• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Debye-screening effect on electron-impact excitation of helium-like Al11+and Fe24+ions

    2022-04-12 03:44:16YuLongMa馬玉龍LingLiu劉玲LuYouXie頡錄有YongWu吳勇DengHongZhang張登紅ChenZhongDong董晨鐘YiZhiQu屈一至andJianGuoWang王建國(guó)
    Chinese Physics B 2022年4期
    關(guān)鍵詞:吳勇保證數(shù)據(jù)劉玲

    Yu-Long Ma(馬玉龍) Ling Liu(劉玲) Lu-You Xie(頡錄有) Yong Wu(吳勇) Deng-Hong Zhang(張登紅)Chen-Zhong Dong(董晨鐘) Yi-Zhi Qu(屈一至) and Jian-Guo Wang(王建國(guó))

    1College of Physics and Electronic Engineering,Northwest Normal University,Lanzhou 730070,China

    2Key Laboratory of Computational Physics,Institute of Applied Physics and Computational Mathematics,Beijing 100088,China

    3Center for Applied Physics and Technology,Peking University,Beijing 100084,China

    4School of Optoelectronics,University of Chinese Academy of Sciences,Beijing 100049,China

    Keywords: Debye plasmas, electron-impact excitation, Debye-H¨uckel model potential, He-like Al11+ and Fe24+ions

    1. Introduction

    Electron-impact excitation (EIE) processes in various plasmas have been subject to continued interest due to their potential application. For example, EIE cross sections are required for calculating the spectral line intensities and especially level populations of nonlocal-thermodynamicequilibrium (NLTE) plasmas.[1,2]Line emissions from the excited states produced by the EIE process provide valuable information on plasma parameters such as temperature and density.[3,4]Theoretical studies on electron-ion collision processes are needed to consider screening effects due to plasma environments,covering both weakly and strongly coupled plasmas. The electron-ion interaction in the strongly coupled plasmas is often described by the ion-sphere model potential.[5-8]For weakly coupled (or Debye) plasmas, the Debye-H¨uckel (DH) potential[9-12]of an ion of positive chargeZwhich interacts with an electron is given by

    When a continuum electron interacts with ions that are immersed in Debye plasmas,two types of DH potentials[12,13]are employed to describe the interaction between the continuum electron and bound electron of the target ion, referred to as the continuum-bound(CB)interaction for simplicity, in an electron-ion collision. The first one is a non-spherical DH(NSDH)potential[12]

    whereD=(kBTe/4πe2ne)1/2is the Debye screening length,Teandneare the electron temperature and density, respectively,andkBis the Boltzmann constant. It is noted that when the Coulomb coupling parameterΓ=e2/ˉakBTe?1 the Debyescreening potential(1)is valid,where ˉa=(3/4πne)1/3is the average distance between particles.

    Due to its spherical symmetry,the SDH potential is well suited to atomic calculations. Therefore, a significant number of theoretical studies have also been devoted to electron- and proton-impact excitation processes based on the SDH potential. The first attempt at using the SDH model was made by Hattonet al.[16]for the study of inelastic scattering of H-like ions in a dense plasma. Later, the Debye-screened impact cross sections were calculated for H-like ions by using the Born approximation and close-coupling methods,[7]semiclassical impact-parameter formalism[17]and relativistic distorted-wave (RDW) method,[18]as well as for He-like ions by using the RDW method.[19-21]Moreover, the Debyescreening effect on the electron-impact ionization of H-like ions[22]and multielectron Ne4+and Au47+ions has been studied with the SDH potential.[23]

    Yoon and Jung[13]have performed a comparison of the Debye-screened behavior between the SDH and NSDH potentials for the EIE process of H-like ions. They suggested that the NSDH model is physically more reliable, but only calculated the transition probabilities. To the best of our knowledge, such comparisons have not yet been performed for the EIE cross sections of multielectron ions. Therefore, the motivation of the present study is to present a detailed analysis and comparison of cross sections between NSDH and SDH model potentials that are used to describe the Debye-screened CB interaction for the EIE of multielectron ions.

    Apart from the plasma screening on the CB interaction,plasma screening imposed on the target ion will also affect the EIE cross sections. Zhanget al.[24-26]studied the Debyescreening effect on low-energy electron-H scattering using the R-matrix method with pseudostates. Zammitet al.[27-29]also calculated the excitation and ionization cross sections of electron-H/He-atom collisions in Debye plasmas by the convergent close-coupling (CCC) method. They have naturally included the Debye screening on the target ion when the DH potentials for the electron-electron and electron-nucleus interactions are adopted in the(N+1)-electron Hamiltonian,but the influence of the Debye screening imposed on the target ion on the cross sections has not been discussed. Therefore, the influence of the Debye screening imposed on the target ion on the EIE cross section are investigated in the present work.

    We shall restrict our discussions to the simplest multielectron system of He-like ions such as Al11+and Fe24+,but it can be extended to other complex ions straightforwardly. Specifically, the dipole-allowed transition 1s21S→1s2p1P is discussed,as this line of atomic systems embedded in plasmas is often investigated to test various models that have been developed to describe the plasma screening effects.[30,31]To obtain the EIE cross sections, we performed fully relativistic multiconfiguration Dirac-Fock(MCDF)and RDW calculations.

