• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Extrinsic equivalent circuit modeling of InP HEMTs based on full-wave electromagnetic simulation

    2022-04-12 03:44:54ShiYuFeng馮識諭YongBoSu蘇永波PengDing丁芃JingTaoZhou周靜濤SongAngPeng彭松昂WuChangDing丁武昌andZhiJin金智
    Chinese Physics B 2022年4期
    關鍵詞:武昌

    Shi-Yu Feng(馮識諭) Yong-Bo Su(蘇永波) Peng Ding(丁芃) Jing-Tao Zhou(周靜濤)Song-Ang Peng(彭松昂) Wu-Chang Ding(丁武昌) and Zhi Jin(金智)

    1University of Chinese Academic of Sciences,Beijing 100029,China

    2High-Frequency High-Voltage Device and Integrated Circuits Center,Institute of Microelectronics,Chinese Academy of Sciences,Beijing 100029,China

    Keywords: extrinsic equivalent circuit modeling,InP HEMT,HFSS and ADS co-simulation,S-parameters

    1. Introduction

    Indium-phosphide-based high-electron-mobility transistors(InP HEMTs)with outstanding high-frequency characteristics have been developed and widely investigated in the last decades. Now,the InP HEMT possesses cut-off frequency up to hundreds of gigahertz and maximum oscillation frequency over 1 THz.[1-3]And the high-frequency InP HEMT has been designed and manufactured into sub-millimeter monolithic integrated circuits(MMIC).[4-6]However, as the operating frequency of the device continues to increase, the device exhibits a distributed behavior, and the parasitic resistance, capacitance,and inductance of the metal plating layer interconnected with the device make the performance of the device degrade significantly.[7]Moreover,the conventional device models can no longer characterize the basic physical principles of device performance degradation. Hence, high-fidelity smallsignal device models,in which intrinsic and extrinsic behavior concurrently are considered, are necessary for effectively designing the high-frequency band integrated circuits.

    The small-signal model of InP HEMTs can be divided into nonlinear intrinsic elements and linear extrinsic parasitic couplings.[8]The extrinsic elements are independent of the bias voltage,but they basically depend on the physical geometry of the device,including interconnections,electrode structures, and pads. Therefore, the extrinsic parasitic parameters are first proposed and subtracted from the experimental data when modeling. Subsequently, the intrinsic elements related to the bias are determined according to the applied bias voltage. This shows that any calculation errors of external parasitic parameters will lead to errors in the intrinsic parameters of the device and thus affecting the correct understanding of the inherent performance of the device. Hence, the accurate modeling of extrinsic parasitic components is essential.

    In the past, the small-signal equivalent circuit model of InP HEMTs is established on the basis of device measurement.[9-11]When using the measuredS-parameters to extract the equivalent circuit,there appears a problem that the unknown parameters in the circuit model are more than the number of equations provided by the experimental data.[12]In order to avoid this problem, a numerical optimization algorithm is used to extract the extrinsic parasitic parameters.However, the extraction results of numerical optimization methods are easily affected by the initial values of the parameters. More importantly, the model established by the device measurement matches the device model, which is provided only by the device manufacturer,and cannot be applied to any other device.Hence,there is needed a modeling technique that is not affected by the device model while ensuring the modeling accuracy.

    The primary purpose of this paper is to explore the InP HEMT’s extrinsic parasitic equivalent circuit model through electromagnetic(EM)simulation. On the basis of the conventional HEMT’s model, by HFSS and ADS co-simulation, the frequency response of InP HEMT device’s parasitic coupling in the low-microwave range and the mmW frequency range are predicted. Based on the parasitic coupling effect,the extrinsic parasitic parameters of InP HEMT are extracted and the parasitic equivalent circuit model is established. By comparing the co-simulation results and complete experimental data,the feasibility of parameter extraction and the accuracy of the parasitic equivalent circuit model are verified. Finally,the utility of HFSS and ADS co-simulation results of InP HEMTs model is demonstrated through an example. In the frequency range below 40 GHz which is limited by measurement condition in our laboratory, the proposed method proves highly accurate for a resistive passive device with highly distributed embedding surroundings.

    2. InP HEMT’s extrinsic parasitic equivalent circuit model

    A cross-sectional view of the InP HEMT is shown in Fig. 1. The epitaxial layer structure is grown by molecular beam epitaxy (MBE) on a 3-inch (1 inch=2.54 cm) semiinsulating(100)InP substrate.[13]The epitaxial layers consists of,from the bottom to the top,a 500-nm InAlAs buffer,a 15-nm In0.53Ga0.47As channel layer,a 3-nm InAlAs spacer layer,an 8-nm InAlAs Schottky barrier layer, a 4-nm InP etching stopper layer, and a 20-nm Si-doped composite InGaAs cap layer.An Si-doped plane is inserted between the Schottky barrier layer and the spacer layer to supply the electrons for current conduction. All InAlAs layers are lattice-matched with the InP substrate.

    Fig.1. Cross-sectional view of InP-based HEMT.

