each other.The chiral enantiomers in drugs have the same chemical formula and physical properties,but they have different spatial arrangement. However, this asymmetry can lead to inactivity or even toxicity.[4]For example, the thalidomide incident in history results from insufficient understanding of chirality.[5]Therefore,it is very desirable to strengthen the ability to recognize the chiral objects.

    The conventional technical means for distinguishing chiral structures is to measure the absorptivity/transmissivity spectra of their interactions with circularly polarized wave.[6]The difference in absorptivity/transmissivity between the lefthand circular polarization (LCP) and the right-hand circular polarization (RCP) is defined as circular dichroism (CD).Once the circular dichroism is detected, the chirality can be well judged. However, naturally occurring chirality is very weak, which would not only lead to the low sensitivity of measurement technology, but also result in the waste of materials and long acquisition time. Realizing the strong chirality is of critical importance in applications such as analytical chemistry,[7]polarization optics,[8-11]and biological sensing.[12-15]To obtain the strong chirality, many effective methods have been proposed.[16-21]Wanget al.designed a chiral structure combining bilayer of anisotropic metamaterial structures. Moreover,in that work it was proposed and proved that the destroying of the rotational and mirror symmetry simultaneously is the necessary condition for chiral structures through the framework of Jones calculus.[22]Their work provides a convincing theoretical basis for designing chiral structures. Based on Ref.[22],various bilayered chiral nanostructures have attracted great attention and been designed.[23-33]For example,Donget al.proposed a chiral metamaterial composed of square-periodic array pairs of mutually twisted metallic crosses separated by dielectric layer.[34]Although the giant circular dichroism can be excited in chiral metamaterials,the fabrication of three-dimensional(3D)metamaterials is not easy.

    In fact, the chiral response can be excited in the nanostructures with in-plane anisotropy. If there is a material with in-plane anisotropy itself, it will greatly simplify the chiral structures. Theα-MoO3is a kind of naturally biaxial hyperbolic crystal with intrinsic in-plane anisotropy.[35-39]Furthermore, the fabrication ofα-MoO3films is easier than that of 3D metamaterials. Chemical vapor transport technique with low cost is often used to fabricate it. Theα-MoO3has attracted a great deal of attention in recent decades for its profound applications in various disciplines, such as radiation heat transfers[40-42]and plasmonic biosensors.[43]Recently,Wuet al. studied extrinsic chirality resulting from the relative orientation of theα-MoO3film and the incident light in a singleα-MoO3film,[39]where the CD (about 0.77) is still not strong enough. Combining with the viewpoint of the literature,[22]an idea about chirality based on the twisted bilayer structure comes into our mind. Very recently, Linet al.realized chiral plasmons in van der Waals heterostructures comprised of twisted atomic bilayers,[44]which is determined by the interlayer quantum coupling. Stauberet al.investigated the chiral response in twisted bilayer graphene,[45]and the chiral character is associated with a longitudinal magnetic moment.Besides,the CD in Ref.[45]is extremely small(smaller than 0.001).

    In this paper, we systematically investigate the chiral response of the twisted bilayerα-MoO3. The thickness values of twoα-MoO3slabs and the relative rotation angle between them are the two main parameters affecting the CD. In order to enhance the chirality of the structure,we optimize these parameters according to two methods. It is found that the CD of the structure can reach 0.89. Furthermore, the polarization conversion is calculated to reveal the underlying physical mechanism, which is completely different from the counterparts in Refs. [44,45]. Finally, the influence of the relative rotation angle and the angle of incidence on CD are studied as well.

    2. Modeling and methods

    Figure 1(a)schematically shows the model to be studied in this paper. The structure consists of two layers ofα-MoO3with a relative rotation angle to break the overall mirror symmetry. In the figure,d1andd2are the thickness of the top and bottomα-MoO3, respectively, andδrepresents the relative rotation angle between the twoα-MoO3slabs. The light incident is along thezdirection. For the bottomα-MoO3slab,crystallographic axes [100], [001], and [010] are along thex,y,andzdirections,respectively. Thus,the permittivity tensor can be expressed asε=diag(εx,εy,εz). The expressions ofεx,εy,andεzare described by the Lorentz equation[46]as follows:

    Fig. 1. (a) Schematic diagram of twisted bilayer α-MoO3, (b) real parts of the principal permittivities of α-MoO3.

    The transfer matrix method (TMM) is used to calculate the transmissivity of the proposed structure.[47]According to Jones vector, elliptically polarization wave is defined as follows:

    whereψis the angle between the incident plane and the electric field vector,andηis the phase difference between the electric fields parallel and perpendicular to the plane of incidence.The incident electric field is defined as wheren1andn2represent the refractive index of incident medium andα-MoO3slab, respectively,φis the azimuthal angle,andθrefers to the wave incidence angle.

