• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Theoretical design of thermal spin molecular logic gates by using a combinational molecular junction

    2022-04-12 03:47:38YiGuo郭逸PengZhao趙朋andGangChen陳剛
    Chinese Physics B 2022年4期
    關(guān)鍵詞:陳剛

    Yi Guo(郭逸) Peng Zhao(趙朋) and Gang Chen(陳剛)

    1School of Physics and Technology,University of Jinan,Jinan 250022,China

    2School of Physics and Electronics,Shandong Normal University,Jinan 250358,China

    Keywords: thermal molecular logic gate,thermally-driven spin-dependent transport,combinational molecular junction,nonequilibrium Green’s function

    1. Introduction

    Digital electronic devices are ubiquitous in today’s information world. Meanwhile, logic gates are basic building blocks in any modern digital electronic devices. They are devices having one or more than one input and only one output. And the input and the output satisfy a certain logical relationship. Among different kinds of logic gates,the AND,OR and NOT gates are three most essential and elementary logic gates. The AND gate is a logical multiplication device,which only yields an output logic 1 when all of its inputs are logic 1. In Boolean algebra terms the output of an AND gate will be true only when all of its inputs are true. The OR gate is a logical addition device,whose output is logic 1 once any of its inputs are logic 1. In Boolean algebra terms the output of an OR gate will be true once any of its inputs are true. The NOT gate is simply a single input inverter that changes the input of a logic l to an output of logic 0 and vice versa. In Boolean algebra terms the output of a NOT gate will be false when its input is true.

    In recent years, the design and manufacturing of spin molecular devices being able to perform specific logical functions has attracted ever-increasing attention owing to the rapid development of molecular spintronics.[1-4]In these socalled spin molecular logic gates, magnetic molecular materials can switch among different states under the action of one or more input signals, and such transition leads to a single logical output signal. Evidently, selection of appropriate magnetic molecular materials becomes a key factor to construct spin molecular logic gates. So far, many research groups have paid intensive attention to finding the suitable magnetic molecular materials. For example, taking the magnetic field in different directions as input signals and the produced spin-polarized current or total current as output signal, different research groups proposed zigzag graphene nanoribbon-, zigzag silicene nanoribbon- and Mnphthalocyanie nanoribbon-based spin molecular AND, OR and NOT gates in the early studies.[5-8]Recently, we also conceived and designed planar four-coordinate Fe (PFCF)molecule-based spin molecular AND,OR,NOT gates, etc.[9]Nevertheless, since the proposed PFCF-based spin molecular gates are very tiny, it is difficult to modulate experimentally the direction of external magnetic field in an adjacent Fe atom region at the moment. Very recently,with an attempt to settle this problem,we have further proposed a novel combinational molecular junction (CMJ), which contains a PFCF molecule and a photochromic molecule (15,16-dinitrile dihydropyrene(DDP)/cyclophanediene (CPD)) linked together in series by a finite single-walled armchair carbon nanotube (SWACNT)bridge.[10]Here,the photochromic molecule is respectively in the DDP/CPD form with rapid response time upon the ultraviolet(UV)/visible(VIS)photo-excitation.[11-13]By utilizing the magnetic field in different directions,the light of different wavelengths as input signals and the produced spin-polarized current or total current as an output signal,the spin molecular AND,OR and NOT gates are realized.[10]

    In the meantime, with the continuous miniaturization of the electronic devices, the problems resulting from the waste heat become more and more serious. Fortunately, spin caloritronics provides a favorable approach to convert untapped waste heat to electricity,[14-16]which increases the energy utilizing efficiency to a large extent. In the present work,we further investigate the thermally-driven spin-dependent transport properties of the PFCF+DDP/CPD-based CMJ.The results demonstrate that the magnetic field and light can effectively regulate the thermally-driven spin-dependent currents.And with that, we can design three elementary thermal spin molecular AND, OR and NOT gates. In the following parts of this article,theoretical model and computational details are given in Section 2. Numerical results and discussion are presented in Section 3.Finally,a conclusion is given in Section 4.

    2. Theoretical model and computational details

    Fig. 1. Schematic of the studied PFCF+DDP/CPD-based combinational molecular junction (CMJ) consisting of a PFCF molecule and a DDP/CPD molecule linked in series by a finite (4,4) SWACNT bridge sandwiched between two (4,4) SWACNT electrodes. The orange, yellow, gray, white and blue spheres stand for the Fe,S,C,H and N atoms,respectively. The CMJ is divided into three regions in simulations: the central scattering region(CSR),the hot semi-infinite left electrode(LE),and the cold semi-infinite right electrode (RE). By tuning the direction of magnetic field (↑=up and ↓=down)and the wavelength of light (UV = ultraviolet and VIS = visible), the CMJ can interconvert among four states,(a)state 1(S1: the direction of magnetic field is ↑and the light is UV),(b)state 2(S2: the direction of magnetic field is ↓and the light is UV), (c) state 3 (S3: the direction of magnetic field is ↑and the light is VIS),and(d)state 4(S4: the direction of magnetic field is ↓and the light is VIS).A temperature gradient is applied along the CMJ from left to right. TL and TR represent the temperature of LE and RE (TL >TR),respectively,while ΔT indicates the temperature difference between them.