    The extrinsic parasitic equivalent circuit of InP HEMT is independent of the external bias. Therefore, when analyzing the parasitic equivalent circuit,the device can be considered to be in a non-conducting state, which can be seen as a simplified geometric structure composed of metal and substrate as shown in Fig. 2(b).[14]To better demonstrate the distributed and mmW radio-frequency (RF) behavior of the device, the metal sizesd1,d2, andd3are set to be 40 μm, 200 μm, and 60μm respectively. The representative geometric structure is simulated in HFSS to obtain the simulation data, which are then imported into ADS to determine the extrinsic equivalent circuit components of InP HEMT,and finally an external parasitic circuit model is established.

    Fig.2. (a)Simplified three-dimensional schematic diagram of InP HEMT with two fingers whose geometry dimensions are w1 =6μm, w2 =4μm,s1=s2=4μm,d1=40μm,d2=200μm,d3=60μm;(b)InP HEMT structure diagram;and(c)simulation structure diagram of InP HEMT in HFSS.

    The extrinsic parasitic model of the improved InP HEMTs, shown in Fig. 3, involves 19 circuit elements. At high frequencies, the capacitive elements in the conventional HEMT equivalent circuit model are likely to shunt out the inherent transconductance,which provides the gain mechanism of the device.[15]Therefore,a conductive element corresponding to the capacitive element is introduced into the external parasitic circuit. Capacitive elementsCegs,Cegd, andCedsare inter-electrode capacitances,representing the fringing electric field between the gate, drain, and source. The corresponding conductivity componentsGegs,Gegd, andGedsare the interelectrode conductances, which are used to characterize the conduction currents between the gate,drain,and source due to damage to the substrate. The electrical couplings between the gate, drain, and source contact pads are characterized by capacitive elementsCpgs,Cpgd,andCpds.The corresponding conductivity componentsGpgs,Gpgd, andGpdsare the inter-pad conductivities, which represent the electrolyte leakage losses caused by the conductivity of the semiconductor substrate.The resistive elementsReg,Red, andReshave physical meanings for the power consumption of the gate,drain,and source structure and the surrounding environment.The inductance elementsLeg,Led,andLesare electrode inductances,representing the energy stored respectively in the magnetic field around the current-carrying gate,drain,and source.Most importantly,Lmgdis introduced to simulate the magnetic flux between the gate and the drain.

    C

    Fig.3. Improved equivalent-circuit model for InP HEMT describing extrinsic parasitic couplings.

    3. Extract extrinsic parasitic circuit components using representative test structures

    Conventional InP HEMT extrinsic parameters are determined by using a cold HEMT atVds=0,Vgs=0,and pinchoff voltage.[16]Although cold HEMT conditions can be easily achieved when a probe test bench is used for testing, the de-embedding problems and some pad parasitic effects can be brought in, making the process of determining extrinsic parasitic parameters complicated and inaccurate.[17]At the same time, a large number of circuit elements that need to be concurrently determined make the single-step parameterextraction procedure rather sensitive and unreliable. Here, a multi-step method is used to strategically divide the external circuit model into multiple sub-circuits, which can be easily adapted to experimental or simulation data to determine the frequency-dependent parasitic components of the InP HEMTs.The six proposed layouts of the algorithm are implemented in HFSS,and the corresponding lumped-element equivalent circuits for each of the test layouts are given in the ADS. The six proposed layouts and corresponding equivalent circuits are given in Figs.4 and 5,respectively.

    Fig. 4. Schematic diagram of the representative test structure of the proposed InP HEMTs: (a)pad, (b)thru1, (c)thru2, (d)short1, (e)short2, and(f)open test.

    In the first step,the parasitic admittance matrix[Ypad]of the pad is obtained by the HFSS simulation of the pad structure in Fig.4(a). The parasitic capacitance and conductance of the corresponding padtopad in Fig.5(a)are extracted from the the following equations:

    In the second step, by de-embedding the pad-related parasitics from the thru1 and thru2 test structure simulation results,the admittance matrix of the gate electrode-related parasitic couplings[Ygate]and the admittance matrix of the drain electrode-related parasitic couplings [Ydrain] can be obtained respectively. The parasitic parameters are extracted from the following equations:

    Finally, in step five, the parasitic effects of parallelconnected pads and the parasitic effects of the device electrodes in series are excluded from the open simulation data,and the inter-electrode parasitic coupling parameterYmatrix[Yopen] is obtained, in which the inter-electrode capacitance and conductance parasitic parameters are given by the following equations:

    Fig.5. InP HEMTs extrinsic circuit model proposed for different representative test structures: (a)pad,(b)thru1,(c)thru2,(d)short1,(e)short2,and(f)open test.

    4. Experimental verification of proposed equivalent circuit model

    To validate the accuracy of the InP HEMT parasitic equivalent circuit above, here we use the HFSS simulations of the InP HEMT topology shown in Fig.2 in a frequency range of 1 GHz-40 GHz. All six proposed test standards are fabricated on a 3-inch InP wafer by depositing a single-layer of Au. The interconnect metallization is fabricated via Au evaporation,and the final Au layer has a thickness of 0.3μm. The parameter settings of the substrate and gold in the HFSS simulation are shown in Table 1, which are in accordance with the characteristics of the process materials used in our laboratory. TheS-parameters of the fabricated test patterns are measured by using the test platform in our laboratory in a range of 1 GHz-40 GHz band. The predicted and measuredS-parameters are compared with each other to highlight the degree of agreement between the frequency responses obtained from the HFSS simulations and the experimental data.