    The electric field in the incident medium(z <0)and that of transmitted wave(z >d=d1+d2)are calculated from

    wherek0is the wavevector in vacuum,k1,zandk2,zare the wavevector component along thezdirection inz <0 andz >d,respectively. The electromagnetic fields in anyα-MoO3slab are given by

    whereSx,Sy,Sz,Ux,Uy,andUzare the amplitudes of electromagnetic field components.ε0andμ0represent the permittivity and permeability of vacuum, respectively. Supposing that the permittivity tensor of one anisotropic slab is

    whereKx=kx/k0andKy=ky/k0. For the bottom layer, theεxyandεyxare both equal to zero. For the top layer,εxyandεyxare non-zero complex numbers related to the rotation angleδ,which can be found in Eq.(2).By calculating the matrixA,we can obtain the eigenvaluesqmand the eigenvector matrixW. The tangential electromagnetic field components are described as

    3. Results and discussion

    The CD is a vital parameter to measure the chiral response,which is equal to the difference in transmissivity(absorptivity/reflectivity)between LCP wave and RCP wave. We take the transmissivity into consideration in this work. Hence,the CD can be obtained from

    whereTLCPandTRCPare the transmissivity for LCP wave and RCP wave,respectively.

    Figure 2 shows the curves of transmissivity as a function of wavelength,respectively,for LCP wave,RCP wave and the corresponding CD under normal incidence. Here the relative rotation angle is fixed at 45°. The thickness values of the top and bottom slabs are both 1 μm. It can be seen that the relatively large CD appears at the wavelengths of 14.4 μm and 20.3μm. Since the rotational symmetry and mirror symmetry have been destroyed simultaneously by the relative rotation between the two layers,the twisted bilayerα-MoO3is a chiral structure.

    Fig. 2. Transmissivity spectrum for LCP wave (red line), RCP wave (blue line), and the corresponding CD(green line)under normal incidence, with relative rotation angle fixed at 45°.

    Taking wavelengthλ=14.4μm for example,we further enhance the CD at this wavelength. Two parameters can affect the CD,which are the thickness values of two slabs, and the relative rotation angle between them. Here, we optimize first the thickness and then the relative rotation angle. When the relative rotation angle is 45°,the transmissivity as a function ofd1andd2is plotted in Fig. 3(a) for LCP wave and in Fig.3(b)for RCP wave. Obviously,the transmissivity has the periodic enhancement with the increasing of thicknessd1andd2for both LCP wave and RCP wave. The phenomenon originates from Fabry-Per′ot(FP)resonance. When thed1(ord2)equals zero,the model is simplified into a free standing singleα-MoO3slab. The circularly polarized wave can be decoupled into TM wave and TE wave. Besides, both of them can excite the FP resonance. The quantization condition for any two adjacent orders of FP resonances can be described as

    whereφis the reflection phase at the interface between the air and theα-MoO3slab,t1andt2are the thickness of theα-MoO3slab when the two adjacent orders of FP resonances occur, respectively,mis an integral number,kz=nk0, withnrepresenting the refractive index andk0=2π/λwith wavelengthλ. Therefore,the difference(Δt=|t1-t2|)in thickness of theα-MoO3slab between the two adjacent orders of FP resonances can be calculated from

    It is worth noting that theα-MoO3possesses different refractive indices in three principal directions since it is an anisotropic material. In our simulation, we define the plane of incidence as thex-zplane. Thus, the electric field vector is parallel to theyaxis for the TE wave, while thexaxis is for TM wave under normal incidence. According to Eq.(27),Δtis equal to 2.28 μm and 2.75 μm for TM wave and TE wave when the wavelengthλis 14.4 μm, respectively. The results are in good agreement with the scenarios in Figs.3(a)and 3(b). Back to Fig. 3, for RCP wave, it is found that the transmissivity is enhanced periodically with the increase ind2when the thicknessd1is less than 1 μm, while the transmissivity is small at the same thickness under the illumination of LCP wave. Figure 3(c)shows the corresponding CD.One can see that the CD improves periodically asd2increases, which comes from FP resonance as well. In addition,the CD reaches its maximum value when the thickness of top layer and bottom layer are 0.8μm and 3.4μm,respectively.

    Based on the above optimization results (d1= 0.8 μm andd2=3.4 μm), the influence of the relative rotation angle on circular dichroism atλ=14.4 μm is discussed. Figure 4 shows the transmissivity under the illumination of LCP wave, RCP wave and the corresponding CD as relative rotation angle increases from 0°to 90°.One can see that the CD is zero when the relative rotation angle equals 0°. When the relative angle becomes bigger,the CD increases gradually at first and reaches its maximum at 57°, then drops down to nearly zero when relative rotation angle approaches to 90°. Since the bilayer structure we proposed with relative rotation angle 0°or 90°possesses the rotational symmetry or mirror symmetry, the chiral response disappears. In addition, it is found that the maximum CD is smaller than 0.5. In order to acquire the stronger circular dichroism, the parameters of the model should be further optimized.