    The studied PFCF+DDP/CPD-based CMJ is schematically depicted in Fig.1,consisting of the central scattering region(CSR),the hot semi-infinite left and the cold semi-infinite right electrodes(LE and RE,marked by red and green rectangles,respectively).Nonmagnetic metallic(4,4)SWACNTs are adopted as electrodes due to their high electrical conductivity.The CSR includes a PFCF molecule and a DDP/CPD molecule linked in series by a finite (4,4) SWACNT bridge, as well as portions of two electrodes to screen out the effect of molecular kernels on bulk electrodes. All the dangling bonds at the open ends of SWACNT electrode and bridge are saturated by H atoms. A thickness of 16 °A in the vacuum interlayer is used in the non-periodic direction to isolate the CMJ from its periodic images. As shown in Figs. 1(a)-1(d), the PFCF+DDP/CPDbased CMJ can interconvert among four states under the action of magnetic field and light,referred to as S1,S2,S3 and S4 in sequence. To be specific,in S1 state(see Fig.1(a)),the direction of magnetic field is up(↑)and the light is UV.Compared with S1 state,the direction of magnetic field in S2 is changed to down (↓) while the light is still UV (see Fig. 1(b)). In S3 state (see Fig. 1(c)), the direction of magnetic field is↑and the light is VIS.Compared with S3 state,the magnetic field is changed to↓while the light is still VIS(see Fig.1(d)). Before the spin caloritronic transport calculations, the CSR is fully relaxed until the force tolerance of 0.02 eV/°A is met.

    All the calculation are carried out by using the density functional theory (DFT) combined with the non-equilibrium Green function (NEGF) methodology, as implemented in the software package of Atomistix Toolkit (ATK).[17-20]This methodology has been widely adopted to deal with the thermally-driven spin-dependent transport properties in molecular junctions.[21-25]The exchange-correlation energy is treated by the spin generalized gradient approximation (SGGA) with the Perdew-Burke-Ernzerhof (PBE)functional.[26]To ensure the computational accuracy, the wavefunction of valence electrons are expanded by the doubleζplus polarization (DZP) basis set, while the electronion interactions are modeled by the Troullier-Martins normconserving pseudopotentials.[27]Also,ak-mesh of 1×1×21 and 1×1×100 according to the Monkhorst-Pack scheme[28]is employed in the geometry relaxation and thermally-driven spin-dependent transport calculations, respectively, while the cutoff energy for the electrostatic potentials is set to be 200 Ry.A temperature gradient is applied along the CMJ from the left to the right,and then the thermally-driven spin-polarized current flowing through the CMJ under the temperature difference(ΔT=TL-TR)between the temperature of LE(TL)and the temperature of RE(TR)can be obtained via the Landauer-B¨uttiker formula[29]

    whereTσ(E) is the spin-resolved transmission function with the spin indexσ(up or down indicating spin-up and spindown), andfL(R)is the Fermi-Dirac distribution function of electrons in LE(RE).Here,Eis the carrier(electron or hole)energy. Moreover,a positive(negative)current represents the flow of current from the LE (RE) to RE (LE). Meantime, we must point out that in ATK code one can set the initial relative spin for every atom in a molecular junction to simulate the effect of the magnetic field. To be specific, when the initial relative spin of iron atom in the PFCF molecule is set to be 1, it indicates the magnetic field is up; whereas, when the initial relative spin of iron atom in the PFCF molecule is set to be-1,it indicates the magnetic field is down. Then,after a self-consistent DFT+NEGF calculation,one can get the converged spin densities. Furthermore,we calculate the transport properties of CMJ with closed-ring state DDP and open-ring state CPD,respectively,to simulate the cases under UV or VIS action.This method has been widely adopted to study the photochromic molecule-based photoswitches.[30-32]

    3. Results and discussion

    3.1. Thermally-driven spin transport properties

    Figures 2(a)-2(d) present the thermally-driven spindependent currents as a function of ΔTwithTL=300 K for the CMJ in S1, S2, S3 and S4 states, respectively. The cases withTL=350 and 400 K are also tested, which give similar results. It can be seen clearly from Figs. 2(a)-2(d), the magnetic field and light modulations have significant effects on the thermally-driven currents. In S1 state as shown in Fig. 2(a),obvious negative spin-up current(Iup)can go through the CMJ,while the spin-down current (Idn) is forbidden. On the contrary,in S2 state as shown in Fig.2(b),theIupis blocked,and obvious negativeIdncan pass through the CMJ due to the reversal in the direction of magnetic field. Clearly, only one spin channel is open while the other one is closed in S1 and S2 states,giving rise to a significant thermal spin filtering effect. Unlike S1 and S2 states,in S3 and S4 states as shown in Figs.2(c)and 2(d),both two channels are shut down,and there is almost no observableIupandIdnflowing through the CMJ due to the photochromic molecule is in the CPD form under the action of VIS light regardless of the direction of the magnetic field. This will undoubtedly cause the total thermallydriven current (Isum=Iup+Idn) in S1/S2 state to be much larger than that in S3/S4 state. And a good thermal switching effect can be achieved when the CMJ converts between S1 and S3(S2 and S4)states upon photo-excitation.