    Table 1. Parameter settings of substrate and gold in HFSS simulation.

    Fig.6. Capacitances and conductances associated with the device pads: (a)Cpgs,Cpds,and Cpgd;(b)Gpgs,Gpds,and Gpgd.

    The gate, drain, and source inter-pad capacitances and conductances (Cpgs,Gpgs), (Cpgd,Gpgd), and (Cpds,Gpds) are shown in Figs. 6(a) and 6(b), respectively. In the pad structure, the gate and drain electrodes are removed, leaving only the corresponding two small pieces of metal pads and they are farther apart,so the extracted feedthrough capacitanceCpgdbetween the gate and the drain pad is at least 3 orders of magnitude smaller than the remaining capacitances as can be seen from the result graph. As such,Cpgdis often omitted in many similar external equivalent circuits reported in Ref.[18].In addition,the substrate conductance increases with the frequency increasing, and the substrate conductanceGpgdis different from the other two conductances by 3 orders of magnitude as can be seen from Fig.6(b).

    The resistance and inductance of gate, drain, and source electrode are respectively(Reg,Leg),(Red,Led),and(Res,Les),and their results calculated in the second step are plotted in Figs. 7(a) and 7(b). Owing to the similar structures of thru1 and thru2, the resistancesRegandRedhave the same trend as shown in Fig. 7(a). The reason why the resistanceResincreases sharply with frequency increasing is the skin-effect of the current,which corresponds to the concentration of current flowing on the surface of the conductor at high frequency.[19]Figure 7(b) shows that the inductance of the gate, drain and source decrease as the frequency increases. The reason is that in the high-frequency skin-effect region, there is a vertical substrate current, which leads the line inductance to decrease.[20]As the operating frequency moves well into the mmW regime,the influence of mutual inductive gate-to-drain coupling becomes more pronounced,which necessitates its accurate characterization.[21]

    Fig. 7. Device electrode-related resistance and inductance terms. (a) Reg,Red,and Res;(b)Leg,Led,Les,and Lmgd.

    The conventional InP HEMTs external parasitic equivalent circuit does not generally distinguish between the capacitance between pads and the capacitance between electrodes.[22,23]However, in order to maintain the modeling accuracy well in the mmW frequency range,the inter-pad coupling capacitance and the inter-electrode coupling capacitance need to be treated independently as done in this work. The calculated values of inter-electrode capacitance and conductance of(Cegs,Gegs),(Cegd,Gegd),and(Ceds,Geds)are given in Figs.8(a)and 8(b). Compared with the inter-pad capacitance and conductance proposed by the pad structure, the values of inter-electrode capacitance and conductance extracted by the open structure are slightly large because the metal of the open structure is intact and the electrode metal is not removed. In particular,the conductanceGegdbetween the gate and the drain varies significantly with frequency as can be seen in Fig.8(b).

    Fig.8. Curves of frequency-dependent inter-electrode capacitance and conductance: (a)Cegs,Cegd,and Ceds;(b)Gegs,Gegd,and Geds.

    In order to verify the feasibility of the employed extraction of parasitic parameters and the accuracy of the InP HEMT equivalent circuit model, the HFSS simulation prediction, the measurement of the test structure and the modeledS-parameters are compared with each other as shown in Figs.9 and 10. Bring the pad parasitic parameters extracted in the first step of the pad simulation and the parasitic parameters of the device electrodes extracted in the second and third step into the corresponding equivalent circuit,theS-parameter comparison results are shown in Fig.9. TheS-parameters obtained from the HFSS simulation exhibit excellent agreement with the measured data on the 40-GHz bandwidth. Perhaps more importantly,the simulatedS-parameters of the proposed equivalent circuit given in Figs.5(a)-5(d)can very accurately reproduce the frequency response of the parasitic coupling in the band range of 1 GHz-40 GHz.

    To further establish the validity of the extraction method and modeling, the complete set of parasitic coupling effects is estimated by executing the five steps of the proposed parasitic extraction algorithm. Following this, the extracted element values are substituted into the equivalent circuit of the short2 in Fig.5(e)and open test structure in Fig.5(f). As can be seen from Fig. 10, the simulated, measured, and modeledS-parameters for the two test standards of parameter extraction are shown again to be in excellent agreement with each other.

    To evaluate the accuracy of the HFSS simulation method,the HFSS error is defined as follows:

    where Errhfssis the error between the HFSS simulation value and the measure value,Shfssrepresents theS-parameter of the HFSS simulation,andSmeasuredenotes theS-parameter of the measurements. Through calculation, the error at 40 GHz is only 2.64%which is sufficiently small for most modeling application.

    The good agreement between the HFSS simulation results and the test results shown in Figs. 9 and 10 demonstrates the accuracy of the HFSS EM simulations in predicting the measuredS-parameters on the 40-GHz bandwidth. The good agreement between the equivalent circuit simulation results and the test results proves the authenticity and accuracy of the equivalent circuit. More importantly, theS-parameters obtained from the equivalent circuit simulation can very accurately track the behavior of EM interaction. As seen in Figs.10(d)and 10(e),transmission coefficientS21of the open standard increases with frequency increasing, which shows that the insertion loss decreases with frequency increasing.The reason is that as the frequency increases,the capacitanceCegdbetween the gate electrode and the drain electrode plays a major role, providing an RF current flow path, so that the capacitive reactance continues to decrease.[24]This example clearly illustrates the dramatic frequency-dependence of parasitic couplings in the microwave-to-mmW regime.