    Fig.3. Transmissivity as function of thickness of top slab d1 and bottom slab d2 at wavelength 14.4μm when relative rotation angle is 45°,for(a)LCP wave,(b)RCP wave,and(c)corresponding CD.

    Fig.4. Curves of transmissivity versus relative rotation angle for LCP wave(red line), RCP wave (blue line), and corresponding CD (green line) when thickness d1 and d2 are 0.8μm and 3.4μm,respectively.

    Here, we optimize first the relative rotation angle, and then the thickness. Considering different relative rotation angles,we plot the curves of CD as a functions of thickness for the two slabs as shown in Fig.5. It is found that the CD is extremely small at any thickness when the relative rotation angle is 10°, and the CD rises with relative rotation angle increasing. The results show that the CD can be flexibly tuned via changing the relative rotation angle between the two layers. In addition,one can see that the CD reaches its maximum value when the relative rotation angle is 70°. Therefore,we further optimize the relative rotation angle around 70°by using the same method, but the results are not shown here. It is found that the CD can reach a maximum value of 0.89 at a relative rotation angle of 75°when the thickness of the bottom slab and the top slabs are 2.72μm and 0.6μm,respectively.

    Now,at the optimized parameters(φ=75°,d1=0.6μm andd2=2.72 μm), the transmissivity spectra and CD spectra are investigated and shown in Fig. 6. At a wavelength of 14.4μm,a large transmissivity can be observed for RCP wave while the transmissivity is almost zero for LCP wave. One can see that the CD can reach 0.89,indicating a strong chirality.

    Fig.5. Variations of CD with thickness of top slab d1 and bottom slab d2 at different relative rotation angles: (a)10°,(b)20°,(c)30°,(d)40°,(e)50°,(f)60°,(g)70°,and(h)80°.

    Fig. 6. Transmissivity spectrum for LCP wave (red line), RCP wave (blue line), and the corresponding CD (green line), with relative rotation angle being 75°, and top slab and bottom slab 0.6μm and 2.72μm in thickness,respectively.

    To better illustrate the underlying physical mechanisms of the strong chirality, the polarization conversion curves for LCP wave and RCP wave under normal incidence are shown in Fig.7. When circularly polarized light with different handedness is incident on the structure,the transmitted wave contains the components of both LCP wave and RCP wave. For the incident RCP wave, the amplitude of LCP wave in the transmitted wave is greater than 0.4 at a wavelength of 14.4 μm,and the amplitude of RCP wave reaches 0.5. However, both LCP wave and RCP wave in transmitted wave are close to zero under the illumination of LCP wave. It can be found that there is a huge difference in polarization conversion efficiency between the two circularly polarized waves, resulting in the strong circular dichroism in Fig.6. Nevertheless,we can also find that no matter whether it is incident LCP wave or RCP wave, the difference between polarization conversion and no polarization conversion in the transmitted wave is very small.Hence,their physical mechanisms can be further studied.

    Fig.7. Components of LCP wave and RCP wave in transmitted wave.

    To further explain the strong chirality of the bilayer structure, the components of TE wave and TM wave of the transmitted wave for normal incidence of an LCP wave and an RCP wave are shown in Figs.8(a) and 8(b). Here, the wavelength we concerned is still 14.4μm. It is found that the TM component in the transmitted wave is relatively small for an incident LCP wave, while the TM component can reach 0.9 for an incident RCP wave at the wavelength of 14.4 μm. Moreover,one can see that the TE component in the transmitted wave is almost zero for both the incident LCP wave and the incident RCP wave in a wavelength range from 11.8 μm to 18.3 μm.According to Ref. [49], the response of the structure for normal incidence of the TE wave and the TM wave are related toεyandεx, respectively. Since the sign of the real part of theεyis negative in the wavelength range of 11.8 μm-18.3 μm,now theα-MoO3behaves like metal,resulting in a strong reflection for TE wave. Thus, the anisotropic properties of theα-MoO3guarantee the giant chirality of the bilayer structure.

    Fig. 8. Components of TE wave and TM wave in transmitted waves: (a)LCP wave and(b)RCP wave.

    Here,the influence of the relative rotation angle on CD is discussed in the same situation as that in Fig.6,and displayed in Fig. 9. As the relative rotation angle increases, the CD slowly rises from 0 to the maximum value 0.89, and then decreases to nearly zero when the relative rotation angle is close to 90°. It is worth noting that the structure can still maintain strong CD over 0.8 when the relative rotation angle approximately ranges from 69°to 80°. Therefore,the CD is not very sensitive to the relative rotation angle, which reduces the requirement for angle in fabrication.