    2. Theoretical methods

    We briefly present the RDW method for calculating the EIE cross sections(please refer to Refs.[32-34]for more details). The EIE cross sectionσiffrom initial state ‘i’ to final state‘f’is expressed in terms of the collision strengthΩifas[33]

    whereκiandκfare the initial and final relativistic quantum numbers for the continuum electron, respectively.Ψrepresents the antisymmetric wavefunctions for the total (N+1)-electron system with total angular momentumJT,which consists of the incident(or scattered)continuum electron and the bound target wavefunction.

    In the practical RDW calculations,the Coulomb potential between electrons is expanded in the partial-wave form,which is given by

    In Eqs. (4) and (5), the bound target wavefunctions are obtained by means of the MCDF method,in which the atomic state wavefunction is represented as a linear combination of configuration state wavefunctions.[36]In order to include the plasma-screening effect on the target ion (changes of target wavefunctions due to Debye screening), the MCDF calculations were performed by the GRASP2K program[37]with some modifications,[35]in which the DH potential is incorporated into the relativistic Hamiltonian. The MCDF method including the Debye-screening effect has been described in detail by Xieet al.[35]as well as Saha and Fritzsche.[38]The distortedwave wavefunctions of the continuum electron are obtained by solving the coupled Dirac equations numerically.[36]The numerical procedures are accomplished by using the component COWF of RATIP,[39]in which the two-body Coulomb potential (6) has been modified by replacement with the screened ones (7) and (8) for the SDH and NSDH potentials, respectively. Moreover,the Debye-screened electron-nucleus potential is considered asVnuc(r)=-(Z/r)exp(-r/D). In addition,the asymptotic continuum wavefunctions are determined numerically for the boundary conditions, based on the WKB method.[40]

    3. Results and discussion

    The Yukawa-type screened potential (1) has been often utilized for the theoretical studies of atomic structures and collision dynamics in weakly coupled plasmas, but Chang and Fang[41]pointed out that the Debye-screening length should be longer than the average size of a free atom, as the mean radius of the 2p orbital in an N5+ion was estimated to be~0.4 a.u. (atomic units). Moreover, the DH potential supports only a finite number of bound states, which results in a migration of the bound state into the continuum whenDis less than the critical screening length.[42]According to the work of Xieet al.,[35]the critical screening length was determined to be 0.93 a.u. for the state 1s2p1P in a He-like C4+ion. Therefore, the range of the screening length was chosen as from 1 a.u.to ∞so that the 1s2p1P in Al11+and Fe24+ions is still the bound state. Due to weak electron correlations in the present cases of highly charged He-like ions, the singleconfiguration approximation is employed.

    保證數(shù)據(jù)的可控性,數(shù)億量級(jí)的數(shù)據(jù)需要實(shí)時(shí)處理,對(duì)于現(xiàn)在的計(jì)算機(jī)硬件來(lái)說(shuō)是一個(gè)極大的挑戰(zhàn),如何搭建一個(gè)高性能,高并發(fā)的實(shí)時(shí)數(shù)據(jù)分析系統(tǒng),并在突發(fā)情況,自然災(zāi)害發(fā)生的情況下保證數(shù)據(jù)不會(huì)丟失,是智慧城市發(fā)展的第二個(gè)需要面臨的問(wèn)題。

    3.1. Test of numerical methods

    In order to verify the numerical methods and computing codes, the present EIE cross sections for the transition 1s→2p in an Ne9+ion are compared with the distortedwave calculations[23]forD=3 a.u. with the SDH potential in Fig. 1, and a good agreement is obtained. As a check of our numerical methods, which includes the Debye screening on both the target ions and the CB interaction with NSDH potential, our RDW results are compared with the 110-state CCC calculations[28]for the transition 1s21S→1s2p1P in He in Fig.2. It is noted that our purpose is not to discuss the accuracy of the RDW method for calculating the EIE cross section of a neutral He atom, but to characterize the plasmascreening effect. It is found that at the high incident electron energy of 800 eV,both of the present unscreened and screened(D=10 a.u.) calculations nearly agree with the CCC calculations,which supports the reliability of our theoretical method and codes used to include Debye-screening effects on EIE processes.

    3.2. Transition energy and oscillator strength

    Table 1 shows the Debye-screening effect on the transition energy and oscillator strength for the dipole-allowed transition 1s21S→1s2p1P in Al13+and Fe24+ions. Generally,when the screening lengthDis sufficiently greater than the radius of the ions, the influence of the Debye screening can be neglected. For the case ofD →∞, the present transition energy agrees well with the NIST value[43]with differences of 0.09% and 0.11% for Al13+and Fe24+ions, respectively.Moreover,the relative differences between our unscreened oscillator strengths and the NIST data[43]are determined to be 5.37%and 0.57%for Al13+and Fe24+ions,respectively. This indicates the reliability of the single-configuration approximation employed in the present calculations. As expected,when the screening lengthDis comparable to the radius of ions,the Debye-screening effect strongly affects the atomic properties.Thus,in Table 1 the screening effect makes significant reductions in the transition energy and oscillator strength whenDis smaller than about 5 a.u.,while the screening effect is very small for the case ofD >10 a.u.

