• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Topological properties of Sb(111)surface: A first-principles study

    2022-04-12 03:47:28ShuangxiWang王雙喜andPingZhang張平
    Chinese Physics B 2022年4期
    關(guān)鍵詞:雙喜張平

    Shuangxi Wang(王雙喜) and Ping Zhang(張平)

    1Department of Materials Science and Engineering,China University of Petroleum,Beijing 102249,China

    2Institute of Applied Physics and Computational Mathematics,Beijing 100088,China

    3Center for Applied Physics and Technology,Peking University,Beijing 100871,China

    Keywords: first-principles study,antimony,topological states

    1. Introduction

    A new state of quantum matter, topological insulator(TI), has received amount of attention in condensed matter physics.[1,2]The realization of TI HgTe both from theoretical prediction and experimental observation,[3,4]opens up opportunities for its potential application in semiconductor spintronics. It is believed that the quantum spin Hall effect as well as the time-reversal symmetry plays an important role in the new material,protecting the system from being disturbed by small perturbation caused by defects. This urges people to desire for more other promising materials,such as the Bi-based alloy Bi1-xSbx,and layered compound Bi2X3(X=Se,Te).[5-8]Recently, due to its novel topological properties, the semimetallic antimony(Sb)has become the ideal proto-type system for studying TI,thus has been investigated both theoretically and experimentally.[9-15]

    Theoretically,it has been proposed that the spin-orbit interaction (SOI) gives rise to the inverted structures between the valance and conduction band, and hence nontrivial gapless edge states emerge on the surface of Tls.[3]These studies revealed that the SOI plays a dominant role in characterizing the surface states of Sb,[9]and the properties of surface states depend on the thickness of this kind of two-dimensional(2D) material.[14,15]Experimental researches identified that the spin-split surface bands of Sb within its bulk band gap are connected to the conduction band and valence band.[9,10]Moreover, the topologically nontrivial Sb thin films exhibit novel properties and provide a promising playground for spintronic applications in low dimensions, such as device design and integration.[11]

    Nevertheless,there exist still many unanswered questions about the electronic structures of Sb. For Sb(111) surface, it is desirable to identify the layer-dependence of the topological states of Sb thin film,and the modulating of the surface properties by impurities with or without magnetic moment.[16,17]Moreover,the understanding of properties of Sb(111)surface can greatly facilitate the research of interaction between adsorbates and Sb(111) surface.[12]Therefore, it would be instructive to explore the electronic structures of Sb to make a thorough comprehension about the topological properties.

    The density functional theory (DFT) calculations based on first-principles method have proved to be an effective approach for studying the structural and electronic properties of materials including TIs.[18-23]In the present work, we study the properties of Sb(111) surface by performing firstprinciples calculations. The bulk band structure of Sb is presented to reveal the domination of SOI for topological properties of Sb. For the stoichiometric Sb(111) surface, we investigate the layer-dependence of the surface states of Sb thin film.Moreover,we calculate the surface properties of Sb when impurities are introduced, including nonmagnetic Bi and 3d transition metal ion Mn. The reason why we choose Bi as the doped impurity is that bismuth-antimony alloy has been investigated as a topological insulator, and it has potential application in developing next-generation quantum computing devices.[24-26]If the impurity carries a magnetic moment,the time-reversal symmetry is explicitly broken, and a local energy gap will be opened up near the Dirac point.[17]Moreover, transition metal element Mn doped HgTe[27]has been theoretically predicted to show the quantum anomalous Hall(QAH)effect. Hence Mn exhibits unique magnetic properties involved in the TI materials. While up to now further relevant study about Mn doped TIs is still lacking, we choose Mn as the doped magnetic impurity to have a direct and intuitional sight into it.

    This paper is outlined as follows. Firstly,the calculation method employed in our works is briefly introduced. Secondly,we present and discuss our results for the surface properties of Sb(111). Finally,we provide a summary.

    2. Calculation method

    The calculations were performed by using the density functional theory,as implemented in the Viennaab-initiosimulation package (VASP).[28]The Perdew-Burke-Ernzerhof(PBE)[29]parametrization of the generalized gradient approximation(GGA)was used for the exchange-correlation energy,and the projector-augmented wave potentials[30]were employed to describe the electron-ion interaction. Here the Sb 5s and 5p electrons were treated as valence electrons. The planewave cutoff energy was set to be 400 eV, with a smearing parameter[31]of 0.1 eV.The SOI was also included throughout the calculations.

