• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Phase-field modeling of faceted growth in solidification of alloys

    2022-04-12 03:45:02HuiXing邢輝QiAn安琪XiangleiDong董祥雷andYongshengHan韓永生
    Chinese Physics B 2022年4期
    關(guān)鍵詞:安琪

    Hui Xing(邢輝) Qi An(安琪) Xianglei Dong(董祥雷) and Yongsheng Han(韓永生)

    1The Key Laboratory of Space Applied Physics and Chemistry,Northwestern Polytechnical University,Xi’an 710029,China

    2College of Materials Science and Engineering,Zhengzhou University,Zhengzhou 450001,China

    3The EMMS Group,State Key Laboratory of Multiphase Complex Systems,Institute of Process Engineering,Chinese Academy of Sciences,Beijing 100190,China

    Keywords: faceted growth,dendrite,phase-field model

    1. Introduction

    Faceted growth of semiconductors such as Si, Ge and SiGe mixtures in undercooled or supersaturated melts has been attracted great interest in crystal growth field because their huge applications for electronics and photovoltaics industries.[1]It is well known that Jackson’s factorα,[2]the product of the crystallographic factor and the ratio of latent heat to the rare gas constant, approximately describes the tendency of a material to facet. This has been proved in a wide range of materials.[3]Previous experimental investigations from semiconductor to intermetallic demonstrate that the faceted crystal at equilibrium could become less faceted and a transition from facet to dendrite occurs with the undercooling or supersaturation increasing.[4-6]This results from that the faceted crystal still retains tailing rough parts which can be described by a parabolic function at equilibrium. Therefore,the key point of numerical simulation of the faceted growth and its transition to dendrite is how to construct a form of anisotropic function exhibiting perfectly flat vicinal interface with rounded cusps at equilibrium. Obviously, the general form of surface tension anisotropic function cannot be used.The form of anisotropic function for facet in the presence of cusps at faceted orientations can be written as

    whereΘis the angle of the normal direction to the interface with respect to a fixed crystalline axis,andΘfis the orientation of a facet. Equation(1)is indeed valid for a vicinal interface when|Θ-Θf|?1,andεis the cusp amplitude. As a powerful tool for simulating growth pattern selection,the phase-field method has been quantitatively and extensively used for simulating growth pattern selection in the non-faceted dendritic growth with weak and strong anisotropy from undercooled or supersaturated melts.[7-9,11]For faceted growth,it is impossible to separately treat the rough and faceted parts in the framework of the phase-field method. Hence, many attempts have been made for constructing a continuous form of surface tension anisotropic function for faceted growth.[12-17]By modifying a simple form of anisotropic function

    from broken-bond model for faceted solid-gas interface, numerical simulation of the faceted dendritic growth with cusp rounding have been successfully carried out by using phasefield method by Debierreet al.[12]However,the modification of the anisotropy function consists of rounding the cusp over a small range of orientations

    Obviously, Eq. (4) is similar to the form given by Eq. (2) in principle, but it is a handy form to solve numerically. There is no physical meanings of the parameterδ, which is a small but not negligible constant in numerical simulation. The addition ofδto Eq. (4) allows a continuous interface stiffness.Similar form for six-fold anisotropic function was constructed by Bolladaet al.[16]to investigate the intermetallic solidification of Al-Si alloys and the transition from faceted to dendritic morphology. In this paper, the form of Eq.(3)is adopted for studying faceted growth in solidification of a binary alloy from supersaturated melts in a two-dimensional system.

    2. Method descriptions

    We consider the growth of a crystal from a supersaturated alloy melt. The quantitative phase-field model for alloys solidification is developed based on the thin-interface asymptotic analysis by Karma.[18]This model can be successfully used for simulating non-faceted dendritic growth in solidification of alloys due to the inclusion of the anti-trapping current term. The phase-field variableφis-1 (+1) for solid (liquid) and the narrow region where it varies from-1 to +1 is considered as the diffusive solid-liquid interface.For alloys solidification, the solute concentrationcwas converted to the solute supersaturationU, which is defined asU=((2kc/c0)/[1+k-(1-k)φ]-1)/(1-k), wherec0the concentration on the liquid side of the interface andkthe partition coefficient. After neglecting the solute diffusion in the solid phase,governing equations for phase-field variableφand solute concentrationUyield