    Fig.9. The S-parameters from HFSS simulation,measurement,and circuit model for pad,thru1,thru2,and short1 test standards: (a)S11 of pad,(b)S21 of thru 1,(c)S21 of thru 2,and(d)S11 of short1.

    Fig.10. The S-parameters from HFSS simulation,measurement,and circuit model for short2 and open test standards: (a)S22 of short2,(b)S11 of open test,(c)S12 of open test,(d)S21 of open test,(e)logarithmic magnitude of S21 of open test,and(f)S22 of open test.

    Figure 11 shows the comparison between simulation results without and with the gate-to-drain mutual inductanceLmgdin the InP HEMT parasitic equivalent circuit. The equivalent circuit withoutLmgdcannot accurately represent the frequency response of InP HEMT parasitic coupling in the band range of 10 GHz-40 GHz as can be seen from the figure.The transition from capacitive RF current transport at low frequency to inductive current transport at mmW frequencies is captured accurately with the aid of gate-to-drain mutual inductance ofLmgd. Hence, it is necessary to incorporate gateto-drain mutual magnetic flux linkage as a separate circuit element into the parasitic equivalent circuit of the InP HEMTs to maintain modeling accuracy at mmW band.

    In order to further demonstrate the utility of the proposed methodology, a conventional cold-HEMT extraction method[16]is also employed to estimate the equivalent-circuit parameters based on the simulation data of the same InP HEMT layout. The extracted circuit element values are shown in Table 2.As can be seen,the conventional extraction method includes 9 equivalent circuit elements,and the element values,especially the resistances and inductances, deviate substantially from those calculated by using multi-step simulationbased procedure (see Figs. 6-8). It is also important to underline that achieving close agreement between the frequency responses of the equivalent circuit established by the conventional method and actual device may not necessarily mean that the calculated component values are physically representative.That is, the proposed extrinsic equivalent circuit in Fig. 5(f)contains 19 elements. Consequently,it is necessary to develop a multi-step device modeling strategy,thereby precisely determining the parasitic equivalent circuit of InP HEMT as presented here.

    Fig.11. Comparison between simulated and modeled transmission coefficient S21 for open test structure with and without gate-to-drain mutual inductance component Lmgd,where Y Lmgd means that Lmgd is present,and N Lmgd means that Lmgd is absent,showing(a)polar S21 and(b)logarithmic S21.

    Table 2. Element values extracted by conventional cold-HEMT extraction method.

    Fig.12. (a)Small signal equivalent circuit model of InP HEMTs and(b)fitting result of S-parameters.

    The next step in HEMT characterization is to evaluate the influence of parasitic couplings on the high-frequency performance of InP HEMT. In order to do so, the intrinsic smallsignal equivalent-circuit parameters of a demonstrated device from our laboratory are combined with the extrinsic parasitic couplings extracted by using the full-wave simulation-based methodology described in this paper. The small signal equivalent circuit diagram of the complete InP HEMT can be obtained as shown in Fig. 12(a). After that, the topology is simulated and all values of parasitic parameters and intrinsic parameters are tuned to fit the model in the ADS. The fitting result ofSparameters for the model is demonstrated in Fig.12(b). As we can see,the curved portion in the low-and high-frequency range ofSparameters can be fitted by the small signal equivalent circuit model,showing good fitting.

    5. Conclusions

    We have demonstrated an extrinsic equivalent circuit model for the parasitic coupling of a two-finger InP HEMT.In addition, using the equivalent circuit extraction method of HFSS and ADS co-simulation,the InP HEMT topology is systematically partitioned,and allows for the straightforward determination of parasitic circuit elements. In the process of cosimulation extraction, the gate-drain mutual inductanceLmgdis introduced to improve the incomplete accuracy of the conventional model in high frequency modeling. The feasibility of the parameter extraction method and the accuracy of the model are demonstrated via comprehensive comparisons between simulated and measured equivalent-circuit frequency responses of the proposed test standards on a bandwith of up to 40 GHz. Subsequently, the small signal modeling and fitting results of InP HEMT prove the accuracy of the parasitic model. Finally, the practicality of the HFSS EM simulation tool serving as an alternative to fabrication and measurementbased equivalent-circuit extraction is verified to be a costeffective solution to optimizing the InP HEMT device performance.

    Acknowledgements

    Project supported by the National Natural Science Foundation of China(Grant Nos.61434006 and 61704189)and the Fund from the Youth Innovation Promotion Association of the Chinese Academy of Sciences.