    Fig. 1. Comparison of the present unscreened and screened EIE cross sections for the transition 1s →2p of Ne9+ ion with those of the distorted-wave(DW)calculations by Pindzola et al.[23] The screened results for D=3 a.u.consider the bound-continuum interaction by the SDH potential.

    Fig. 2. Comparison of the present unscreened and screened EIE cross sections for the transition 1s21S →1s2p 1P in He with those of the 110-state CCC calculations by Zammit et al.[28] The screened results for D=10 a.u.consider the plasma screening on both the target ion and interaction between the continuum electron and bound electron with the NSDH potential.

    Table 1. Transition energy(eV)and oscillator strength for the transition 1s21S →1s2p 1P in Al13+ and Fe24+ ions for screening length D(a.u.).

    3.3. Cross section

    Next, we investigate the Debye-screening effect on the EIE cross sections for the transition 1s21S→1s2p1P in He-like Al11+and Fe24+ions. In Fig. 3, the variations of the EIE cross section at incident energies of 3000 eV and 15000 eV are illustrated for Al11+and Fe24+ions, respectively, with SDH and NSDH potentials. The variation Δσis defined as the difference between the cross section with the pure Coulomb interaction and that with the Debye-screened case,i.e., Δσ=σ(D →∞)-σ(D >0). As shown in Fig.3,since Δσis always positive, the Debye-screening effect decreases the EIE cross sections. Moreover, the Δσbecomes more obvious with decreasingD. It is noted that variations Δσof the SDH potential are dramatically greater than those of the NSDH potential,except that the Debye screening is weak in the large-Dcases. Thus, the SDH model can significantly overestimate the Debye-screening effects.

    When the Debye-screening effect on the target ion is considered, the EIE cross sections decrease further, which is demonstrated in Fig. 3. However, for aboutD >5 a.u., the variations of the EIE cross section are almost the same as in the case in which the Debye screening on the target ion is not included. This indicates that the screening imposed on the target ion has negligible contributions to the EIE cross section when the plasma screening is too weak to affect the target ions for cases ofD >5 a.u.

    We define the ratio

    whereσion(D)andσee(D)represent the contributions from the Debye screening on the target ion and CB interaction,respectively, for reducing the EIE cross section. Here, the screened CB interaction is described by the NSDH model. In Fig. 4,since the ratioRis always less than one for all the screening length, the screening on the CB interaction is dominant for affecting (reducing) the EIE cross sections for the transition 1s21S→1s2p1P in Al11+and Fe24+ions at the incident energies of 3000 eV and 15000 eV, respectively. Moreover,as the screening length decreases, the influence of the Debye screening on the target ion increases(the ratioRincreases).As shown in Fig.4,in the case ofD=1 a.u.,R~0.24 and 0.18 for Al11+and Fe24+ions,respectively;hence,it indicates that the influences of screening on the target ion should be included for strong plasma screening. On the other hand,for the screening lengthD=10 a.u., the ratio is estimated to beR~0.05 and 0.03 for the Al11+and Fe24+cases, respectively, which implies that the reductions of the EIE cross sections are almost determined by the screening on the CB interaction. This also results in the fact that the influences of screening on the target ion are negligible for sufficiently weak screening strength,which will be demonstrated further in Fig.5.

    In Fig.5,the screened(D=10 a.u.) and unscreened EIE cross sections are shown for the transition 1s21S→1s2p1P in He-like Al11+ions at different incident energies. In the process of the electron-ion collision,the cross sections at the threshold are finite since the long-range Coulomb interaction has contributions to the large separation between the continuum electron and target ion. Thus, the EIE cross sections at the threshold should be more significantly reduced due to the short-range character of the DH potential with the exponential screening factor [see Eq. (1)]. However, in Fig. 5 the reductions of the EIE cross section due to the SDH potential are basically the same for incident energy ranging from the threshold to high energy. For the NSDH potential, it clearly demonstrates that the reductions of the cross section at the threshold are indeed larger than those at high energies. Hence,the NSDH potential could reasonably describe the Debyescreening effects on the EIE process in Debye plasmas, as expected since this potential results in a reasonable changing behavior of the cross section with incident energy.

    Fig.3. Variation of the EIE cross section,Δσ =σ(D →∞)-σ(D >0),for the transition 1s21S →1s2p 1P in Al11+(a)and Fe24+(b)ions,respectively.SHD and NSDH[see Eqs.(2)-(3)and text]indicate that the CB interaction is described by the SDH and NSDH potentials, respectively. NSDH with screened target ion means that Debye screening on the target ion is included as well.

    Fig.4. Ratio R[see Eq.(9)and text]for the transition 1s21S →1s2p 1P in Al11+ and Fe24+ ions,respectively.