    is the well-known anti-trapping current term,matched asymptotic analysis links diffusive interface widthW0and interface attachment time scaleτ0with capillary lengthd0and liquid diffusion coefficientDlbyW0=λd0/a1andτ0=λa2W20/Dlfor vanishing interface kinetic coefficient,wherea1=0.8839 anda2=0.6267. In this work, the modified surface tension anisotropic function Eq. (4) for faceted growth by Wanget al.[15]was used here. In this study, the well-characterized Si-3.5 at.% Ge alloy in solidification[19]was selected as the calculation object,and all thermophysical parameters were assumed constants which are listed as follows: average solute concentrationc0=3.5 at.%, equilibrium liquidus slopeml=-1.85 K/at%,equilibrium partition coefficientk=0.45,liquid diffusion coefficientDl=6200 μm2/s, and Gibbs-Thomson coefficientΓ=0.2324 K·μm. The coupling constantλis selected asλ=2 for results that are independent of the interface thickness. In numerical simulation,governing Eqs.(5)and(6)are solved by using the explicit finite difference method on a fixed grid. No-flux boundary conditions are applied to all boundaries. The numerical domain is set as 800×800. As shown in Fig.1,the initial solid seed is introduced as a quarter of square or circle for the reason of symmetry to investigate the effect shape of initial seed of growth pattern selection.

    Fig. 1. Schematic of boundary conditions and initial solid seeds: (a)circl and(b)square.

    3. Results and discussion

    The value ofδis firstly chosen from 0.1 to 0.005 in two cases of supersaturation for a proper value ofδin numerical simulation. Solutions of Eq. (3) forδvarying from 0.1 to 0.005 are shown in Fig. 2(a). The solution of Eq. (2) has a sharp cusp atΘ=0 while solutions of Eq. (3) with finite values ofδare smooth at a small range nearΘ=0. It can be seen that the profiles from Eq.(3)become convergent with the decrease inδ, which indicates that the effect ofδis only remarkably in the region nearΘ=0 similar to the solution of Eq.(2)but Eq.(3)is a continuous function.In order to demonstrate the effect ofδon the crystal growth, we carried out two-dimensional phase-field simulations for variousδin two cases of supersaturationU0=0.20 andU0=0.50,which corresponds to square and dendritic shapes,respectively. Shapes with solute distributions are shown in Figs. 2(b)-2(g). Obviously,phase-field simulations with Eq.(3)exhibit perfectly flat vicinal interface with rounded cusps for lower supersaturation,as shown in Fig.2(b). Due to the growth velocity proportional to the absolute value of the supersaturation,the diffusion length forU0=0.20 is significantly larger than that forU0=0.50.In order to investigate the role ofδ,the solid-liquid interface contours for variousδwith an enlarged drawing near the tips are plotted at the same time. For lower supersaturation, as shown Figs. 2(c) and 2(d), the interface profiles for variousδoverlap except the region near the tip. Clearly, the convergence with respect toδhas been achieved with the decrease ofδnear the tip. For larger supersaturation, as shown in Figs. 2(f) and 2(g), the shape becomes dendritic and the difference of the interface profile for variousδbecomes pronounced. Therefore,a smallerδshould be selected for larger supersaturation. The above study proves that Eq.(3)is a simple but good regularization for Eq.(2)for the cases of solidification. In the following numerical simulation,δ=0.001 are used everywhere.

    Fig. 2. (a) Solutions of the a regularization of the surface tension anisotropic function for δ varying from 0.1 to 0.005; solute distribution in square growth (b) and interface contours for various δ (c) with an enlarged drawing near the tips (d) for U0 =0.20; solute distribution in dendritic growth(e)and interface contours for various δ (f)with an enlarged drawing near the tips(g)U0=0.50.

    For faceted growth, the initial shape of the solid seed plays an important role in growth pattern selection. Two values of supersaturationU0=0.425 andU0=0.475 are chosen and the cusp amplitude is fixed atε=0.5, as shown in Fig.3. It can be found that the solid-liquid interface contours from the two initial conditions overlap except the region of dendritic root forU0=0.425. For a little higher supersaturationU0=0.475, the square shape of the initial seed leads to a dendrite with a single tip while the circle shape results in complicated doublons shape with tip-splitting. Although the effect of initial seeds on the growth pattern selection is a numerical artifact,it is important for simulations of facet growth.This is consistent with the results from Ref.[12]. It should be noted that the doublons are symmetry-broken growth pattern with double tips that are highly dependent on the choice of the initial seed shape. The growth velocities of the leading tips with respect to the time for various initial conditions and supersaturations are presented in Fig.3(c). Clearly,the dendrite has a higher growth velocity than doublon when the growth becomes steady. This means that the initial seed should be square to simulate faceted growth in large supersaturation or undercooling.