    猜你喜歡
    武昌
    武昌工學院藝術設計學院作品選登
    武昌理工學院水彩作品選登
    武昌理工學院藝術設計學院作品選登
    武昌理工學院藝術設計學院作品選登
    武昌理工學院藝術設計學院設計作品選登
    武昌理工學院藝術設計學院水彩作品選登
    武昌理工學院藝術設計學院作品選登
    武昌理工學院室內(nèi)設計作品選登
    王亞南與武昌中華大學
    夜登武昌封建亭(外二首)
    岷峨詩稿(2019年4期)2019-04-20 09:02:10
    久99久视频精品免费| 午夜免费激情av| 免费在线观看影片大全网站| 久久久久精品国产欧美久久久| 日日干狠狠操夜夜爽| 日韩欧美精品v在线| 免费在线观看日本一区| 午夜激情福利司机影院| 色综合亚洲欧美另类图片| 成年版毛片免费区| 午夜日韩欧美国产| 日韩欧美国产在线观看| 性欧美人与动物交配| 最近最新免费中文字幕在线| 国产高清视频在线播放一区| 国产人妻一区二区三区在| 亚洲自偷自拍三级| 日本黄大片高清| 黄色欧美视频在线观看| 久久久色成人| 精品久久国产蜜桃| 日本免费一区二区三区高清不卡| 国产aⅴ精品一区二区三区波| 亚洲人成伊人成综合网2020| 熟女人妻精品中文字幕| 国产精华一区二区三区| 少妇裸体淫交视频免费看高清| 我要看日韩黄色一级片| www.色视频.com| 亚洲人成网站在线播放欧美日韩| 久久久久久久亚洲中文字幕| 校园春色视频在线观看| 午夜老司机福利剧场| 国产成年人精品一区二区| 日韩中字成人| 国产精品1区2区在线观看.| 午夜激情欧美在线| 欧美性感艳星| 久久亚洲精品不卡| 在线观看66精品国产| 中文字幕av在线有码专区| 午夜精品一区二区三区免费看| 久久久色成人| 免费电影在线观看免费观看| 麻豆成人av在线观看| 日本在线视频免费播放| 日韩欧美精品免费久久| 久久久久久伊人网av| 亚洲av五月六月丁香网| 日韩欧美在线二视频| 91麻豆精品激情在线观看国产| 老司机深夜福利视频在线观看| 97超级碰碰碰精品色视频在线观看| 亚洲av熟女| 99热网站在线观看| 日韩在线高清观看一区二区三区 | 美女大奶头视频| 国产亚洲精品av在线| 精品午夜福利视频在线观看一区| а√天堂www在线а√下载| 五月伊人婷婷丁香| 免费人成在线观看视频色| 男人和女人高潮做爰伦理| 国产精品精品国产色婷婷| 男女下面进入的视频免费午夜| av.在线天堂| 国产蜜桃级精品一区二区三区| 18禁黄网站禁片免费观看直播| 黄色一级大片看看| 黄色丝袜av网址大全| 亚洲欧美日韩高清专用| 久久久久久国产a免费观看| 欧美又色又爽又黄视频| 少妇高潮的动态图| 国产精品98久久久久久宅男小说| 熟女电影av网| 成人毛片a级毛片在线播放| 亚洲精品在线观看二区| 村上凉子中文字幕在线| 欧美+亚洲+日韩+国产| 日本熟妇午夜| 最近在线观看免费完整版| 日本欧美国产在线视频| 一级黄片播放器| 精品久久久久久久末码| 久久久久久伊人网av| 日日撸夜夜添| 床上黄色一级片| 久久久久久久午夜电影| 九九在线视频观看精品| 日韩欧美在线二视频| 国产精品伦人一区二区| 欧美xxxx黑人xx丫x性爽| 日韩欧美精品免费久久| av女优亚洲男人天堂| 欧美丝袜亚洲另类 | 亚洲欧美日韩高清在线视频| av黄色大香蕉| 精品久久久久久久久久免费视频| 亚洲av成人精品一区久久| 91麻豆av在线| 在线观看美女被高潮喷水网站| 国产国拍精品亚洲av在线观看| 日韩人妻高清精品专区| 婷婷亚洲欧美| 中文字幕av在线有码专区| 老女人水多毛片| 麻豆av噜噜一区二区三区| 国产美女午夜福利| 亚洲最大成人手机在线| 99在线视频只有这里精品首页| 欧美黑人巨大hd| 欧美黑人巨大hd| 嫩草影院入口| 亚洲五月天丁香| 性色avwww在线观看| 一本一本综合久久| 在现免费观看毛片| 国内精品宾馆在线| 婷婷色综合大香蕉| 精品人妻1区二区| 久久人人精品亚洲av| 久久精品91蜜桃| 日韩,欧美,国产一区二区三区 | 1024手机看黄色片| 国内精品宾馆在线| 国产中年淑女户外野战色| 亚洲精品影视一区二区三区av| or卡值多少钱| 琪琪午夜伦伦电影理论片6080| 日日撸夜夜添| 2021天堂中文幕一二区在线观| 欧美区成人在线视频| 国产av一区在线观看免费| 日本撒尿小便嘘嘘汇集6| 亚洲欧美日韩卡通动漫| 亚洲最大成人av| 成人三级黄色视频| 最好的美女福利视频网| 成人高潮视频无遮挡免费网站| 九色国产91popny在线| 日本黄色片子视频| 毛片女人毛片| 日日干狠狠操夜夜爽| 国产一区二区激情短视频| 国产免费av片在线观看野外av| 亚洲 国产 在线| h日本视频在线播放| 91在线观看av| 99热这里只有是精品50| 女的被弄到高潮叫床怎么办 | 动漫黄色视频在线观看| 日韩欧美国产一区二区入口| 夜夜看夜夜爽夜夜摸| 白带黄色成豆腐渣| 日本一本二区三区精品| 老司机午夜福利在线观看视频| 99热6这里只有精品| 日韩亚洲欧美综合| xxxwww97欧美| 免费在线观看成人毛片| 免费看av在线观看网站| 日本爱情动作片www.