    In fact, the influence of incident angle on the chirality is of vital importance. Thus, it is necessary to keep strong circular dichroism even at a large incident angle. Based on the optimized results as shown in Fig. 10, we discuss the transmissivity and CD varying with incident angle. When the incident angle increases from 0°to 90°, the transmissivity for LCP wave always keeps a low level while the transmissivity for RCP wave first maintains a large value and then decreases.It can be seen from the green line in Fig.10 that the CD can be larger than 0.85 when the incident angle is smaller than 40°,indicating that the chirality of the structure is robust against the incident angle.

    Fig.9. Curves of transmissivity versus relative rotation angle for LCP wave for LCP wave(red line), RCP wave(blue line), and the corresponding CD(green line), with bottom slab and top slab being 0.6 μm and 2.72 μm in thickness,respectively.

    Fig. 10. Curve of transmissivity versus incident angle for LCP wave (red line), RCP wave (blue line), and the corresponding CD (green line), with wavelength being 14.4 μm, and bottom slab and top slabs 0.6 μm and 2.72μm in thickness,respectively.

    4. Conclusions

    In summary,a chiral structure based on twisted bilayerα-MoO3has been proposed and investigated. Through the optimization of parameters,the circular dichroism of the structure can reach 0.89. To reveal more in-depth physical mechanism,we analyze the polarization conversion between LCP wave and RCP wave. Furthermore,we discuss the influence of the relative rotation angle and the angle of incidence on the CD.The results show that the CD can keep a high level (CD>0.8)when the relative rotation angle approximately ranges from 69°to 80°. Besides,the CD is robust against the incident angle. It is believed that this work not only provides a new idea for chiral structure,but also promotes the development of the manipulation of circularly polarized wave.

    Acknowledgements

    Project supported by the Training Program of the Major Research Plan of the National Natural Science Foundation of China (Grant No. 92052106), the National Natural Science Foundation of China (Grant Nos. 61771385 and 52106099),the Science Foundation for Distinguished Young Scholars of Shaanxi Province, China (Grant No. 2020JC-42), the Science and Technology on Solid-State Laser Laboratory, China(Grant No.6142404190301),the Science and Technology Research Plan of Xi’an City, China (Grant No. GXYD14.26),the Shandong Provincial Natural Science Foundation, China(Grant No. ZR2020LLZ004), and the Start-Up Funding of Guangdong Polytechnic Normal University, China (Gtrant No.2021SDKYA033).