    The observed thermal spin-filtering and thermal switching effects can be quantified by two parameters, namely,the spin-filtering efficiency (SFE) and switching ratio (SR).The former is the relative ratio of current with a particular spin index over the other and defined as SFE =[(Iup-Idn)/(Iup+Idn)]×100%.The latter is the absolute ratio of total current between different states and defined as SR = (Isumin S1)/(Isumin S3)× 100% and(Isumin S2)/(Isumin S4)×100%, respectively. Figure 3(a)plots the SFE as a function of ΔTfor the CMJ in S1 and S2 states. It is evident that both S1 and S2 states exhibit perfect spin-filtering performance with the SFEs approaching to±100% efficiency, respectively, indicating the CMJ in S1 and S2 states can behave as perfect spin-filters. Figure 3(b)plots the SR as a function of ΔTfor the CMJ in S1/S3 and S2/S4 states. It can be seen that both the two cases exhibit good switching performance with the SRs up to 104%, indicating the CMJ can behave as a good molecular switch when it converts between S1 and S3(S2 and S4)states upon photoexcitation.

    Fig.2. Calculated thermally-driven spin-dependent currents as a function of ΔT with TL =300 K for the CMJ in (a) S1, (b) S2, (c) S3 and(d)S4 states,respectively.

    Fig.3. (a)Calculated spin filtering efficiency(SFE)as a function of ΔT for the CMJ in S1 and S2 states. (b)Calculated switching ratio(SR)as a function of ΔT for the CMJ in S1/S3 and S2/S4 states.

    Based on Eq.(1),we know that the thermally-driven spindependent currents are essentially determined by the product of two factors,namely,Tσ(E)and the difference between the Fermi-Dirac distribution function of two electrodes, i.e.,(fL-fR). Figure 4(a) plots thefLandfRwith different temperature (TL=300 K andTR=240 K) as a function of(E-EF), respectively. Here, theEFis the Fermi energy. It can be seen clearly that the carrier (hole whenE <EFand electron whenE >EF)concentration in the hot LE is always higher than that in the cold RE.Therefore,both the holes and electrons flow from the hot LE to the cold RE. And thus the former results in a positive currentIh,while the latter leads to a negative currentIedue to the holes are positively charged and the electrons are negatively charged. Moreover, as shown in the insert of Fig. 4(a), (fL-fR) is a strictly symmetric function with respect toEF, and also presents a typical exponential decaying feature. This indicates that onlyTσ(E) in the energy region nearEFcontributes to the thermally-driven currents, while the contribution fromTσ(E) in other energy regions can be actually ignored. Meantime, in order to avoid the cancelation between the positiveIhand negativeIeand obtain observable thermally-driven currents,Tσ(E)in the energy region nearEFshould be anti-symmetric aboutEF. Taking S1 and S3 states as examples, in Fig. 4(b), we plot their spin-resolved transmission spectra. Clearly, an obvious and a very faint spin-up transmission peak just above theEFappears in S1 and S3 states, respectively, while we cannot observe any spin-down transmission peak nearEF. Those distinct transmission characteristics can be elucidated by the spatial distribution of molecular projected self-consistent Hamiltonian(MPSH)orbitals[33]aroundEF. As shown in Fig.4(b),there is only one spin-up MPSH orbital (185) just aboveEFat 0.018 eV and 0.026 eV for S1 and S3 states, respectively.As shown by the spatial distribution in the insert of Fig.4(b),the spin-up MPSH 185 is a relatively extended and completely localized orbital in S1 and S3 sates, respectively. As further shown by the spin-resolved projected density of states(PDOS)in Fig.S1(a)in the supporting information,for S1 state,there is a strong spin-up PDOS from the PFCF molecule, a weak spin-up PDOS from the SWACNT bridge and an observable spin-up PDOS from the DDP molecule at 0.018 eV.Hybrid between them leads to the relatively extended spin-up MPSH 185 orbital and the obvious spin-up transmission peak in S1 state at corresponding energy region. As shown by the spin-resolved projected density of states (PDOS) in Fig. S1(b) in the supporting information,for S3 state,there is still a strong spin-up PDOS from the PFCF molecule, a weak spin-up PDOS from the SWACNT bridge at 0.026 eV,but the spin-up PDOS from the CPD molecule vanishes,resulting in the completely localized spin-up MPSH 185 orbital and the very faint transmission peak in S3 state at corresponding energy region. In stark contrast,no any spin-down MPSH orbital can be found nearEFin two states (see Figs. S1(a) and S1(b) in the supporting information,no any spin-down PDOS hybrid nearEF),bringing out the disappearance of spin-down transmission peak in the vicinity ofEF. Figures 4(c) and 4(d) then plot the spin-resolved current spectra,Jσ(E)=Tσ(E)×(fL-fR), as a function of(E-EF) for S1 and S3 states with ΔT=60 K. Clearly, the size of the integral area ofJσ(E)below and above theEFdetermines the magnitude of the positiveIhand negativeIe, respectively. In S1 state,as shown in Fig.4(c),one can observe an obviousJuppeak just above and belowEF, respectively.The integral area ofJuppeak aboveEFis much larger than that belowEF.As a result,the negative spin-upIeoverruns the positive spin-upIh,giving rise to an obvious nonzero net negativeIup. Meantime,no anyJdnpeak can be found due to the disappearance of spin-down transmission peak nearEF,resulting in the vanishing ofIdn. In S3 state, as shown in Fig. 4(d), there is no anyJdnpeak aroundEF,meanwhile theJuppeak aroundEFis also reduced significantly. Therefore,bothIupandIdnare strongly suppressed in S3 state.