    Moreover, as mentioned above, in Fig. 3 the ratioRat the incident electron energy of 3000 eV is shown for a Helike Al11+ion, which is estimated to be~0.05 for the case ofD= 10 a.u., indicating that the screening on the target ion results in negligible reductions of the cross sections compared to the screening on the CB interaction. As illustrated in Fig.5,this is also true for the energy range from threshold to 10000 eV, since there are no significant differences between the cross sections with and without inclusions of the screening on the target ion forD=10 a.u.

    In Fig. 6, the EIE cross sections are displayed for the dipole-allowed transition 1s21S→1s2p1P in He-like Al11+and Fe24+ions withD=∞,5,2,and 1 a.u.For the unscreened EIE cross sections, our results agree with the available theoretical calculations by Kiefferet al.,[44]Hakelet al.[45]and Zhanget al.[33]The EIE cross sections are decreased due to Debye-screening effects,which become distinct with decreasingD.For example,at the incident energy of 3400 eV,the EIE cross section is reduced by about 13.4%, 30.2%, and 50.9%forD=5, 2, and 1 a.u., respectively, for He-like Al11+ions.Moreover, the screening effect decreases the cross section by about 3.1%,7.8%,and 15.6%forD=5,2,and 1 a.u.,respectively,near the threshold of 7500 eV for He-like Fe24+ions.

    Fig. 5. Unscreened (black line) and screened (D=10 a.u.) EIE cross sections for the transition 1s21S →1s2p 1P in Al11+ ions. SHD and NSDH[see Eqs. (2)-(3) and text] indicate that the CB interaction is described by the SDH and NSDH potentials,respectively. NSDH with screened target ion means that Debye screening on the target ion is included as well.

    Fig. 6. EIE cross sections for the transition 1s21S →1s2p 1P in Al11+ (a)and Fe24+ (b)ions with the screening length D=∞,5,2,and 1 a.u. Present unscreened cross sections are compared with the available RDW results by Kieffer et al.,[44] Zhang et al.,[33] and Hakel et al.[45]

    4. Conclusion

    We have studied the EIE processes for the dipole-allowed transition 1s21S→1s2p1P in He-like Al11+and Fe24+ions embedded in weakly coupled(Debye)plasmas using the MCDF and RDW methods with the DH potential. In order to account for the Debye-screening effect on the CB interaction in the EIE process,two model potentials(SDH and NSDH)are employed,which result in reductions of the EIE cross section.However,the reduced magnitude of the EIE cross sections for the SDH potential is far greater than that for the NSDH potential. Therefore,the well-suited SDH potential obviously overestimates the Debye-screening effects on the EIE processes for multielectron He-like ions. Moreover, the Debye-screening effect on the target ion also decreases the EIE cross sections.Our results reveal that the influence of the screening on the CB interaction is dominant for the reduction of the EIE cross section,while the screening on the target ion could contribute to reducing the cross sections further as the screening strength increases. However, for cases of sufficiently weak screening strength, the contributions of the screening on the target ion are negligible.

    Finally, the EIE cross sections are presented with the inclusion of the Debye-screening effect on both the target ion and the CB interaction. It is found that the Debyescreening effects obviously reduce the EIE cross sections,which clearly indicates that atomic processes are perturbed in a non-negligible way in plasmas. Therefore,it is highly desirable to investigate environmental effects on plasma kinetics,as well as on absorption and emission spectra.

    Acknowledgments

    Project supported by the Science Challenge Project(Grant No. TZ2016001), the National Key Research and Development Program of China(Grants Nos.2017YFA0403200 and 2017YFA0402300),the Funds for Innovative Fundamental Research Group Project of Gansu Province, China (Grant No.20JR5RA541),and the National Natural Science Foundation of China(Grants Nos.11774037 and 12064041).