    猜你喜歡
    王明
    The(1+1)-dimensional nonlinear ion acoustic waves in multicomponent plasma containing kappa electrons
    Degradation mechanisms for polycrystalline silicon thin-film transistors with a grain boundary in the channel under negative gate bias stress
    Degradation mechanisms for a-InGaZnO thin-film transistors functioning under simultaneous DC gate and drain biases
    Higher Derivative Estimates for a Linear Elliptic Equation
    走過(guò)318
    追問(wèn)高原
    “看不見(jiàn)”的王明華
    海峽姐妹(2019年3期)2019-06-18 10:37:22
    SOLUTIONS TO NONLINEAR ELLIPTIC EQUATIONS WITH A GRADIENT?
    龍門這邊(47)
    棋藝(2014年1期)2014-05-20 02:07:43
    Optimization of Two-species Whole-cell Immobilization System Constructed with Marine-derived Fungi and Its BiologicalDegradation Ability*
    99热这里只有是精品50| 亚洲婷婷狠狠爱综合网| 国产精品久久电影中文字幕| 亚洲成av人片在线播放无| 在线a可以看的网站| av在线观看视频网站免费| 在线免费观看的www视频| 久久久精品欧美日韩精品| 97热精品久久久久久| 麻豆精品久久久久久蜜桃| 天堂av国产一区二区熟女人妻| 熟女电影av网| 久久国产乱子免费精品| 亚洲最大成人av| 麻豆成人午夜福利视频| 亚洲在线自拍视频| 三级国产精品欧美在线观看| 亚洲自偷自拍三级| 99在线视频只有这里精品首页| 嘟嘟电影网在线观看| 看黄色毛片网站| 国产免费一级a男人的天堂| 国产私拍福利视频在线观看| 精品欧美国产一区二区三| 天堂影院成人在线观看| 人人妻人人澡人人爽人人夜夜 | 99精品在免费线老司机午夜| 欧美一区二区精品小视频在线| 亚洲av男天堂| 毛片女人毛片| 欧美xxxx黑人xx丫x性爽| 国产视频内射| 免费av观看视频| 91久久精品电影网| 国产黄a三级三级三级人| 免费观看的影片在线观看| 直男gayav资源| 欧美激情国产日韩精品一区| 国产一区二区三区av在线 | 伦理电影大哥的女人| 国产精品无大码| 青春草亚洲视频在线观看| 国产美女午夜福利| 日韩成人伦理影院| 国产午夜精品久久久久久一区二区三区| a级毛片a级免费在线| 可以在线观看的亚洲视频| 国产大屁股一区二区在线视频| 三级经典国产精品| 我的女老师完整版在线观看| 在现免费观看毛片| 联通29元200g的流量卡| 亚洲激情五月婷婷啪啪| 一级毛片久久久久久久久女| 高清毛片免费看| 九草在线视频观看| 欧美bdsm另类| 欧美激情在线99| 蜜桃亚洲精品一区二区三区| 亚洲国产精品合色在线| 18禁黄网站禁片免费观看直播| 综合色丁香网| 99热6这里只有精品| 波多野结衣巨乳人妻| 一区二区三区高清视频在线| 我要看日韩黄色一级片| 精品99又大又爽又粗少妇毛片| 少妇熟女aⅴ在线视频| 精品久久久久久久久亚洲| 最近中文字幕高清免费大全6| 成人鲁丝片一二三区免费| 亚洲性久久影院| av在线观看视频网站免费| 国产精品精品国产色婷婷| 欧美xxxx性猛交bbbb| 看片在线看免费视频| 国产极品精品免费视频能看的| 久久久久久久久久黄片| 亚洲人与动物交配视频| 亚洲精华国产精华液的使用体验 | 热99re8久久精品国产| 欧美一级a爱片免费观看看| 日本黄大片高清| 亚洲国产欧洲综合997久久,| 久久久国产成人免费| 亚洲av中文字字幕乱码综合| 深夜a级毛片| 亚洲欧美日韩卡通动漫| 亚洲在线自拍视频| 久久99蜜桃精品久久| 免费看美女性在线毛片视频| 高清毛片免费看| 99视频精品全部免费 在线| 我的女老师完整版在线观看| 最近的中文字幕免费完整| 看黄色毛片网站| 免费看a级黄色片| 日本爱情动作片www.