    Fig.4. (a)Calculated Fermi-Dirac distribution function of electrons in LE with TL =300 K and in RE with TR =240 K.The insert presents the difference between them. (b) Calculated spin-resolved transmission spectra for S1 and S3 states. The positions of molecular projected self-consistent Hamiltonian(MPSH)eigenvalues are marked with squares for S1 state and with triangle for S3 state,respectively. The inserts show the spatial distributions of corresponding MPSH orbitals. (c)Calculated spin-resolved current spectra for S1 state with ΔT =60 K.(d)Calculated spin-resolved current spectra for S3 state.

    3.2. Thermal spin molecular AND,OR and NOT gates

    Based on these thermally-driven spin-dependent transport properties of the PFCF+DDP/CPD-based CMJ, we can design three elementary thermal spin molecular logic gates,taking the magnetic field in different directions and the light with different wavelengths as input signals and the produced spinpolarized current or total current as output signal. Those thermal spin molecular gates utilize two different types of external stimuli as input signals, and then avoid the problem of modulating the direction of the external magnetic field on a very small scale.

    3.2.1. The design of AND gate

    As shown in Fig.5(a),the magnetic field and light are the input signalsAandB,respectively,and the producedIupis the output signalY. ForAandB,the upward/downward magnetic field and the UV/VIS light are defined as logic 1/0, respectively. ForY,the high/lowIupis taken as logic 1/0. As one can see from Figs.2(a)-2(d), theIupis only high in S1 state, and it is extremely low in S2, S3 and S4 states. Clearly, the CMJ only produces logic 1 (Y=1) when the magnetic field is up(A=1) and the light is UV (B=1), namely,Yis the logical product ofAandB(see the truth table in Fig.5(a)),indicating the AND logical relationship is established.

    Fig.5. The inputs,output,truth table and circuit symbol for thermal spin molecular logic(a)AND,(b)OR and(c)NOT gates.

    3.2.2. The design of OR gate

    As opposed to the AND gate,forAandBin the OR gate,the downward/upward magnetic field and the VIS/UV light are defined as logic 1/0, respectively. ForY, the low/highIupis taken as logic 1/0. It can been seen from Figs. 2(a)-2(d)that theIupis only high in S1 state,and it is extremely low in S2,S3 and S4 states. Clearly,the CMJ only produces logic 0(Y=0)when the magnetic field is up(A=0)and the light is UV (B=0), otherwise it produces logic 1 (Y=1) when the magnetic field is down(A=1)or the light is VIS(B=1).That is to say thatYis the logical sum ofAandB(see the truth table in Fig.5(b)),and thus the OR logical function is achieved.

    3.2.3. The design of NOT gate

    The magnetic field is always up. The input signalAand the output signalYcorrespond to the light and the produced total currentIsum,respectively. ForA,the UV/VIS light is defined as logic 1/0. ForY,the high/lowIsumis defined as logic 0/1. From Figs. 2(a) and 2(c), it can be seen that theIsumis high and extremely low in S1(i.e.,Y=0,A=1)and S3(i.e.,Y=1,A=0)states,respectively. Clearly,Yis the logic inversion ofA(see the truth table in Fig.5(b)),indicating the NOT logical operation is realized.

    4. Conclusion

    We have studied theoretically the thermally-driven spindependent transport properties of the PFCF+DDP/CPDbased combinational molecular junction consisting of a PFCF molecule and a DDP/CPD molecule with SWACNT bridge and electrodes by using the DFT+NEGF methodology. The results demonstrate that the magnetic field and light can effectively regulate the thermally-driven spin-dependent currents. Perfect thermal spin-filtering effect and good thermal switching effect are achieved. The results are analyzed from four aspects, i.e., the Fermi-Dirac distribution function, the spin-resolved transmission spectra, the spatial distribution of MPSH orbitals, and the spin-resolved current spectra. On the basis of these intriguing thermally-driven spin-dependent transport properties, we have designed three elementary thermal spin molecular AND, OR and NOT gates. To summarize,our studies provide a route to realize thermal spin molecular logic gates avoiding the problem of modulating the direction of the external magnetic field on a very small scale by constructing the combinational molecular junction, which may have a great development prospect in the fields of spin caloritronics and digital electronics.

    Acknowledgements

    Project supported by the Natural Science Foundation of Shandong Province, China (Grant No. ZR2021MA059)and the Major Scientific and Technological Innovation Project (MSTIP) of Shandong Province, China (Grant No.2019JZZY010209).