    Fig.3. Comparision of interface contours from circle and square seeds for U0 =0.425(a)and U0 =0.475(b); (c)temporal evolution of the leading tip velocity for various initial conditions and supersaturations.

    Fig.4. (a)Steady growth velocity versus the cusp amplitude ε with typical growth patterns;(b)steady growth velocity versus supersaturation with typical growth patterns.

    Now, let us focus on the effect of the cusp amplitude and supersaturation on the growth pattern selection and steady growth velocity in faceted solidification. Figure 4(a) shows the steady growth velocity versus the cusp amplitudeεwith typical growth patterns forU0=0.50. In this study, the initial shape of the solid seed is square. It can be seen that the steady growth velocity increases with the cusp amplitude forε ≤0.8.Meanwhile the growth pattern becomes from doublon to dendrite. Lower cusp amplitude means the unstable tip,and increase of the cusp amplitude results in the steady growth direction. Whenε >0.8, the steady growth velocity decreases with the increase of the cusp amplitude, which is consistent with the finding in Ref.[16]. As expected,the steady growth velocity is an increasing function of supersaturation when the cusp amplitude is fixed atε=0.5,which is shown in Fig.4(b).Obviously,the morphological transition from cube to dendrite is continuous,which indicates that the transition can be quantitatively obtained from phase-field simulations by using the regularization of the anisotropic function Eq.(4).

    4. Conclusion and perspectives

    In this paper, the faceted growth has been numerically investigated by using a quantitative phase-field model with a regularization of the surface tension anisotropic function. The form of the anisotropic function has been used in predicting the vapor-liquid-solid nanowire growth. Results show that the value ofδcan only affect the region near the tip,and the convergence with respect toδcan be achieved with the decrease inδnear the tip. And the difference of the interface profile for large supersaturation is more pronounced than that for lower supersaturation. Moreover, the initial shape of the solid seed also plays an important role in growth pattern selection for faceted growth, and the circle initial seed results in the doublon when the supersaturation is larger. The steady growth velocity is not a monotonic function of the cusp amplitude,which is consistent with the finding in Ref. [12]. The maximum value is approximately atε=0.8 when the supersaturation is fixed. Moreover, the growth velocity is a monotonic function of supersaturation, or at least in the range of the supersaturation. This study is the basis of numerical simulations of faceted growth in solidification of alloys,which proves that the form of Eq. (4) is a simply but good regularization for faceted growth in solidification of alloys. Moreover, it also can be used in the thin film growth and spiral growth in the processing of CVD.

    Acknowledgements

    Project supported by the National Key Research and Development Program of China(Grant No.2018YFB2001800),the National Natural Science Foundation of China (Grant No. 21978298), the Natural Science Foundation of Shaanxi Province in China (Grant No. 2020JM-111), Applied Basic Research Key Project of Yunnan, China (Grant No.202002AB080001-1),and Henan Youth Talent Promotion Project,China(Grant No.2020HYTP019).