在线观看 | 国产精品久久久久久亚洲av鲁大| 日本免费一区二区三区高清不卡| 亚洲国产精品sss在线观看| 久久中文看片网| 有码 亚洲区| 精品久久久久久,| 日本与韩国留学比较| 亚洲精品成人久久久久久| 少妇人妻一区二区三区视频| 在线观看av片永久免费下载| 中文字幕av成人在线电影| 久久99热这里只有精品18| 亚洲av日韩精品久久久久久密| 哪里可以看免费的av片| 国产精品,欧美在线| 九色成人免费人妻av| а√天堂www在线а√下载| 黄色视频,在线免费观看| 欧美性猛交╳xxx乱大交人| 两个人视频免费观看高清| 亚洲最大成人手机在线| 午夜激情欧美在线| 亚洲人成网站在线播| 少妇的逼水好多| 日韩精品中文字幕看吧| 国产免费男女视频| 午夜视频国产福利| 精品久久久久久久久久免费视频| 欧美国产日韩亚洲一区| 欧美色欧美亚洲另类二区| 精品人妻熟女av久视频| 免费看美女性在线毛片视频| 亚洲综合色惰| 少妇被粗大猛烈的视频| 国产91精品成人一区二区三区| 久久久久久国产a免费观看| 天美传媒精品一区二区| 亚洲乱码一区二区免费版| 身体一侧抽搐| 女同久久另类99精品国产91| 国产乱人伦免费视频| 成人国产综合亚洲| 不卡视频在线观看欧美| av在线亚洲专区| 欧美日韩国产亚洲二区| 亚洲无线观看免费| 老司机深夜福利视频在线观看| 亚洲va日本ⅴa欧美va伊人久久| 国产精品久久电影中文字幕| 欧美国产日韩亚洲一区| 亚洲美女搞黄在线观看 | 麻豆成人午夜福利视频| 日本撒尿小便嘘嘘汇集6| 国产精品综合久久久久久久免费| 婷婷色综合大香蕉| 欧美日韩乱码在线| 在线观看午夜福利视频| 日本三级黄在线观看| 一个人看视频在线观看www免费| 国产精品久久久久久亚洲av鲁大| 久久久久久国产a免费观看| www.www免费av| 蜜桃亚洲精品一区二区三区| 观看免费一级毛片| 久久久久九九精品影院| 日韩欧美三级三区| 国产高清有码在线观看视频| 国产精品嫩草影院av在线观看 | 国产精品久久久久久av不卡| 天天躁日日操中文字幕| 久久精品综合一区二区三区| 99国产精品一区二区蜜桃av| 亚洲人成伊人成综合网2020| 婷婷丁香在线五月| 亚洲国产精品久久男人天堂| 99热精品在线国产| 国产精品亚洲一级av第二区| 亚洲精品成人久久久久久| 99久久精品热视频| 国产91精品成人一区二区三区| 久久久久久大精品| 欧美xxxx黑人xx丫x性爽| 男女视频在线观看网站免费| 国产淫片久久久久久久久| 性欧美人与动物交配| 日本三级黄在线观看| 一级av片app| 精品久久久噜噜| 国产精品野战在线观看| av专区在线播放| 国产精品乱码一区二三区的特点| 网址你懂的国产日韩在线| 美女被艹到高潮喷水动态| 国产探花极品一区二区| 日韩中文字幕欧美一区二区| 免费看a级黄色片| 免费高清视频大片| 国产成人影院久久av| 一本一本综合久久| 亚洲四区av| 午夜激情欧美在线| 干丝袜人妻中文字幕| 99热这里只有是精品50| 啦啦啦观看免费观看视频高清| 精品久久久久久成人av| 联通29元200g的流量卡| 国产精品人妻久久久久久| 亚洲国产高清在线一区二区三| 午夜福利欧美成人| 观看美女的网站| 简卡轻食公司| 国产单亲对白刺激| 亚洲人成网站在线播| 看黄色毛片网站| 午夜福利在线观看免费完整高清在 | 国产精品一区二区免费欧美| 白带黄色成豆腐渣| 国内少妇人妻偷人精品xxx网站| 亚洲欧美日韩无卡精品| 亚洲av成人av| 亚洲aⅴ乱码一区二区在线播放| 亚洲熟妇中文字幕五十中出| 欧美性猛交黑人性爽| 嫩草影院入口| 两人在一起打扑克的视频| 亚洲第一电影网av| 在线国产一区二区在线| 999久久久精品免费观看国产| 九九久久精品国产亚洲av麻豆| 少妇的逼好多水| 欧美在线一区亚洲| 无人区码免费观看不卡| 久久人妻av系列| 免费无遮挡裸体视频| 亚洲自拍偷在线| 黄色视频,在线免费观看| 国产精品日韩av在线免费观看| 