    猜你喜歡
    陳剛
    Hard-core Hall tube in superconducting circuits
    Characterization of topological phase of superlattices in superconducting circuits
    雙組分速凝劑在長(zhǎng)大隧道濕噴中的優(yōu)勢(shì)探討
    Topological phases and type-II edge state in two-leg-coupled Su–Schrieffer–Heeger chains
    SU(3)spin–orbit coupled fermions in an optical lattice
    Dissipative Kerr solitons in optical microresonators with Raman effect and third-order dispersion*
    “三數(shù)”求解大揭秘
    Effect of dike line adjustment on the tidal bore in the Qiantang Estuary, China*
    Compressible effect on the cavitating flow: A numeric study *
    “最美援疆干部”禮贊
    ——讀《用生命踐行諾言》有感
    湖南教育(2016年26期)2016-03-16 00:37:54
    亚洲全国av大片| 久久精品91无色码中文字幕| 午夜老司机福利片| 黄色怎么调成土黄色| 岛国在线观看网站| 欧美精品高潮呻吟av久久| 亚洲av日韩精品久久久久久密| 99riav亚洲国产免费| 熟女少妇亚洲综合色aaa.| 精品欧美一区二区三区在线| 黑人欧美特级aaaaaa片| 国产视频一区二区在线看| 国产不卡一卡二| 久久中文字幕一级| 色婷婷av一区二区三区视频| 热re99久久国产66热| 老司机靠b影院| 欧美激情 高清一区二区三区| 满18在线观看网站| 婷婷丁香在线五月| 人妻一区二区av| 午夜福利免费观看在线| 欧美成狂野欧美在线观看| 色尼玛亚洲综合影院| 亚洲va日本ⅴa欧美va伊人久久| 妹子高潮喷水视频| 美女高潮喷水抽搐中文字幕| 欧美亚洲 丝袜 人妻 在线| 久久久国产一区二区| 亚洲自偷自拍图片 自拍| 亚洲精品在线观看二区| 99国产综合亚洲精品| 国产成人av教育| 免费在线观看日本一区| 老司机靠b影院| 美女高潮喷水抽搐中文字幕| 香蕉国产在线看| 最新美女视频免费是黄的| 在线观看66精品国产| 美女午夜性视频免费| 日韩欧美免费精品| 欧美成人免费av一区二区三区 | 成人影院久久| 在线观看66精品国产| 男女无遮挡免费网站观看| 国产亚洲精品久久久久5区| 菩萨蛮人人尽说江南好唐韦庄| 国产免费视频播放在线视频| 天天躁夜夜躁狠狠躁躁| 国产男女超爽视频在线观看| 久久久久久亚洲精品国产蜜桃av| 无限看片的www在线观看| 精品亚洲乱码少妇综合久久| 国产男女超爽视频在线观看| av又黄又爽大尺度在线免费看| 一本久久精品| 丝袜喷水一区| 精品福利永久在线观看| 黄色丝袜av网址大全| 国产精品久久久久久精品电影小说| 啦啦啦免费观看视频1| 欧美日韩亚洲综合一区二区三区_| 欧美乱妇无乱码| 亚洲免费av在线视频| 久久人妻av系列| 亚洲精品av麻豆狂野| 国产亚洲欧美在线一区二区| 天堂中文最新版在线下载| 男女下面插进去视频免费观看| 桃红色精品国产亚洲av| 极品人妻少妇av视频| 多毛熟女@视频| 一级毛片女人18水好多| 欧美性长视频在线观看| 亚洲精品中文字幕在线视频| 巨乳人妻的诱惑在线观看| 亚洲男人天堂网一区| 亚洲欧美一区二区三区黑人| 一区在线观看完整版| 亚洲成国产人片在线观看| 我的亚洲天堂| 国产精品久久久久久精品电影小说| 国产高清视频在线播放一区| 久久国产精品男人的天堂亚洲| 深夜精品福利| 国产成人精品无人区| 国产麻豆69| 搡老熟女国产l中国老女人| 在线观看人妻少妇| 1024视频免费在线观看| 日日摸夜夜添夜夜添小说| 嫩草影视91久久| 色94色欧美一区二区| 久久久精品国产亚洲av高清涩受| 日韩免费高清中文字幕av| av天堂在线播放| 十八禁网站网址无遮挡| 电影成人av| 日本撒尿小便嘘嘘汇集6| 多毛熟女@视频| 王馨瑶露胸无遮挡在线观看| 在线观看免费视频日本深夜| 日韩成人在线观看一区二区三区| 欧美激情 高清一区二区三区| 狠狠婷婷综合久久久久久88av| 成人手机av| 亚洲avbb在线观看| 色综合婷婷激情| 国产无遮挡羞羞视频在线观看| 国产xxxxx性猛交| 国产一区二区激情短视频| 欧美精品人与动牲交sv欧美| 桃花免费在线播放| 