    猜你喜歡
    安琪
    安琪酵母股份有限公司
    安琪酵母股份有限公司
    中國釀造(2019年9期)2019-10-08 05:44:26
    臉上灑滿星星的小女孩
    小讀者之友(2019年6期)2019-09-10 08:12:47
    臉上灑滿星星的小女孩
    莫愁(2019年3期)2019-02-22 01:46:04
    臉上灑滿星星的小女孩
    向日葵的微笑
    童話世界(2018年28期)2018-01-28 11:51:42
    安琪的愿望
    奇怪的“小病人”
    中華家教(2012年6期)2012-04-29 00:44:03
    愛情不設(shè)防
    上海故事(2012年5期)2012-04-29 00:44:03
    七月開始
    西部(2011年5期)2011-08-15 00:49:38
    欧美黑人欧美精品刺激| 婷婷精品国产亚洲av在线| 91麻豆精品激情在线观看国产| 亚洲av电影在线进入| 好男人在线观看高清免费视频 | 日韩欧美国产一区二区入口| 色综合站精品国产| 国内精品久久久久久久电影| 国产在线精品亚洲第一网站| 欧美成人午夜精品| 亚洲精品色激情综合| 夜夜爽天天搞| 成人18禁在线播放| 侵犯人妻中文字幕一二三四区| 日本五十路高清| 美女高潮到喷水免费观看| 18美女黄网站色大片免费观看| 婷婷丁香在线五月| 女性被躁到高潮视频| 最好的美女福利视频网| 免费女性裸体啪啪无遮挡网站| 三级毛片av免费| 可以在线观看毛片的网站| 亚洲中文字幕一区二区三区有码在线看 | 99久久精品国产亚洲精品| 免费观看精品视频网站| 国内少妇人妻偷人精品xxx网站 | 国产私拍福利视频在线观看| 久久精品91无色码中文字幕| 精品第一国产精品| 黄色 视频免费看| 中文字幕人妻丝袜一区二区| 精品熟女少妇八av免费久了| 国产激情偷乱视频一区二区| 女人高潮潮喷娇喘18禁视频| 亚洲七黄色美女视频| e午夜精品久久久久久久| 男男h啪啪无遮挡| 精品电影一区二区在线| 亚洲人成77777在线视频| 国产麻豆成人av免费视频| 日日夜夜操网爽| 免费在线观看影片大全网站| 91成年电影在线观看| 亚洲人成电影免费在线| 99久久99久久久精品蜜桃| 神马国产精品三级电影在线观看 | 午夜老司机福利片| 精品卡一卡二卡四卡免费| 日韩免费av在线播放| 国产黄a三级三级三级人| 亚洲色图 男人天堂 中文字幕| 黄片播放在线免费| www.自偷自拍.com| 久久久精品欧美日韩精品| 99久久国产精品久久久| 手机成人av网站| 啦啦啦免费观看视频1| 男女之事视频高清在线观看| 亚洲第一欧美日韩一区二区三区| 激情在线观看视频在线高清| 亚洲片人在线观看| 成人手机av| 人人澡人人妻人| 亚洲成人免费电影在线观看| 十八禁网站免费在线| tocl精华| 国产亚洲精品av在线| 欧美又色又爽又黄视频| 黑丝袜美女国产一区| 两人在一起打扑克的视频| 香蕉久久夜色| 国产高清激情床上av| 夜夜爽天天搞| 一级毛片女人18水好多| 2021天堂中文幕一二区在线观 | 精品不卡国产一区二区三区| 国产蜜桃级精品一区二区三区| 国产精品久久视频播放| 日韩大尺度精品在线看网址| 2021天堂中文幕一二区在线观 | 亚洲中文字幕日韩| 久久久水蜜桃国产精品网| 久久久国产成人免费| 免费一级毛片在线播放高清视频| 欧美日本亚洲视频在线播放| 欧美在线一区亚洲| 精品久久久久久久久久免费视频| 国内少妇人妻偷人精品xxx网站 | 精品久久久久久久毛片微露脸| x7x7x7水蜜桃| 久久久久国产精品人妻aⅴ院| 国产一区在线观看成人免费| 男人的好看免费观看在线视频 | 少妇粗大呻吟视频| 