九九热线精品视视频播放| 色播亚洲综合网| 简卡轻食公司| 欧美日韩亚洲国产一区二区在线观看| 99热这里只有是精品50| 成人永久免费在线观看视频| 国产精品亚洲一级av第二区| 男女啪啪激烈高潮av片| 精品人妻视频免费看| 久久久久久久久久黄片| 久久久精品欧美日韩精品| 最近最新免费中文字幕在线| 日韩 亚洲 欧美在线| 精品久久久久久久久久免费视频| 人妻久久中文字幕网| 免费在线观看日本一区| 国产探花极品一区二区| 亚洲真实伦在线观看| or卡值多少钱| 三级毛片av免费| 韩国av在线不卡| xxxwww97欧美| 亚洲在线自拍视频| 内射极品少妇av片p| 人妻夜夜爽99麻豆av| 国产精品av视频在线免费观看| 嫩草影院精品99| 99久久精品国产国产毛片| 很黄的视频免费| 国内精品久久久久精免费| 成年版毛片免费区| 日韩一本色道免费dvd| 国产伦精品一区二区三区视频9| 亚洲五月天丁香| 国产av一区在线观看免费| 国产精品1区2区在线观看.| 国产高清激情床上av| 久久国内精品自在自线图片| 美女被艹到高潮喷水动态| 国产精品一区二区性色av| 午夜福利欧美成人| 欧美日韩中文字幕国产精品一区二区三区| 午夜老司机福利剧场| 亚洲成人久久爱视频| 人妻丰满熟妇av一区二区三区| 午夜精品一区二区三区免费看| 天堂影院成人在线观看| 韩国av一区二区三区四区| 网址你懂的国产日韩在线| av.在线天堂| 日韩精品有码人妻一区| 春色校园在线视频观看| 天堂av国产一区二区熟女人妻| 国产爱豆传媒在线观看| 极品教师在线免费播放| 91麻豆av在线| 欧美+日韩+精品| 国产精品亚洲一级av第二区| 一进一出好大好爽视频| 亚洲va在线va天堂va国产| 啦啦啦观看免费观看视频高清| 久久久色成人| 精品一区二区免费观看| 欧美黑人巨大hd| 啦啦啦韩国在线观看视频| 国产一级毛片七仙女欲春2| 五月伊人婷婷丁香| 免费搜索国产男女视频| 波多野结衣巨乳人妻| 婷婷色综合大香蕉| 亚洲五月天丁香| 国产aⅴ精品一区二区三区波| 亚洲一区二区三区色噜噜| 欧美性猛交╳xxx乱大交人| 国产又黄又爽又无遮挡在线| av国产免费在线观看| 久久久国产成人免费| 搞女人的毛片| 亚洲精品日韩av片在线观看| 18禁裸乳无遮挡免费网站照片| 欧美色欧美亚洲另类二区| 国产精品一区二区三区四区免费观看 | 亚洲精品456在线播放app | 免费电影在线观看免费观看| 久久久国产成人免费| 老司机深夜福利视频在线观看| 一级a爱片免费观看的视频| 亚洲av熟女| 久久精品国产亚洲av天美| 久久久久久久久中文| 国产精品久久久久久精品电影| 美女xxoo啪啪120秒动态图| 99热这里只有是精品在线观看| 麻豆国产97在线/欧美| 91久久精品国产一区二区三区| 亚洲成人久久爱视频| 欧美不卡视频在线免费观看| 国产蜜桃级精品一区二区三区| 男女视频在线观看网站免费| 内地一区二区视频在线| 国产黄片美女视频| 亚洲av日韩精品久久久久久密| 午夜精品在线福利| 欧洲精品卡2卡3卡4卡5卡区| 又紧又爽又黄一区二区| 男女边吃奶边做爰视频| 国内精品宾馆在线| 天堂av国产一区二区熟女人妻| 少妇被粗大猛烈的视频| 午夜精品在线福利| 又黄又爽又刺激的免费视频.| 午夜福利在线观看免费完整高清在 | 国产成人影院久久av| 赤兔流量卡办理| 久久久成人免费电影| 日韩 亚洲 欧美在线| 99视频精品全部免费 在线| 我的女老师完整版在线观看| 午夜福利视频1000在线观看| 日日夜夜操网爽| 午夜免费成人在线视频| 高清毛片免费观看视频网站| 日日摸夜夜添夜夜添av毛片 | 久久久久久久久久久丰满 | 欧美性感艳星| 国产精品伦人一区二区| 麻豆成人av在线观看| 久久久久久久午夜电影| 亚洲美女搞黄在线观看 | 婷婷精品国产亚洲av在线| 日本一二三区视频观看| 中文字幕av在线有码专区| 一进一出好大好爽视频| 人妻久久中文字幕网| av天堂在线播放| 深爱激情五月婷婷| 十八禁国产超污无遮挡网站| 国产精品无大码| 日韩亚洲欧美综合| a级一级毛片免费在线观看| 午夜福利18| 日本 欧美在线| 精品久久久久久久人妻蜜臀av| 亚洲精品成人久久久久久| 男人和女人高潮做爰伦理| 熟妇人妻久久中文字幕3abv| 国产一区二区激情短视频| 九色国产91popny在线| 久久久久久久久大av| av.