    猜你喜歡
    吳勇保證數(shù)據(jù)劉玲
    椰子的身價(jià)
    Spectroscopy and scattering matrices with nitrogen atom:Rydberg states and optical oscillator strengths
    吳勇書(shū)法作品
    日本船級(jí)社(NK)發(fā)布《數(shù)據(jù)質(zhì)量指南》
    等你
    備份與恢復(fù)vSphere 虛擬化環(huán)境
    我們愛(ài)老師
    森林里的怪婆婆
    如何描述植物
    大家來(lái)摘草莓
    国产av码专区亚洲av| 久久热精品热| 精品一区二区免费观看| 黄色毛片三级朝国网站| 国产乱来视频区| 中文字幕免费在线视频6| 国产毛片在线视频| 亚洲av国产av综合av卡| 18禁裸乳无遮挡动漫免费视频| 久久影院123| 能在线免费看毛片的网站| 欧美 日韩 精品 国产| h视频一区二区三区| 精品酒店卫生间| av网站免费在线观看视频| 国产国语露脸激情在线看| 免费大片18禁| 亚洲精品日本国产第一区| 十八禁高潮呻吟视频| 大香蕉久久网| 亚洲精品乱码久久久久久按摩| 亚洲av福利一区| 一区二区三区乱码不卡18| 女的被弄到高潮叫床怎么办| 国产精品一区二区三区四区免费观看| 国产极品粉嫩免费观看在线 | 999精品在线视频| 日韩欧美一区视频在线观看| 国产免费福利视频在线观看| 99久久中文字幕三级久久日本| 啦啦啦中文免费视频观看日本| 人妻系列 视频| h视频一区二区三区| 我的老师免费观看完整版| 亚洲一级一片aⅴ在线观看| 日日摸夜夜添夜夜爱| 欧美3d第一页| 亚洲精品一二三| 人成视频在线观看免费观看| 男女边吃奶边做爰视频| 国产精品一二三区在线看| 一区二区日韩欧美中文字幕 | 亚洲精品亚洲一区二区| 国产综合精华液| 成年人午夜在线观看视频| 精品少妇内射三级| 久久人妻熟女aⅴ| 亚洲中文av在线| 狠狠精品人妻久久久久久综合| 日韩av免费高清视频| 午夜免费鲁丝| 久久精品久久精品一区二区三区| 日本av手机在线免费观看| 人妻人人澡人人爽人人| 99久久精品国产国产毛片| videossex国产| 国产精品99久久99久久久不卡 | 久久人人爽av亚洲精品天堂| 国产精品三级大全| 成人影院久久| 午夜福利视频精品| 久久99热这里只频精品6学生| av卡一久久| 国产成人a∨麻豆精品| 亚洲国产色片| 免费看av在线观看网站| 99热这里只有精品一区| 色5月婷婷丁香| 亚洲精品一二三| 成人亚洲欧美一区二区av| 精品人妻熟女毛片av久久网站| 99视频精品全部免费 在线| 色94色欧美一区二区| 高清视频免费观看一区二区| 永久免费av网站大全| 久久99精品国语久久久| 国产黄频视频在线观看| 国产欧美另类精品又又久久亚洲欧美| 搡老乐熟女国产| 亚洲国产最新在线播放| 亚洲成人一二三区av| 久久精品国产亚洲av天美| 国产日韩欧美亚洲二区| 国产精品人妻久久久久久| 亚洲精品一二三| 夫妻性生交免费视频一级片| 男的添女的下面高潮视频| 国产黄色免费在线视频| 亚洲av福利一区| 成人漫画全彩无遮挡| 青青草视频在线视频观看| 九色亚洲精品在线播放| 熟妇人妻不卡中文字幕| 国产淫语在线视频| 少妇高潮的动态图| 免费观看av网站的网址| 精品熟女少妇av免费看| 久久精品久久久久久噜噜老黄| 丰满迷人的少妇在线观看| 天堂8中文在线网| 毛片一级片免费看久久久久| 午夜福利影视在线免费观看| 狠狠精品人妻久久久久久综合| 久久国产精品男人的天堂亚洲 | 如何舔出高潮| 极品少妇高潮喷水抽搐| 日日啪夜夜爽| 国产精品不卡视频一区二区| 国产男女超爽视频在线观看| freevideosex欧美| 草草在线视频免费看| 在线观看国产h片| 久久国内精品自在自线图片| 香蕉精品网在线| 精品视频人人做人人爽| 国产成人精品福利久久| 亚洲精品乱码久久久久久按摩| 久久久久久伊人网av| 中国国产av一级| 亚洲国产色片| 一级毛片aaaaaa免费看小| 国产精品 国内视频| 亚洲精品国产色婷婷电影| 亚洲欧美日韩另类电影网站| 亚洲精品美女久久av网站| 26uuu在线亚洲综合色| 99久久综合免费| 久久久a久久爽久久v久久| 交换朋友夫妻互换小说| 91在线精品国自产拍蜜月| 99热这里只有是精品在线观看| 久久久久久久久久成人| 一级毛片 在线播放| 国产精品久久久久久精品电影小说| 在线观看免费视频网站a站| 