丝袜美腿诱惑在线| 日韩欧美在线二视频| 精品不卡国产一区二区三区| www.999成人在线观看| 午夜精品久久久久久毛片777| 真人做人爱边吃奶动态| 国产又爽黄色视频| 老鸭窝网址在线观看| 日韩欧美国产在线观看| 成人av一区二区三区在线看| 中文字幕另类日韩欧美亚洲嫩草| 99热这里只有精品一区 | 日本一本二区三区精品| 777久久人妻少妇嫩草av网站| 婷婷精品国产亚洲av在线| 悠悠久久av| 禁无遮挡网站| 国产久久久一区二区三区| 女性被躁到高潮视频| 久久亚洲精品不卡| 成人午夜高清在线视频 | 午夜两性在线视频| 成人三级黄色视频| 女性生殖器流出的白浆| 久久午夜亚洲精品久久| 久久国产精品人妻蜜桃| 在线观看www视频免费| 丰满的人妻完整版| 久久精品国产亚洲av高清一级| 中文字幕精品亚洲无线码一区 | 国产午夜福利久久久久久| 国产野战对白在线观看| 十八禁网站免费在线| 国产熟女午夜一区二区三区| 天天一区二区日本电影三级| 国产精品二区激情视频| 免费看日本二区| av免费在线观看网站| 99热只有精品国产| 两人在一起打扑克的视频| 又黄又爽又免费观看的视频| 久久精品影院6| 久久久精品国产亚洲av高清涩受| 亚洲最大成人中文| 十八禁网站免费在线| 老司机午夜十八禁免费视频| 成人国产综合亚洲| 黄色视频不卡| 成熟少妇高潮喷水视频| 国产成人欧美| 国产成人精品无人区| 国产人伦9x9x在线观看| 村上凉子中文字幕在线| 俺也久久电影网| 一级毛片精品| 日本 av在线| 后天国语完整版免费观看| 国产成人精品久久二区二区免费| 婷婷六月久久综合丁香| av福利片在线| 午夜激情av网站| 深夜精品福利| 久久精品国产99精品国产亚洲性色| 国产精品1区2区在线观看.| 亚洲久久久国产精品| 免费在线观看成人毛片| 麻豆成人av在线观看| 变态另类丝袜制服| 国产激情久久老熟女| 成人特级黄色片久久久久久久| 女生性感内裤真人,穿戴方法视频| 性欧美人与动物交配| 麻豆成人av在线观看| 国产精品九九99| 狂野欧美激情性xxxx| 一级黄色大片毛片| av在线天堂中文字幕| 99热这里只有精品一区 | 一级毛片精品| 黄色女人牲交| 国产日本99.免费观看| 午夜激情av网站| 长腿黑丝高跟| 成人亚洲精品av一区二区| 日韩中文字幕欧美一区二区| 国产亚洲精品久久久久5区| 国产片内射在线| 日韩免费av在线播放| 两个人视频免费观看高清| 国产在线精品亚洲第一网站| 国产不卡一卡二| 给我免费播放毛片高清在线观看| 久久精品亚洲精品国产色婷小说| 国产欧美日韩精品亚洲av| 亚洲免费av在线视频| 在线观看免费视频日本深夜| 校园春色视频在线观看| 大型黄色视频在线免费观看| 欧美成人一区二区免费高清观看 | www.熟女人妻精品国产| 精品人妻1区二区| 国产精品久久视频播放| 亚洲中文日韩欧美视频| 日韩欧美三级三区| 老司机福利观看| 999精品在线视频| 51午夜福利影视在线观看| 日本一本二区三区精品| 久久精品aⅴ一区二区三区四区| 午夜精品久久久久久毛片777| 亚洲最大成人中文| 欧美激情极品国产一区二区三区| 天堂影院成人在线观看| 啦啦啦免费观看视频1| 欧美人与性动交α欧美精品济南到| 日本熟妇午夜| 欧美性猛交黑人性爽| 午夜久久久在线观看| ponron亚洲| 最近最新中文字幕大全免费视频| 国产成人精品久久二区二区免费| 色综合亚洲欧美另类图片| 很黄的视频免费| 一二三四在线观看免费中文在| 一个人免费在线观看的高清视频| 天堂影院成人在线观看| 在线观看一区二区三区| e午夜精品久久久久久久| 亚洲熟女毛片儿| 俄罗斯特黄特色一大片| 制服人妻中文乱码| av在线播放免费不卡| 欧美乱妇无乱码| 国产精品野战在线观看| 