在线观看| 中出人妻视频一区二区| 精品不卡国产一区二区三区| 国产黄a三级三级三级人| 非洲黑人性xxxx精品又粗又长| 欧美日韩国产亚洲二区| 草草在线视频免费看| 欧美xxxx黑人xx丫x性爽| 久久久a久久爽久久v久久| 免费观看在线日韩| av在线天堂中文字幕| 欧美3d第一页| 一级黄色大片毛片| 国产成人福利小说| 亚洲欧美精品综合久久99| 九草在线视频观看| 亚洲18禁久久av| 午夜爱爱视频在线播放| 国产成人一区二区在线| 久久婷婷人人爽人人干人人爱| 能在线免费看毛片的网站| 国产日韩欧美在线精品| 国产午夜精品久久久久久一区二区三区| av在线播放精品| 成年av动漫网址| 国产高清不卡午夜福利| 国产亚洲91精品色在线| 久久精品久久久久久久性| 日韩,欧美,国产一区二区三区 | 六月丁香七月| 欧美最黄视频在线播放免费| 国产一区二区三区av在线 | 欧美精品一区二区大全| 国产精品女同一区二区软件| 最近最新中文字幕大全电影3| 99久久久亚洲精品蜜臀av| 亚洲精品国产成人久久av| 欧美3d第一页| 欧美日韩一区二区视频在线观看视频在线 | 哪个播放器可以免费观看大片| 女人十人毛片免费观看3o分钟| 久久精品国产鲁丝片午夜精品| av.在线天堂| 精品久久久久久久久av| 亚洲欧美精品综合久久99| 九九在线视频观看精品| 噜噜噜噜噜久久久久久91| 最近的中文字幕免费完整| 不卡视频在线观看欧美| 免费电影在线观看免费观看| 久久精品国产亚洲网站| 变态另类成人亚洲欧美熟女| 中文精品一卡2卡3卡4更新| 久久精品夜色国产| 国产精品国产高清国产av| 在线免费观看的www视频| 国产麻豆成人av免费视频| 日本熟妇午夜| 国产精品,欧美在线| 国产真实乱freesex| 欧美人与善性xxx| 国产成人91sexporn| 好男人在线观看高清免费视频| 赤兔流量卡办理| 97人妻精品一区二区三区麻豆| 日韩av在线大香蕉| 啦啦啦韩国在线观看视频| 只有这里有精品99| 国产精品,欧美在线| 欧美xxxx性猛交bbbb| 看免费成人av毛片| 五月玫瑰六月丁香| 极品教师在线视频| 国内精品美女久久久久久| or卡值多少钱| 国产精品麻豆人妻色哟哟久久 | 麻豆久久精品国产亚洲av| 亚洲无线在线观看| 午夜福利成人在线免费观看| 国产精品综合久久久久久久免费| 亚洲国产精品成人综合色| 久久久精品大字幕| 日韩中字成人| 熟女人妻精品中文字幕| 亚洲av二区三区四区| 99在线人妻在线中文字幕| 国产亚洲欧美98| 欧美日韩综合久久久久久| 变态另类丝袜制服| 欧洲精品卡2卡3卡4卡5卡区| 国产爱豆传媒在线观看| 嫩草影院新地址| 亚洲天堂国产精品一区在线| 久久人人精品亚洲av| 亚洲精品影视一区二区三区av| 可以在线观看毛片的网站| 深夜a级毛片| 午夜福利视频1000在线观看| 久久精品国产亚洲av涩爱 | 久久亚洲国产成人精品v| 男女下面进入的视频免费午夜| 久久久久网色| www.av在线官网国产| 亚洲精品色激情综合| 99热全是精品| 亚洲欧美精品自产自拍| av视频在线观看入口| 欧美最黄视频在线播放免费| 亚洲综合色惰| 蜜桃亚洲精品一区二区三区| 国产成人精品久久久久久| 欧美一区二区亚洲| 欧美潮喷喷水| 日韩欧美三级三区| 亚洲不卡免费看| 久久久久久九九精品二区国产| 精品免费久久久久久久清纯| 国内精品久久久久精免费| 亚洲成人精品中文字幕电影| 在线免费十八禁| 久久精品国产亚洲av涩爱 | 精品少妇黑人巨大在线播放 | 日韩欧美 国产精品| 亚洲av二区三区四区| 天堂中文最新版在线下载 | 美女国产视频在线观看| 99国产精品一区二区蜜桃av| 晚上一个人看的免费电影| 国产精品99久久久久久久久| 国产 一区精品| 一边摸一边抽搐一进一小说| 国产日韩欧美在线精品| 寂寞人妻少妇视频99o| 国产精品三级大全| 国产单亲对白刺激| 国产精品一区二区三区四区免费观看| www日本黄色视频网| 久久精品影院6| 午夜激情欧美在线| 色尼玛亚洲综合影院| 99久久九九国产精品国产免费| 久久久久久九九精品二区国产| 久久久精品94久久精品| 一个人免费在线观看电影| 国产日本99.免费观看| 国产探花在线观看一区二区| 插逼视频在线观看| 亚洲欧美日韩无卡精品| 国产高清视频在线观看网站| 高清毛片免费观看视频网站| 丝袜喷水一区| 我的老师免费观看完整版| 亚洲熟妇中文字幕五十中出| 成人无遮挡网站| kizo精华| 国产黄a三级三级三级人| 国内久久婷婷六月综合欲色啪| 最好的美女福利视频网| 能在线免费观看的黄片| 寂寞人妻少妇视频99o| 欧美在线一区亚洲| 欧美人与善性xxx| 精品久久久久久久久av| 亚洲欧美日韩高清在线视频| 国产成人91sexporn| 干丝袜人妻中文字幕| 寂寞人妻少妇视频99o| 国产精品久久久久久av不卡| 国产成人freesex在线| 精品久久久久久久久av| 国产成人精品一,二区 | 国产欧美日韩精品一区二区| av又黄又爽大尺度在线免费看 | 国产精品野战在线观看| 