亚洲激情五月婷婷啪啪| 91精品国产国语对白视频| 高清在线视频一区二区三区| 成人毛片a级毛片在线播放| 精品一区在线观看国产| 亚洲人成网站在线播| 黑丝袜美女国产一区| 一级片'在线观看视频| 日韩 亚洲 欧美在线| 尾随美女入室| 26uuu在线亚洲综合色| 最近手机中文字幕大全| 午夜免费男女啪啪视频观看| 日韩精品有码人妻一区| 国产黄片视频在线免费观看| 亚洲av在线观看美女高潮| 欧美xxⅹ黑人| 免费av中文字幕在线| 久久久精品区二区三区| 欧美xxⅹ黑人| 亚洲av电影在线观看一区二区三区| 欧美 日韩 精品 国产| 人体艺术视频欧美日本| 制服人妻中文乱码| 国产乱人偷精品视频| 国产免费一级a男人的天堂| 亚洲情色 制服丝袜| 99热这里只有精品一区| 婷婷色麻豆天堂久久| 91在线精品国自产拍蜜月| 涩涩av久久男人的天堂| 交换朋友夫妻互换小说| 亚洲,一卡二卡三卡| 精品亚洲成a人片在线观看| 永久免费av网站大全| 在线观看美女被高潮喷水网站| 国产深夜福利视频在线观看| freevideosex欧美| 国产精品久久久久成人av| 国产不卡av网站在线观看| 又大又黄又爽视频免费| 狂野欧美白嫩少妇大欣赏| 国产成人freesex在线| 99热网站在线观看| 国产精品一区www在线观看| 亚洲精品一二三| 亚洲国产av新网站| 国产精品久久久久久精品电影小说| 久久av网站| 精品国产一区二区久久| 免费黄色在线免费观看| 狠狠婷婷综合久久久久久88av| 一级a做视频免费观看| 妹子高潮喷水视频| 久久久久久久久久久久大奶| 精品卡一卡二卡四卡免费| 一区二区日韩欧美中文字幕 | 日本vs欧美在线观看视频| 欧美精品亚洲一区二区| 你懂的网址亚洲精品在线观看| 日韩强制内射视频| 亚洲少妇的诱惑av| av在线观看视频网站免费| 精品少妇内射三级| 欧美激情 高清一区二区三区| 少妇丰满av| 少妇猛男粗大的猛烈进出视频| 国产成人精品一,二区| freevideosex欧美| 我要看黄色一级片免费的| 少妇被粗大的猛进出69影院 | 亚洲美女视频黄频| 亚洲精品第二区| 看十八女毛片水多多多| 一级片'在线观看视频| 最近手机中文字幕大全| 大又大粗又爽又黄少妇毛片口| 欧美日韩综合久久久久久| av福利片在线| 久久青草综合色| 麻豆精品久久久久久蜜桃| 日韩欧美一区视频在线观看| 欧美亚洲 丝袜 人妻 在线| 一级毛片电影观看| 国产无遮挡羞羞视频在线观看| av视频免费观看在线观看| 满18在线观看网站| 久久99蜜桃精品久久| 国产熟女午夜一区二区三区 | 老司机亚洲免费影院| 免费看av在线观看网站| 欧美激情极品国产一区二区三区 | 3wmmmm亚洲av在线观看| 亚洲欧美日韩卡通动漫| 中文字幕亚洲精品专区| 成人亚洲欧美一区二区av| 人人妻人人澡人人看| 最近中文字幕高清免费大全6| 少妇熟女欧美另类| 高清视频免费观看一区二区| 久久精品久久久久久噜噜老黄| 久久99热这里只频精品6学生| 久久久精品区二区三区| 欧美激情极品国产一区二区三区 | 欧美xxxx性猛交bbbb| 欧美激情极品国产一区二区三区 | 水蜜桃什么品种好| 精品国产露脸久久av麻豆| 久久久久人妻精品一区果冻| 黄色欧美视频在线观看| 亚洲美女视频黄频| 香蕉精品网在线| 伊人亚洲综合成人网| 一二三四中文在线观看免费高清| 亚洲性久久影院| 免费不卡的大黄色大毛片视频在线观看| 国产视频内射| 午夜福利在线观看免费完整高清在| 91在线精品国自产拍蜜月| 秋霞伦理黄片| 国产伦精品一区二区三区视频9| 免费黄色在线免费观看| 人成视频在线观看免费观看| 夜夜骑夜夜射夜夜干| 18+在线观看网站| 国产成人91sexporn| 亚洲五月色婷婷综合| 99国产综合亚洲精品| 亚洲精品国产色婷婷电影| 日本91视频免费播放| 如日韩欧美国产精品一区二区三区 | 美女国产视频在线观看| 人妻系列 视频| 国产成人精品久久久久久| 91精品国产国语对白视频| 国产精品人妻久久久久久| 黑人高潮一二区| 国产精品久久久久久精品古装| 人成视频在线观看免费观看| 国模一区二区三区四区视频| 久久精品国产亚洲av涩爱| 国产成人精品婷婷| 又黄又爽又刺激的免费视频.| 欧美bdsm另类| 一边摸一边做爽爽视频免费| 人成视频在线观看免费观看| 一本一本综合久久| 黑丝袜美女国产一区| 久久久久久久精品精品| 蜜桃在线观看..