精品久久久精品久久久| 日韩欧美一区视频在线观看| av福利片在线| www日本在线高清视频| 精品视频人人做人人爽| 欧美乱妇无乱码| 一级毛片精品| 涩涩av久久男人的天堂| a在线观看视频网站| 人人妻人人添人人爽欧美一区卜| 日韩成人在线观看一区二区三区| 久久精品91无色码中文字幕| 国产av国产精品国产| av天堂在线播放| 狠狠狠狠99中文字幕| 午夜成年电影在线免费观看| 午夜精品国产一区二区电影| 大型av网站在线播放| 男女高潮啪啪啪动态图| av线在线观看网站| 十分钟在线观看高清视频www| 91精品国产国语对白视频| 女人高潮潮喷娇喘18禁视频| 久久久久国内视频| 国产99久久九九免费精品| 十八禁高潮呻吟视频| 一夜夜www| 国产精品欧美亚洲77777| 精品一区二区三区视频在线观看免费 | 桃红色精品国产亚洲av| 一区二区三区乱码不卡18| avwww免费| 国产黄频视频在线观看| 夜夜骑夜夜射夜夜干| 久久精品国产亚洲av香蕉五月 | 久久人妻av系列| 纯流量卡能插随身wifi吗| 免费观看人在逋| 午夜激情久久久久久久| 超碰成人久久| 国产精品久久久久久精品古装| 午夜福利乱码中文字幕| 俄罗斯特黄特色一大片| 极品人妻少妇av视频| 超色免费av| 免费女性裸体啪啪无遮挡网站| 久9热在线精品视频| 国产成人啪精品午夜网站| 天天躁日日躁夜夜躁夜夜| 女人被躁到高潮嗷嗷叫费观| 精品乱码久久久久久99久播| 国产黄色免费在线视频| 中文字幕色久视频| 欧美人与性动交α欧美软件| 久久人人97超碰香蕉20202| 亚洲中文av在线| 别揉我奶头~嗯~啊~动态视频| 黄色a级毛片大全视频| 丰满饥渴人妻一区二区三| 国产伦理片在线播放av一区| 国产免费福利视频在线观看| 国产欧美日韩一区二区精品| 国精品久久久久久国模美| 不卡一级毛片| 国产又色又爽无遮挡免费看| 久久国产精品大桥未久av| 中文字幕人妻熟女乱码| 我的亚洲天堂| 亚洲中文字幕日韩| 免费在线观看完整版高清| 大香蕉久久成人网| 欧美精品av麻豆av| 成人特级黄色片久久久久久久 | www.999成人在线观看| 黄片大片在线免费观看| 国产精品久久电影中文字幕 | 国产亚洲欧美精品永久| 99久久99久久久精品蜜桃| 18禁观看日本| 人人妻人人澡人人爽人人夜夜| 久久久精品国产亚洲av高清涩受| 丁香六月欧美| 飞空精品影院首页| 欧美日本中文国产一区发布| 亚洲色图 男人天堂 中文字幕| 天堂8中文在线网| 亚洲欧美日韩另类电影网站| 他把我摸到了高潮在线观看 | 九色亚洲精品在线播放| 久久亚洲精品不卡| 久久天躁狠狠躁夜夜2o2o| 多毛熟女@视频| 国产日韩欧美视频二区| 一本一本久久a久久精品综合妖精| 久久精品亚洲av国产电影网| 国产av国产精品国产| 亚洲av成人不卡在线观看播放网| 日韩熟女老妇一区二区性免费视频| 精品国产一区二区久久| 一本大道久久a久久精品| 久久亚洲精品不卡| 又大又爽又粗| 久久国产亚洲av麻豆专区| 亚洲美女黄片视频| 51午夜福利影视在线观看| 久久久国产一区二区| 侵犯人妻中文字幕一二三四区| 精品乱码久久久久久99久播| 国产av又大| 91大片在线观看| 一边摸一边做爽爽视频免费| 热99久久久久精品小说推荐| 一边摸一边抽搐一进一小说 | 多毛熟女@视频| 一二三四在线观看免费中文在| 国产欧美日韩一区二区三| 18在线观看网站| 久久人人爽av亚洲精品天堂| 一区二区三区激情视频| 中文字幕人妻丝袜一区二区| 亚洲色图 男人天堂 中文字幕| 日日摸夜夜添夜夜添小说| 久久精品国产a三级三级三级| 视频在线观看一区二区三区| 国产老妇伦熟女老妇高清| 黄色视频不卡| 国产精品久久电影中文字幕 | 国产一区有黄有色的免费视频| 亚洲色图 男人天堂 中文字幕| 色老头精品视频在线观看| 五月开心婷婷网| 欧美国产精品一级二级三级| 日韩成人在线观看一区二区三区| 欧美精品一区二区免费开放| 国产精品亚洲一级av第二区| 男女免费视频国产| 久久国产亚洲av麻豆专区| 涩涩av久久男人的天堂| 国产欧美日韩精品亚洲av| 99久久精品国产亚洲精品| 黄色怎么调成土黄色| 一区二区三区激情视频| 精品少妇黑人巨大在线播放| 国产精品偷伦视频观看了| 久久人妻av系列| 天堂俺去俺来也www色官网| www.999成人在线观看| 国产熟女午夜一区二区三区| 日日摸夜夜添夜夜添小说| 日韩制服丝袜自拍偷拍| 中文字幕另类日韩欧美亚洲嫩草| 大码成人一级视频| 欧美日韩精品网址| 欧美老熟妇乱子伦牲交| tocl精华| 午夜91福利影院| 国产日韩欧美在线精品| a级毛片在线看网站| 午夜免费鲁丝| 啦啦啦免费观看视频1| 国产精品美女特级片免费视频播放器 | 天天躁狠狠躁夜夜躁狠狠躁| aaaaa片日本免费| 午夜两性在线视频| 男女边摸边吃奶| 国产精品久久久久成人av| 