99久久中文字幕三级久久日本| 国产精品久久久久久久久免| 日本五十路高清| 午夜精品在线福利| 国产老妇女一区| 在线观看美女被高潮喷水网站| 亚洲欧美日韩高清在线视频| 亚洲av免费在线观看| 中文字幕制服av| 只有这里有精品99| 久久精品夜色国产| 天天躁夜夜躁狠狠久久av| 亚洲精品国产av成人精品| 不卡视频在线观看欧美| 观看美女的网站| 国产精品电影一区二区三区| 99热网站在线观看| 干丝袜人妻中文字幕| 又粗又爽又猛毛片免费看| 插阴视频在线观看视频| 国产探花极品一区二区| 狂野欧美激情性xxxx在线观看| 国产色婷婷99| 国产精品,欧美在线| 成年av动漫网址| 欧美日韩在线观看h| 久99久视频精品免费| 免费av不卡在线播放| а√天堂www在线а√下载| 亚洲精华国产精华液的使用体验 | 日韩国内少妇激情av| 久久久久久国产a免费观看| 久久久a久久爽久久v久久| 久久亚洲精品不卡| 如何舔出高潮| 精品人妻视频免费看| 精品人妻熟女av久视频| 两个人的视频大全免费| 亚洲精品影视一区二区三区av| 亚洲最大成人中文| 欧美一区二区亚洲| 欧美+日韩+精品| 舔av片在线| av专区在线播放| 在线免费观看不下载黄p国产| 国产白丝娇喘喷水9色精品| 校园人妻丝袜中文字幕| 久久久久免费精品人妻一区二区| 成人特级av手机在线观看| 99精品在免费线老司机午夜| 精品久久久久久久久av| 亚洲av中文字字幕乱码综合| 九九热线精品视视频播放| 亚洲人成网站高清观看| 久久中文看片网| 欧美极品一区二区三区四区| 成人国产麻豆网| 如何舔出高潮| 欧美bdsm另类| 蜜桃久久精品国产亚洲av| 国产一区二区三区av在线 | 精品国产三级普通话版| 日本三级黄在线观看| 91aial.com中文字幕在线观看| 狂野欧美白嫩少妇大欣赏| 欧美精品一区二区大全| 国产黄色视频一区二区在线观看 | 99热只有精品国产| 国产乱人偷精品视频| 国产不卡一卡二| 国产精品蜜桃在线观看 | 乱系列少妇在线播放| 免费观看在线日韩| 国产老妇伦熟女老妇高清| 永久网站在线| 国产真实乱freesex| 国产免费一级a男人的天堂| 在现免费观看毛片| 边亲边吃奶的免费视频| 一进一出抽搐动态| 久久精品人妻少妇| 美女 人体艺术 gogo| 一进一出抽搐gif免费好疼| 亚洲最大成人手机在线| 边亲边吃奶的免费视频| 狂野欧美白嫩少妇大欣赏| 中文字幕av成人在线电影| 亚洲成人久久爱视频| 永久网站在线| 久99久视频精品免费| 欧美精品一区二区大全| 简卡轻食公司| 亚洲成人久久性| 国内精品宾馆在线| 中文亚洲av片在线观看爽| 最后的刺客免费高清国语| 国产精品1区2区在线观看.| 日日摸夜夜添夜夜爱| 亚洲性久久影院| 偷拍熟女少妇极品色| 国产伦在线观看视频一区| 99九九线精品视频在线观看视频| av在线亚洲专区| 免费观看人在逋| 特级一级黄色大片| 欧美在线一区亚洲| 人体艺术视频欧美日本| 禁无遮挡网站| 麻豆久久精品国产亚洲av| 国产淫片久久久久久久久| 日本黄大片高清| 精品一区二区三区视频在线| 日韩欧美 国产精品| 国产精品美女特级片免费视频播放器| 亚洲精品自拍成人| 少妇人妻精品综合一区二区 | 免费观看的影片在线观看| 国产极品精品免费视频能看的| 亚洲欧美日韩高清专用| 欧美一区二区精品小视频在线| 国产美女午夜福利| 中文欧美无线码| 一级黄片播放器| 蜜臀久久99精品久久宅男| 日韩一区二区三区影片| www日本黄色视频网| 午夜福利成人在线免费观看| 免费av毛片视频| 级片在线观看| 哪里可以看免费的av片| 国产亚洲精品av在线| 欧美日韩乱码在线| 人人妻人人澡人人爽人人夜夜 | 亚州av有码| 日本一本二区三区精品| 国产精品日韩av在线免费观看| 精品久久久久久久人妻蜜臀av| 国产精品日韩av在线免费观看| 欧美高清成人免费视频www| 嫩草影院精品99| 91狼人影院| 综合色丁香网| 免费av不卡在线播放| 男插女下体视频免费在线播放| 人妻夜夜爽99麻豆av| 狂野欧美白嫩少妇大欣赏| 欧美日本亚洲视频在线播放| 国产精品蜜桃在线观看 | 久久草成人影院| 久久精品久久久久久噜噜老黄 | 欧美日韩综合久久久久久| 99久久精品国产国产毛片| 欧美精品一区二区大全| 麻豆av噜噜一区二区三区| 3wmmmm亚洲av在线观看| 国产av一区在线观看免费| 国产精品人妻久久久影院| 99久久精品一区二区三区| 成人特级av手机在线观看| 国产成人一区二区在线| 亚洲精品影视一区二区三区av| 全区人妻精品视频| 久久国内精品自在自线图片| 亚洲精品乱码久久久久久按摩| 韩国av在线不卡| 国产真实伦视频高清在线观看| 欧美丝袜亚洲另类| 精华霜和精华液先用哪个| 日本三级黄在线观看| 久久精品国产清高在天天线| 国产激情偷乱视频一区二区| 免费大片18禁| 91狼人影院| 我要看日韩黄色一级片| 九草在线视频观看| 亚洲欧美清纯卡通| 人妻夜夜爽99麻豆av| 麻豆乱淫一区二区| 成人国产麻豆网| 国产在线精品亚洲第一网站| 国产精品日韩av在线免费观看| 国产成人一区二区在线| 午夜福利在线观看吧| 精品熟女少妇av免费看| 狂野欧美白嫩少妇大欣赏| 国产 一区精品| 在线播放国产精品三级| 国产亚洲91精品色在线| 国产成人一区二区在线| 一区二区三区免费毛片| 成人毛片60女人毛片免费| 国产日本99.