| 一本色道久久久久久精品综合| 久久久久久久大尺度免费视频| 天天躁夜夜躁狠狠久久av| 午夜福利影视在线免费观看| 久久久久久久久久人人人人人人| 91精品伊人久久大香线蕉| 亚洲精华国产精华液的使用体验| 2018国产大陆天天弄谢| 久久国产精品男人的天堂亚洲 | 99九九在线精品视频| 尾随美女入室| 久久久精品94久久精品| 国产免费又黄又爽又色| 亚洲av男天堂| 精品99又大又爽又粗少妇毛片| 只有这里有精品99| 麻豆精品久久久久久蜜桃| 成人毛片a级毛片在线播放| 一区二区三区乱码不卡18| 免费看光身美女| 国产男女内射视频| av在线老鸭窝| 视频区图区小说| 国产亚洲一区二区精品| 亚洲激情五月婷婷啪啪| 在线 av 中文字幕| 久久人妻熟女aⅴ| 久久午夜福利片| 国产一区二区三区综合在线观看 | 简卡轻食公司| 你懂的网址亚洲精品在线观看| 国产av国产精品国产| 在线播放无遮挡| 又粗又硬又长又爽又黄的视频| 99久久人妻综合| 国产 一区精品| 狂野欧美白嫩少妇大欣赏| 大话2 男鬼变身卡| 女性被躁到高潮视频| 99精国产麻豆久久婷婷| 亚洲高清免费不卡视频| 国产在线免费精品| 国产黄片视频在线免费观看| 亚洲国产日韩一区二区| 午夜免费鲁丝| 尾随美女入室| .国产精品久久| 日韩成人av中文字幕在线观看| 亚洲精华国产精华液的使用体验| av天堂久久9| 黄色欧美视频在线观看| 中文精品一卡2卡3卡4更新| 久热久热在线精品观看| 人体艺术视频欧美日本| 一级毛片电影观看| 好男人视频免费观看在线| 丝袜在线中文字幕| 麻豆精品久久久久久蜜桃| 亚洲第一区二区三区不卡| 夜夜看夜夜爽夜夜摸| 777米奇影视久久| 99久久精品国产国产毛片| 精品亚洲成a人片在线观看| 插逼视频在线观看| 九九久久精品国产亚洲av麻豆| 日本猛色少妇xxxxx猛交久久| 国产精品久久久久久av不卡| 丰满饥渴人妻一区二区三| 久久久精品免费免费高清| 熟女电影av网| 亚洲av男天堂| 成人无遮挡网站| 久久久精品免费免费高清| 国产国语露脸激情在线看| 国产精品嫩草影院av在线观看| 亚洲久久久国产精品| 成人国语在线视频| 久久久精品区二区三区| 国产精品久久久久久久电影| 中文字幕最新亚洲高清| 亚洲美女搞黄在线观看| 国产精品 国内视频| 精品少妇内射三级| 国产午夜精品一二区理论片| 最新中文字幕久久久久| 久久久久久久国产电影| 精品一区二区免费观看| 丝袜喷水一区| 五月玫瑰六月丁香| 亚洲三级黄色毛片| 久久久久视频综合| 国产免费又黄又爽又色| 一级毛片电影观看| 热99久久久久精品小说推荐| 国产精品欧美亚洲77777| 午夜免费观看性视频| 多毛熟女@视频| 美女中出高潮动态图| 亚州av有码| av在线老鸭窝| 欧美精品国产亚洲| 国产av一区二区精品久久| 91久久精品国产一区二区三区| 秋霞伦理黄片| 中文字幕最新亚洲高清| 91精品三级在线观看| 精品少妇久久久久久888优播| 人妻一区二区av| 亚洲情色 制服丝袜| 欧美人与善性xxx| 精品少妇久久久久久888优播| 一个人看视频在线观看www免费| 久久精品久久精品一区二区三区| 久久久国产精品麻豆| 男男h啪啪无遮挡| 欧美最新免费一区二区三区| 国语对白做爰xxxⅹ性视频网站| 你懂的网址亚洲精品在线观看| 热99国产精品久久久久久7| 成年美女黄网站色视频大全免费 | 插逼视频在线观看| 女性被躁到高潮视频| 中文天堂在线官网| 国产精品一二三区在线看| 欧美日韩成人在线一区二区| 国产无遮挡羞羞视频在线观看| 婷婷色综合大香蕉| 免费黄网站久久成人精品| 极品人妻少妇av视频| 国产高清三级在线| 免费av中文字幕在线| 久久亚洲国产成人精品v| 91久久精品国产一区二区三区| 欧美老熟妇乱子伦牲交| 综合色丁香网| 国产精品一区二区在线观看99| videossex国产| 精品国产一区二区三区久久久樱花| 99久久精品国产国产毛片| 欧美精品一区二区大全| 日本黄色片子视频| 亚洲欧洲国产日韩| 免费黄频网站在线观看国产| 一级片'在线观看视频| 久久久欧美国产精品| 国产综合精华液| 国产在线视频一区二区| 国产成人a∨麻豆精品| 中文字幕人妻丝袜制服| 国产黄色视频一区二区在线观看| 日本与韩国留学比较| 蜜桃国产av成人99| 美女国产视频在线观看| 一级毛片aaaaaa免费看小| 成人漫画全彩无遮挡| 亚洲国产日韩一区二区| 亚洲欧美清纯卡通| 91午夜精品亚洲一区二区三区| 韩国高清视频一区二区三区| av在线观看视频网站免费| 在线观看www视频免费| 在线观看免费日韩欧美大片 | 中文精品一卡2卡3卡4更新| av网站免费在线观看视频| 在线 av 中文字幕| 国产黄频视频在线观看| 久久久久久久久久久丰满| 成人国产av品久久久| 日韩中文字幕视频在线看片| 亚洲精品久久成人aⅴ小说 | 老女人水多毛片| 精品午夜福利在线看| 赤兔流量卡办理| 精品少妇久久久久久888优播| .