99国产极品粉嫩在线观看| 久久中文字幕一级| 国产精品亚洲av一区麻豆| 搞女人的毛片| 精品人妻1区二区| 琪琪午夜伦伦电影理论片6080| 免费在线观看黄色视频的| 亚洲av片天天在线观看| 婷婷精品国产亚洲av在线| 少妇裸体淫交视频免费看高清 | 欧美色视频一区免费| 欧美最黄视频在线播放免费| 午夜福利高清视频| 一个人免费在线观看的高清视频| 欧美色欧美亚洲另类二区| 女性被躁到高潮视频| 国产av一区二区精品久久| 美女 人体艺术 gogo| 亚洲成人免费电影在线观看| 色精品久久人妻99蜜桃| 亚洲最大成人中文| 久久人妻福利社区极品人妻图片| 国产1区2区3区精品| 日韩欧美一区二区三区在线观看| 亚洲欧美精品综合久久99| 12—13女人毛片做爰片一| 国产精品久久久久久人妻精品电影| 国产1区2区3区精品| 亚洲激情在线av| 成年女人毛片免费观看观看9| 国产成人欧美| 国产色视频综合| 手机成人av网站| av在线天堂中文字幕| 怎么达到女性高潮| 亚洲,欧美精品.| 特大巨黑吊av在线直播 | 99热这里只有精品一区 | 99国产精品一区二区三区| 国产午夜精品久久久久久| 高清在线国产一区| 日本 av在线| 桃色一区二区三区在线观看| 国产成人欧美| 一本一本综合久久| 亚洲三区欧美一区| 啪啪无遮挡十八禁网站| 不卡av一区二区三区| 久久久国产精品麻豆| 黑人欧美特级aaaaaa片| 香蕉av资源在线| 中出人妻视频一区二区| 天天躁狠狠躁夜夜躁狠狠躁| 欧美色欧美亚洲另类二区| 悠悠久久av| 99riav亚洲国产免费| 日本熟妇午夜| 男女之事视频高清在线观看| 无限看片的www在线观看| 欧美日韩中文字幕国产精品一区二区三区| 国内精品久久久久精免费| 日本 av在线| 国产成人欧美在线观看| 久久久国产欧美日韩av| 国产97色在线日韩免费| 日韩欧美国产一区二区入口| 午夜老司机福利片| 成人国产一区最新在线观看| 亚洲成人久久爱视频| 动漫黄色视频在线观看| 这个男人来自地球电影免费观看| 侵犯人妻中文字幕一二三四区| 国产高清有码在线观看视频 | 少妇 在线观看| 狠狠狠狠99中文字幕| 中文资源天堂在线| 国产一区二区三区在线臀色熟女| 色综合婷婷激情| 国产黄a三级三级三级人| xxx96com| 美女高潮喷水抽搐中文字幕| 国产精品一区二区免费欧美| 日韩欧美三级三区| 两个人看的免费小视频| 日韩欧美三级三区| 人人澡人人妻人| 91麻豆精品激情在线观看国产| 亚洲avbb在线观看| 男人舔女人下体高潮全视频| 熟女少妇亚洲综合色aaa.| 色哟哟哟哟哟哟| or卡值多少钱| 亚洲av片天天在线观看| 天堂√8在线中文| 欧美黄色淫秽网站| 亚洲 国产 在线| 午夜精品久久久久久毛片777| 精品国产超薄肉色丝袜足j| 国产精品 国内视频| 欧美精品啪啪一区二区三区| 99国产精品一区二区蜜桃av| 国产精品国产高清国产av| 黑丝袜美女国产一区| 日本三级黄在线观看| 日本一本二区三区精品| 国内久久婷婷六月综合欲色啪| 国产精品99久久99久久久不卡| 哪里可以看免费的av片| 一卡2卡三卡四卡精品乱码亚洲| 亚洲 欧美 日韩 在线 免费| 日本免费a在线| 脱女人内裤的视频| 亚洲国产看品久久| av福利片在线| 国产乱人伦免费视频| 欧美日韩中文字幕国产精品一区二区三区| 一卡2卡三卡四卡精品乱码亚洲| 91字幕亚洲| 色精品久久人妻99蜜桃| 亚洲av成人一区二区三| 色综合亚洲欧美另类图片| 国产成人欧美在线观看| 久久精品91蜜桃| 女人爽到高潮嗷嗷叫在线视频| 午夜免费观看网址| 亚洲人成伊人成综合网2020| 中文亚洲av片在线观看爽| 国产黄色小视频在线观看| 中文字幕久久专区| 久久久久亚洲av毛片大全| 人成视频在线观看免费观看| 