国产一区二区激情短视频| 搡老乐熟女国产| 亚洲成人免费av在线播放| av福利片在线| 国产日韩欧美视频二区| 中国美女看黄片| 不卡av一区二区三区| 国产精品一区二区在线观看99| 久久人人爽av亚洲精品天堂| 热99久久久久精品小说推荐| 国产精品欧美亚洲77777| 一个人免费看片子| 国产区一区二久久| 天天躁夜夜躁狠狠躁躁| 精品熟女少妇八av免费久了| 亚洲国产欧美日韩在线播放| 久9热在线精品视频| 侵犯人妻中文字幕一二三四区| 精品免费久久久久久久清纯 | 午夜免费成人在线视频| 欧美乱妇无乱码| 亚洲欧美精品综合一区二区三区| 性色av乱码一区二区三区2| 中文字幕高清在线视频| av有码第一页| 精品国内亚洲2022精品成人 | 日韩三级视频一区二区三区| 国产一区二区 视频在线| 亚洲精品久久成人aⅴ小说| 一本—道久久a久久精品蜜桃钙片| 狠狠精品人妻久久久久久综合| 国产精品成人在线| 日本黄色视频三级网站网址 | 国产精品免费大片| 免费少妇av软件| 99久久精品国产亚洲精品| 纯流量卡能插随身wifi吗| 嫁个100分男人电影在线观看| 欧美日韩av久久| 18禁美女被吸乳视频| 一区二区三区乱码不卡18| 成人免费观看视频高清| 热re99久久国产66热| 黄色视频不卡| 国产免费视频播放在线视频| 视频区欧美日本亚洲| 亚洲精品久久午夜乱码| 免费在线观看完整版高清| www.熟女人妻精品国产| 欧美午夜高清在线| 国产aⅴ精品一区二区三区波| 国产av一区二区精品久久| 欧美另类亚洲清纯唯美| 国产高清激情床上av| av网站在线播放免费| 亚洲欧美色中文字幕在线| 久久久久久亚洲精品国产蜜桃av| tube8黄色片| 夜夜夜夜夜久久久久| 老熟女久久久| 夜夜夜夜夜久久久久| 人人妻,人人澡人人爽秒播| 黄色片一级片一级黄色片| 久久久久久久大尺度免费视频| 亚洲色图 男人天堂 中文字幕| 久久久精品区二区三区| 亚洲天堂av无毛| 欧美亚洲日本最大视频资源| 欧美日韩福利视频一区二区| 韩国精品一区二区三区| 色婷婷av一区二区三区视频| 精品人妻1区二区| 一区二区av电影网| av天堂在线播放| 老司机午夜十八禁免费视频| 国产男靠女视频免费网站| 精品国产一区二区久久| 免费看a级黄色片| 99久久国产精品久久久| 91字幕亚洲| 女警被强在线播放| 成人国产一区最新在线观看| 精品久久久久久电影网| 人人妻,人人澡人人爽秒播| 国产麻豆69| 亚洲专区国产一区二区| 91成年电影在线观看| 国产精品 欧美亚洲| 飞空精品影院首页| 在线看a的网站| 啦啦啦中文免费视频观看日本| 免费黄频网站在线观看国产| 99riav亚洲国产免费| 女人爽到高潮嗷嗷叫在线视频| av在线播放免费不卡| 成人黄色视频免费在线看| 免费在线观看视频国产中文字幕亚洲| 日韩欧美三级三区| 国产97色在线日韩免费| 激情视频va一区二区三区| 51午夜福利影视在线观看| xxxhd国产人妻xxx| 国产又色又爽无遮挡免费看| av福利片在线| 国产精品一区二区精品视频观看| 亚洲av日韩精品久久久久久密| 色尼玛亚洲综合影院| 97在线人人人人妻| 国产精品成人在线| www日本在线高清视频| videosex国产| 国产日韩一区二区三区精品不卡| 日韩欧美三级三区| 啦啦啦中文免费视频观看日本| 亚洲熟妇熟女久久| 啦啦啦在线免费观看视频4| 国产精品九九99| 午夜福利视频精品| 一个人免费在线观看的高清视频| 国产成+人综合+亚洲专区| 久久人妻熟女aⅴ| 在线十欧美十亚洲十日本专区| 高清黄色对白视频在线免费看| 一边摸一边抽搐一进一出视频| 国产精品久久久久久人妻精品电影 | 亚洲男人天堂网一区| 淫妇啪啪啪对白视频| 99re6热这里在线精品视频| 午夜免费鲁丝| 日韩熟女老妇一区二区性免费视频| 王馨瑶露胸无遮挡在线观看| 一夜夜www| 国产精品国产高清国产av | 美女扒开内裤让男人捅视频| 久久久精品免费免费高清| 亚洲欧洲精品一区二区精品久久久| a级片在线免费高清观看视频| 久久影院123| 中文字幕人妻丝袜一区二区| 日韩欧美一区二区三区在线观看 | 脱女人内裤的视频| 午夜福利在线免费观看网站| 欧美精品啪啪一区二区三区| 久久久久国内视频| 女人被躁到高潮嗷嗷叫费观| 99久久国产精品久久久| 国产成人系列免费观看| 欧美日韩亚洲国产一区二区在线观看 | 妹子高潮喷水视频| 黄色片一级片一级黄色片| 女人高潮潮喷娇喘18禁视频| 高清av免费在线| 久久久欧美国产精品| 天堂8中文在线网| 岛国毛片在线播放| 一本综合久久免费| 最近最新免费中文字幕在线| 黄色 视频免费看| 国产一区二区在线观看av| 天天躁狠狠躁夜夜躁狠狠躁| 久久久久精品国产欧美久久久| 男女床上黄色一级片免费看| 9191精品国产免费久久| 天天操日日干夜夜撸| 亚洲欧美激情在线| bbb黄色大片| 