在线天堂| 成人午夜高清在线视频| 午夜日韩欧美国产| 精品午夜福利在线看| 成熟少妇高潮喷水视频| 国产一级毛片七仙女欲春2| 色播亚洲综合网| 久久久久久久久中文| 国产精品久久久久久精品电影| 亚洲性夜色夜夜综合| www.www免费av| 免费在线观看日本一区| 日韩欧美一区二区三区在线观看| 久99久视频精品免费| 伦理电影大哥的女人| 国产一区二区三区在线臀色熟女| 国产大屁股一区二区在线视频| 日韩精品青青久久久久久| 午夜福利视频1000在线观看| 又黄又爽又免费观看的视频| 亚洲av成人av| 很黄的视频免费| 亚洲经典国产精华液单| 欧美性感艳星| 国产欧美日韩精品一区二区| 午夜a级毛片| 成人二区视频| 成人一区二区视频在线观看| 久久精品国产自在天天线| 免费看av在线观看网站| 成人国产一区最新在线观看| 一本久久中文字幕| 波野结衣二区三区在线| 一夜夜www| 中文字幕av在线有码专区| 国产av不卡久久| 亚洲在线自拍视频| 久久久久久伊人网av| 亚洲人成网站在线播| 国内少妇人妻偷人精品xxx网站| 高清毛片免费观看视频网站| av专区在线播放| 国产亚洲91精品色在线| 亚洲av不卡在线观看| 国产三级中文精品| 精品久久久久久久末码| 少妇熟女aⅴ在线视频| 亚洲内射少妇av| 国产色婷婷99| 2021天堂中文幕一二区在线观| 亚洲va在线va天堂va国产| 免费无遮挡裸体视频| 制服丝袜大香蕉在线| 色综合婷婷激情| 床上黄色一级片| 欧美最黄视频在线播放免费| 高清日韩中文字幕在线| 又爽又黄a免费视频| 3wmmmm亚洲av在线观看| 午夜爱爱视频在线播放| 悠悠久久av| 久久九九热精品免费| 欧美日韩综合久久久久久 | 久久九九热精品免费| av.在线天堂| 男人的好看免费观看在线视频| h日本视频在线播放| 日本a在线网址| 搞女人的毛片| 欧美性猛交╳xxx乱大交人| 午夜日韩欧美国产| 国产精品日韩av在线免费观看| 国产大屁股一区二区在线视频| 色吧在线观看| 熟女人妻精品中文字幕| 国产女主播在线喷水免费视频网站 | 国产综合懂色| 欧美日本亚洲视频在线播放| 国产亚洲av嫩草精品影院| 伦精品一区二区三区| 精品乱码久久久久久99久播| 欧美国产日韩亚洲一区| 在线免费观看的www视频| 又黄又爽又刺激的免费视频.| 国产精品一区二区三区四区久久| 国产在线精品亚洲第一网站| 日本精品一区二区三区蜜桃| 免费在线观看日本一区| 88av欧美| 观看免费一级毛片| 免费电影在线观看免费观看| 亚洲第一电影网av| 日本 av在线| 午夜福利成人在线免费观看| 亚洲精品日韩av片在线观看| 亚洲成a人片在线一区二区| 国产乱人视频| 一进一出抽搐动态| 一进一出抽搐gif免费好疼| 成人性生交大片免费视频hd| 日本免费一区二区三区高清不卡| 1024手机看黄色片| 国产一级毛片七仙女欲春2| 美女cb高潮喷水在线观看| 精品不卡国产一区二区三区| 久久午夜福利片| 国产乱人伦免费视频| 一个人观看的视频www高清免费观看| 欧美激情久久久久久爽电影| 岛国在线免费视频观看| 国产乱人伦免费视频| 毛片一级片免费看久久久久 | 天天一区二区日本电影三级| 亚洲最大成人中文| 久久人人爽人人爽人人片va| 最新在线观看一区二区三区| 亚洲最大成人中文| 久久久久久久久久黄片| 色av中文字幕| 91久久精品电影网| 午夜福利视频1000在线观看| 免费在线观看影片大全网站| 欧美xxxx性猛交bbbb| 在线观看av片永久免费下载| 日韩 亚洲 欧美在线| 亚洲美女黄片视频| 亚洲av电影不卡..在线观看| 欧美日韩精品成人综合77777| 极品教师在线视频| 久久国产乱子免费精品| 久久草成人影院| 午夜福利18| 老司机午夜福利在线观看视频| 日本五十路高清| 美女高潮的动态| 美女免费视频网站| 欧美日韩亚洲国产一区二区在线观看| 久久这里只有精品中国| 又爽又黄a免费视频| 亚洲精品色激情综合| 大又大粗又爽又黄少妇毛片口| 国产精品日韩av在线免费观看| 真人做人爱边吃奶动态| 听说在线观看完整版免费高清| 不卡视频在线观看欧美| 国产精品久久久久久av不卡| 九九在线视频观看精品| 国产精品嫩草影院av在线观看 | 欧美bdsm另类| 十八禁国产超污无遮挡网站| 精品久久国产蜜桃| 午夜日韩欧美国产| 欧美成人性av电影在线观看| 欧美日韩综合久久久久久 | 成人亚洲精品av一区二区| 在线观看66精品国产| 国产精品国产三级国产av玫瑰| 啦啦啦韩国在线观看视频| 天堂动漫精品| 免费观看精品视频网站| 欧美一区二区国产精品久久精品| 波多野结衣巨乳人妻| 亚洲狠狠婷婷综合久久图片| 美女被艹到高潮喷水动态| 最近视频中文字幕2019在线8| 日韩一区二区视频免费看|