久久青草综合色| 99国产极品粉嫩在线观看| 午夜福利视频1000在线观看| 国产伦一二天堂av在线观看| 1024香蕉在线观看| 18禁黄网站禁片午夜丰满| 欧美乱码精品一区二区三区| 亚洲性夜色夜夜综合| 亚洲av成人一区二区三| 国产亚洲精品久久久久5区| 欧美乱色亚洲激情| 满18在线观看网站| 国产精品98久久久久久宅男小说| 这个男人来自地球电影免费观看| 动漫黄色视频在线观看| 在线观看日韩欧美| 亚洲av成人不卡在线观看播放网| 日本撒尿小便嘘嘘汇集6| 最好的美女福利视频网| 99久久精品国产亚洲精品| 国产男靠女视频免费网站| 两人在一起打扑克的视频| 村上凉子中文字幕在线| 欧美日韩亚洲国产一区二区在线观看| 男女做爰动态图高潮gif福利片| 国产久久久一区二区三区| 国产av一区二区精品久久| 国产久久久一区二区三区| 国产蜜桃级精品一区二区三区| 日本三级黄在线观看| 精品国产美女av久久久久小说| 国产又黄又爽又无遮挡在线| 99在线人妻在线中文字幕| 免费一级毛片在线播放高清视频| 极品教师在线免费播放| 色老头精品视频在线观看| 免费人成视频x8x8入口观看| 黑人巨大精品欧美一区二区mp4| 这个男人来自地球电影免费观看| 身体一侧抽搐| 精品一区二区三区四区五区乱码| 亚洲国产精品sss在线观看| 精品日产1卡2卡| avwww免费| 特大巨黑吊av在线直播 | 亚洲成国产人片在线观看| 精品久久久久久,| 成熟少妇高潮喷水视频| 国产欧美日韩一区二区三| 九色国产91popny在线| 天堂动漫精品| 波多野结衣巨乳人妻| 午夜福利免费观看在线| 99国产精品一区二区三区| 色播亚洲综合网| 少妇 在线观看| 国产精华一区二区三区| 91字幕亚洲| 国产区一区二久久| 中文字幕人成人乱码亚洲影| 久久午夜综合久久蜜桃| 亚洲熟妇熟女久久| 韩国av一区二区三区四区| 日本a在线网址| 国产黄片美女视频| 亚洲成av人片免费观看| 91字幕亚洲| 欧美黄色淫秽网站| 久久精品国产亚洲av香蕉五月| 久久午夜综合久久蜜桃| 久久久久久国产a免费观看| 韩国av一区二区三区四区| 狠狠狠狠99中文字幕| 一级a爱视频在线免费观看| 亚洲五月婷婷丁香| www.自偷自拍.com| 成人三级做爰电影| 黄片小视频在线播放| 成人18禁高潮啪啪吃奶动态图| 国产欧美日韩精品亚洲av| 热re99久久国产66热| 国产伦人伦偷精品视频| 国产亚洲av高清不卡| 欧美人与性动交α欧美精品济南到| 日韩欧美国产一区二区入口| 欧美日韩亚洲国产一区二区在线观看| 欧美黄色片欧美黄色片| 人成视频在线观看免费观看| 日韩中文字幕欧美一区二区| 午夜激情福利司机影院| 巨乳人妻的诱惑在线观看| √禁漫天堂资源中文www| 欧美激情 高清一区二区三区| 啦啦啦韩国在线观看视频| 国产一区二区三区在线臀色熟女| 国产精品国产高清国产av| 午夜免费激情av| ponron亚洲| 亚洲成国产人片在线观看| 日韩欧美一区视频在线观看| 国产99久久九九免费精品| 极品教师在线免费播放| 黄色成人免费大全| 亚洲人成电影免费在线| 精华霜和精华液先用哪个| 国产人伦9x9x在线观看| 欧美日韩中文字幕国产精品一区二区三区| 亚洲最大成人中文| 国产精华一区二区三区| 亚洲精品在线观看二区| 欧美另类亚洲清纯唯美| 老汉色av国产亚洲站长工具| 欧美乱码精品一区二区三区| 18美女黄网站色大片免费观看| 国产成人欧美| 免费看日本二区| 国产欧美日韩一区二区三| 国产激情欧美一区二区| 亚洲七黄色美女视频| 国产亚洲精品久久久久久毛片| 在线观看免费午夜福利视频| 国产精品久久久av美女十八| 丰满人妻熟妇乱又伦精品不卡| 天堂动漫精品| 久久精品亚洲精品国产色婷小说| 十八禁人妻一区二区| 