日韩成人在线观看一区二区三区| 999久久久国产精品视频| bbb黄色大片| 免费黄频网站在线观看国产| 免费av中文字幕在线| 国产精品二区激情视频| 欧美日韩国产mv在线观看视频| 最近最新中文字幕大全免费视频| 成人特级黄色片久久久久久久 | 日本黄色视频三级网站网址 | 亚洲午夜理论影院| 精品福利永久在线观看| 婷婷成人精品国产| 最新在线观看一区二区三区| 国产免费av片在线观看野外av| 黄色怎么调成土黄色| 老司机影院毛片| 国产精品国产高清国产av | 怎么达到女性高潮| 国内毛片毛片毛片毛片毛片| 少妇 在线观看| 中文字幕人妻熟女乱码| 国产在线观看jvid| 久久人妻av系列| 国产免费现黄频在线看| 国产精品久久久久久精品电影小说| 国产黄频视频在线观看| av天堂在线播放| 免费久久久久久久精品成人欧美视频| www.999成人在线观看| 亚洲中文日韩欧美视频| 69av精品久久久久久 | 成人国产av品久久久| 在线观看免费日韩欧美大片| 久久国产精品影院| 欧美在线一区亚洲| av电影中文网址| 90打野战视频偷拍视频| 啦啦啦在线免费观看视频4| 久久久久精品人妻al黑| 国产精品一区二区免费欧美| 国产av一区二区精品久久| 2018国产大陆天天弄谢| 国产不卡一卡二| 午夜激情久久久久久久| 精品一区二区三卡| 色精品久久人妻99蜜桃| 亚洲欧洲日产国产| 精品一区二区三卡| 丰满人妻熟妇乱又伦精品不卡| 黄片小视频在线播放| 777米奇影视久久| av欧美777| 少妇的丰满在线观看| 亚洲国产看品久久| 人妻久久中文字幕网| 亚洲国产看品久久| 十分钟在线观看高清视频www| 国产在线观看jvid| 国产男女内射视频| 国产精品国产av在线观看| 国产高清国产精品国产三级| 欧美老熟妇乱子伦牲交| 人人澡人人妻人| 99在线人妻在线中文字幕 | 大码成人一级视频| 国产成人系列免费观看| av又黄又爽大尺度在线免费看| 天天影视国产精品| 人妻久久中文字幕网| 国产精品香港三级国产av潘金莲| 一级片'在线观看视频| 午夜福利欧美成人| 国产精品免费大片| 欧美变态另类bdsm刘玥| 久久午夜综合久久蜜桃| 深夜精品福利| 精品国内亚洲2022精品成人 | 国产主播在线观看一区二区| 黑人猛操日本美女一级片| 国产欧美日韩一区二区三| 搡老乐熟女国产| 99精品欧美一区二区三区四区| 久久99热这里只频精品6学生| 国产一区二区激情短视频| 亚洲中文日韩欧美视频| 亚洲熟妇熟女久久| 成人永久免费在线观看视频 | 涩涩av久久男人的天堂| 久久热在线av| 男女之事视频高清在线观看| 999精品在线视频| 自拍欧美九色日韩亚洲蝌蚪91| 老汉色av国产亚洲站长工具| a级毛片黄视频| 国产欧美日韩综合在线一区二区| 两个人免费观看高清视频| 亚洲中文日韩欧美视频| 久久久久国内视频| 国产亚洲精品第一综合不卡| 青青草视频在线视频观看| 精品免费久久久久久久清纯 | 女人久久www免费人成看片| 黄色视频在线播放观看不卡| 两性夫妻黄色片| 亚洲专区中文字幕在线| 成人国产av品久久久| 99热国产这里只有精品6| 老熟女久久久| 777米奇影视久久| 久久毛片免费看一区二区三区| 两个人看的免费小视频| 亚洲熟妇熟女久久| 99九九在线精品视频| 精品国产一区二区三区久久久樱花| 99国产精品一区二区三区| 国产成人精品无人区| 久热爱精品视频在线9| 成人手机av| 91字幕亚洲| 成人国语在线视频| 午夜福利欧美成人| svipshipincom国产片| 黄片小视频在线播放| 日日爽夜夜爽网站| 俄罗斯特黄特色一大片| www日本在线高清视频| 这个男人来自地球电影免费观看| 国产一区二区三区视频了| 99久久国产精品久久久| 在线观看人妻少妇| 国产亚洲午夜精品一区二区久久| 免费在线观看完整版高清| 中文字幕av电影在线播放| 叶爱在线成人免费视频播放| 手机成人av网站| 成人手机av| 精品亚洲乱码少妇综合久久| 2018国产大陆天天弄谢| 国产精品一区二区在线观看99| 丰满饥渴人妻一区二区三| 色综合欧美亚洲国产小说| videosex国产| 久久久精品区二区三区| 欧美成人免费av一区二区三区 | 亚洲精品粉嫩美女一区| 国产老妇伦熟女老妇高清| 国产极品粉嫩免费观看在线| 亚洲精品久久成人aⅴ小说| 亚洲欧美一区二区三区久久| 制服诱惑二区| 人妻 亚洲 视频| 日韩免费高清中文字幕av| 69精品国产乱码久久久| 久久毛片免费看一区二区三区| 国产精品久久久久成人av| 精品国产乱码久久久久久小说| 久久狼人影院| 大片免费播放器 马上看| 两性夫妻黄色片| 国产主播在线观看一区二区| 亚洲成人手机| 免费看十八禁软件| 日本欧美视频一区| 精品少妇内射三级| av超薄肉色丝袜交足视频| 久久久国产欧美日韩av| 国产精品电影一区二区三区 | 久久人妻av系列| 女性生殖器流出的白浆|