免费观看| 欧美bdsm另类| 亚洲欧美日韩高清在线视频| eeuss影院久久| 嘟嘟电影网在线观看| 丰满的人妻完整版| 天堂av国产一区二区熟女人妻| 亚洲av一区综合| av天堂中文字幕网| 在线免费十八禁| 日韩精品青青久久久久久| 久久精品国产99精品国产亚洲性色| avwww免费| 观看免费一级毛片| 久久久精品94久久精品| 99久久九九国产精品国产免费| 国产亚洲av嫩草精品影院| 日本免费一区二区三区高清不卡| 干丝袜人妻中文字幕| 国产成人91sexporn| av专区在线播放| 日本爱情动作片www.在线观看| 九九在线视频观看精品| 少妇熟女欧美另类| avwww免费| 国内精品久久久久精免费| 美女xxoo啪啪120秒动态图| .国产精品久久| 国产人妻一区二区三区在| 久久人人精品亚洲av| 高清在线视频一区二区三区 | 两个人视频免费观看高清| 美女脱内裤让男人舔精品视频 | 亚洲欧美精品自产自拍| 麻豆av噜噜一区二区三区| 色综合亚洲欧美另类图片| 国产激情偷乱视频一区二区| 亚洲aⅴ乱码一区二区在线播放| 欧美日韩一区二区视频在线观看视频在线 | 免费观看精品视频网站| 亚洲精品亚洲一区二区| 亚洲av电影不卡..在线观看| АⅤ资源中文在线天堂| 成人高潮视频无遮挡免费网站| 国产亚洲精品久久久com| 最好的美女福利视频网| 国产大屁股一区二区在线视频| 91久久精品国产一区二区三区| 亚洲色图av天堂| 简卡轻食公司| 在线观看一区二区三区| av专区在线播放| 欧美激情在线99| 国产免费一级a男人的天堂| 国产单亲对白刺激| 国产精品人妻久久久影院| 欧美+日韩+精品| 禁无遮挡网站| 深夜a级毛片| 亚洲人成网站高清观看| 观看美女的网站| 日本-黄色视频高清免费观看| 一级黄片播放器| 日韩欧美一区二区三区在线观看| 成人午夜精彩视频在线观看| 日韩av在线大香蕉| 久久精品人妻少妇| 亚洲第一电影网av| 91久久精品国产一区二区三区| 黄色日韩在线| 麻豆乱淫一区二区| 我的女老师完整版在线观看| av在线亚洲专区| 美女cb高潮喷水在线观看| 欧美一区二区精品小视频在线| 国产91av在线免费观看| 成年女人永久免费观看视频| 一个人看的www免费观看视频| 欧美xxxx性猛交bbbb| 99久久精品热视频| 少妇的逼水好多| 97热精品久久久久久| 日本五十路高清| 久久久a久久爽久久v久久| 综合色丁香网| 悠悠久久av| 成年av动漫网址| 九九热线精品视视频播放| 日本成人三级电影网站| 桃色一区二区三区在线观看| 日韩三级伦理在线观看| 亚洲欧美日韩东京热| 久久久色成人| 午夜a级毛片| 午夜免费男女啪啪视频观看| 夜夜爽天天搞| 国产乱人视频| 国产在视频线在精品| 偷拍熟女少妇极品色| 不卡一级毛片| 99热这里只有精品一区| 综合色av麻豆| 小说图片视频综合网站| 欧美色欧美亚洲另类二区| 99热只有精品国产| 国内精品一区二区在线观看| 可以在线观看的亚洲视频| 久久婷婷人人爽人人干人人爱| 日韩在线高清观看一区二区三区| 最近手机中文字幕大全| 国产一区二区三区av在线 | а√天堂www在线а√下载| 91久久精品电影网| 国产精品久久电影中文字幕| 亚洲av免费在线观看| 国产午夜精品一二区理论片| 两个人视频免费观看高清| 国产乱人视频| 99久久人妻综合| 国产成年人精品一区二区| 亚洲av中文字字幕乱码综合| 少妇猛男粗大的猛烈进出视频 | 蜜桃久久精品国产亚洲av| or卡值多少钱| 亚洲中文字幕一区二区三区有码在线看| 精品日产1卡2卡| a级毛片a级免费在线| 精品熟女少妇av免费看| 午夜福利成人在线免费观看| a级毛片a级免费在线| 久久精品91蜜桃| 久久草成人影院| 丰满乱子伦码专区| 美女脱内裤让男人舔精品视频 | 国产极品天堂在线| 久久久精品大字幕| 性插视频无遮挡在线免费观看| 2021天堂中文幕一二区在线观| 国产色爽女视频免费观看| 欧美zozozo另类| 国产极品天堂在线| 国产色婷婷99| 欧美xxxx黑人xx丫x性爽| 精品人妻视频免费看| 国产激情偷乱视频一区二区| 久久久久九九精品影院| 少妇人妻一区二区三区视频| 麻豆一二三区av精品| 禁无遮挡网站| 亚洲欧洲国产日韩| 麻豆成人av视频| 国产成人aa在线观看| 久久久久久久久久黄片|