亚洲全国av大片| 老司机午夜福利在线观看视频| 18禁国产床啪视频网站| 精品国产国语对白av| 欧美黑人巨大hd| 亚洲国产欧美日韩在线播放| 欧美中文日本在线观看视频| 国产精品免费一区二区三区在线| 在线国产一区二区在线| 最近最新免费中文字幕在线| 一进一出抽搐gif免费好疼| 成年女人毛片免费观看观看9| 亚洲成人国产一区在线观看| 中文字幕高清在线视频| 母亲3免费完整高清在线观看| 999精品在线视频| 性欧美人与动物交配| 国产91精品成人一区二区三区| 亚洲中文日韩欧美视频| 久久天躁狠狠躁夜夜2o2o| 999久久久国产精品视频| 人妻久久中文字幕网| 岛国视频午夜一区免费看| netflix在线观看网站| 久久精品91无色码中文字幕| 亚洲av成人不卡在线观看播放网| 色尼玛亚洲综合影院| 国产一区二区在线av高清观看| 不卡av一区二区三区| 国产亚洲av嫩草精品影院| 亚洲精品在线观看二区| 日韩欧美国产在线观看| 听说在线观看完整版免费高清| 婷婷精品国产亚洲av| 女警被强在线播放| 日韩欧美一区视频在线观看| 波多野结衣巨乳人妻| 一级片免费观看大全| 午夜福利高清视频| www.精华液| 久久久久久久午夜电影| 国产乱人伦免费视频| 可以在线观看的亚洲视频| 日韩 欧美 亚洲 中文字幕| 精品国内亚洲2022精品成人| 亚洲一码二码三码区别大吗| 老汉色∧v一级毛片| 精品欧美一区二区三区在线| 国产av不卡久久| 亚洲一区中文字幕在线| 可以在线观看的亚洲视频| 午夜a级毛片| 日日摸夜夜添夜夜添小说| 久久久久久久精品吃奶| 男人舔女人的私密视频| 丰满人妻熟妇乱又伦精品不卡| 国产精品爽爽va在线观看网站 | 欧美日韩乱码在线| 国产99白浆流出| 91麻豆av在线| 日韩三级视频一区二区三区| 757午夜福利合集在线观看| 一级作爱视频免费观看| 久久狼人影院| 日日爽夜夜爽网站| 一个人观看的视频www高清免费观看 | 久9热在线精品视频| 日韩 欧美 亚洲 中文字幕| 一级毛片精品| 中国美女看黄片| 久久欧美精品欧美久久欧美| 欧美大码av| 免费女性裸体啪啪无遮挡网站| 动漫黄色视频在线观看| 欧美一级毛片孕妇| 在线天堂中文资源库| 美女国产高潮福利片在线看| 日韩有码中文字幕| 亚洲欧美日韩高清在线视频| 国产成人精品无人区| 伊人久久大香线蕉亚洲五| 久久久久精品国产欧美久久久| 成在线人永久免费视频| 妹子高潮喷水视频| 欧美另类亚洲清纯唯美| 国产精品爽爽va在线观看网站 | 免费搜索国产男女视频| 18禁观看日本| 中文在线观看免费www的网站 | 人妻久久中文字幕网| 女性生殖器流出的白浆| 国产亚洲av高清不卡| 性欧美人与动物交配| 亚洲精品美女久久av网站| 国产精品99久久99久久久不卡| 欧美色欧美亚洲另类二区| 亚洲第一青青草原| 欧美国产精品va在线观看不卡| 亚洲人成电影免费在线| 一进一出好大好爽视频| 亚洲自偷自拍图片 自拍| 欧美人与性动交α欧美精品济南到| 国产高清激情床上av| 中文资源天堂在线| 真人一进一出gif抽搐免费| 国产又色又爽无遮挡免费看| 在线国产一区二区在线| 两性夫妻黄色片| avwww免费| 韩国av一区二区三区四区| 真人一进一出gif抽搐免费| 国内揄拍国产精品人妻在线 | 国产午夜精品久久久久久| 变态另类成人亚洲欧美熟女| 在线av久久热| 国产三级黄色录像| 久久国产精品影院| 亚洲成国产人片在线观看| 国产一区二区激情短视频| 欧美成人午夜精品| 亚洲第一欧美日韩一区二区三区| 女生性感内裤真人,穿戴方法视频| 国产亚洲av高清不卡| 欧美成人免费av一区二区三区| 一个人免费在线观看的高清视频| 妹子高潮喷水视频| 国产成人啪精品午夜网站| 精品国产乱码久久久久久男人| 午夜福利高清视频|