国产精品久久| 国产精品嫩草影院av在线观看| freevideosex欧美| 狠狠精品人妻久久久久久综合| 国产精品国产三级国产av玫瑰| 精品一品国产午夜福利视频| 久久ye,这里只有精品| 亚洲久久久国产精品| av国产久精品久网站免费入址| 欧美三级亚洲精品| 国产精品一二三区在线看| 又大又黄又爽视频免费| 成人综合一区亚洲| 黄片播放在线免费| 美女脱内裤让男人舔精品视频| 国内精品宾馆在线| 免费高清在线观看日韩| 久久 成人 亚洲| 精品少妇黑人巨大在线播放| 免费av中文字幕在线| 午夜免费观看性视频| 亚洲欧洲日产国产| 看免费成人av毛片| 丰满少妇做爰视频| 伊人亚洲综合成人网| 国产精品久久久久久精品古装| 日本vs欧美在线观看视频| videos熟女内射| 国产伦精品一区二区三区视频9| 高清毛片免费看| 日本vs欧美在线观看视频| h视频一区二区三区| av一本久久久久| 国产探花极品一区二区| 亚洲四区av| 欧美日韩成人在线一区二区| 日日啪夜夜爽| 91久久精品国产一区二区三区| 伦理电影大哥的女人| 老司机影院成人| 在线天堂最新版资源| 18禁在线无遮挡免费观看视频| 国产熟女欧美一区二区| 午夜激情福利司机影院| 日韩精品有码人妻一区| 久久这里有精品视频免费| 久久午夜综合久久蜜桃| 国产男女超爽视频在线观看| 欧美xxxx性猛交bbbb| 国产免费视频播放在线视频| 边亲边吃奶的免费视频| 纯流量卡能插随身wifi吗| 亚洲国产欧美在线一区| 伊人久久精品亚洲午夜| 热99国产精品久久久久久7| 成人手机av| 亚洲人成网站在线播| 日韩中文字幕视频在线看片| 亚洲,欧美,日韩| 美女cb高潮喷水在线观看| 免费高清在线观看视频在线观看| 亚洲图色成人| √禁漫天堂资源中文www| 国产成人freesex在线| 插阴视频在线观看视频| 超色免费av| 乱人伦中国视频| 伦理电影免费视频| 国产精品.久久久| 国产片特级美女逼逼视频| 黄片无遮挡物在线观看| 国产深夜福利视频在线观看| 国产片内射在线| 久久女婷五月综合色啪小说| 秋霞在线观看毛片| 国产伦精品一区二区三区视频9| 一级毛片aaaaaa免费看小| 国产av国产精品国产| 免费观看av网站的网址| 超碰97精品在线观看| 最近最新中文字幕免费大全7| 少妇被粗大的猛进出69影院 | 人妻少妇偷人精品九色| 又大又黄又爽视频免费| 另类亚洲欧美激情| 日韩欧美精品免费久久| 一级,二级,三级黄色视频| 欧美成人午夜免费资源| 中文字幕最新亚洲高清| 美女脱内裤让男人舔精品视频| 青春草国产在线视频| 各种免费的搞黄视频| 99国产精品免费福利视频| 99久国产av精品国产电影| 欧美日韩在线观看h| 国产高清三级在线| 黄色怎么调成土黄色| 永久网站在线| 国产精品久久久久久精品古装| 精品午夜福利在线看| 免费大片黄手机在线观看| 男人爽女人下面视频在线观看| 男人操女人黄网站| 日本91视频免费播放| 久久久久久久精品精品| 午夜福利在线观看免费完整高清在| 如何舔出高潮| 夫妻午夜视频| 亚洲经典国产精华液单| 天堂俺去俺来也www色官网| 久久久久视频综合| www.av在线官网国产| 日韩 亚洲 欧美在线| 久久久久久伊人网av| 国产精品99久久久久久久久| 丰满少妇做爰视频| 午夜日本视频在线| 亚洲图色成人| 久久综合国产亚洲精品| 久久99一区二区三区| 欧美成人午夜免费资源| 国产精品一区二区在线不卡| 肉色欧美久久久久久久蜜桃| 91精品国产九色| 日本猛色少妇xxxxx猛交久久| 免费高清在线观看日韩| 性色av一级| 2018国产大陆天天弄谢| 色94色欧美一区二区| 久久久精品区二区三区| 国产国拍精品亚洲av在线观看| 日韩,欧美,国产一区二区三区| 亚洲欧美中文字幕日韩二区| 国产国语露脸激情在线看| 日韩成人伦理影院| 老司机影院成人| 亚洲国产av新网站| 色5月婷婷丁香| 久久久久精品性色| 极品人妻少妇av视频| 欧美+日韩+精品| 亚洲av免费高清在线观看| 日韩不卡一区二区三区视频在线| 在线播放无遮挡| 成年人午夜在线观看视频| 国产精品秋霞免费鲁丝片| 午夜福利,免费看| 欧美日韩av久久| 亚洲国产av新网站| 91精品三级在线观看| 九色亚洲精品在线播放| 18禁裸乳无遮挡动漫免费视频| 成年人免费黄色播放视频| 亚洲五月色婷婷综合| 大码成人一级视频| 国产成人精品福利久久|