    Fig. 1. Atomic structure of bulk Sb and Sb(111) surface. The nonequivalent antimony atoms are represented by blue and red balls separatively: (a)primitive cell of bulk Sb,(b)hexagonal unit cell of bulk Sb and(c)slab model of Sb(111)surface.

    The crystal structure of Sb is rhombohedral with the space groupD53d(Rˉ3m),with two non-equivalent Sb atoms in the trigonal primitive cell (see Fig. 1(a)). We can also present it in terms of a hexagonally arranged layer structure, as shown in Fig. 1(b). The hexagonal unit cell can be regarded as three sets of bilayers,where each bilayer consists of two Sb atoms.Structurally,bilayers in Sb form a stable unit with strong intrabilayer bonds,while the interbilayer bonding is much weaker.To identify nonequivalent atoms in the slab structure,different layers of Sb are labeled with different colors in the hexagonal cell. The Sb(111) surface is modeled by a slab composing of several (1-6) bilayers (BLs) and a vacuum region of 20 °A as shown in Fig. 1(c). Integration over the Brillouin zone was done by using a 21×21×1 Monkhorst-Packk-point mesh[32]for thep(1×1)surface,in which each monolayer contains one Sb atom; for thep(3×3)surface, in which each monolayer contains nine Sb atoms, 7×7×1 grid points are used. The structures of slabs were fully optimized until the absolute value of the atomic force on each atom was below 0.02 eV/°A. The computed lattice constants of rhombohedral Sb area=4.39 °A andc=11.43 °A, which are in agreement with the experimental dataa=4.3007 °A andc=11.222 °A.[33]

    3. Results and discussion

    It has been proposed that Sb is a promising TI by calculating its Z2invariantν(=1)from the knowledge of the parity of the occupied Bloch wave function at the time-reversal invariantΓpoint in the Brillouin zone.[24]This means that the SOI dominates the electronic nature of Sb,and one can understand it from the band structure (see Fig. 2). It is clear that the band gap is very small without SOI. While as the SOI is taken into consideration,the band gap is enlarged up to about 0.24 eV. We notice that the GGA calculations generally tend to underestimate the band gap for nonmetals.[34]Nevertheless,previous study with standard DFT correctly described the band properties of TIs, such as Bi2Se3[5,35]and Bi2Te3.[6]Therefore, our calculations still yield physically reasonable results about the general properties of band energy of Sb. Moreover,because of its topological electronic nature,we can expect the existence of gapless surface states. Therefore, in the following we will focus our attention on the properties of Sb(111)surface.

    Fig. 2. Bulk band structure without SOI (a) and with SOI (b). The energy zero is set at the valence band maximum.

    Generally speaking,the surface topological properties are sensitive to the thickness of the TI thin film. For thinner film,the coupling between the top and bottom surfaces is strong enough to open up a whole insulating gap. With increasing thickness,the inter-surface coupling becomes weaker and the topological features will be recovered. This is the same case for Sb(111)surface. As illustrated in Fig.3,we show the evolution of band structure of Sb films with the thickness from the single BL to six BLs. In a single BL film,the Sb electronic states (mainly from 5p orbital) split into two parts forming a gap around the Fermi level.The gap is as large as about 0.9 eV,implying the strong coupling between two surfaces. In the case of two BLs films,the splitting of 5p states decrease with the decline of the coupling, leading to a semimetallic electronic structure. Obviously, the topological features start to appear in the three BLs case,where a non-trivial helical edge state(ν0=1)below the Fermi level atΓpoint can be identified. This helical state is consist of two surface states degenerated atΓpoint but separated in energy elsewhere by SOI.[11]Nevertheless,it is noticeable that for the case of four BLs and five BLs films,the gaps are opened up again atΓpoint. This can be attributed to the inverse asymmetry of the films with four and five BLs. While the topological states should be recovered when the number of BLs of the film is multiples of three, which conserves the inverse symmetry. As expected,it can be seen that the topological states are recovered for six BLs,which are consistent with the previous computational and experimental results.[15]The double degenerate Sb(111) surface states contain a single Dirac cone at theΓpoint,which is robust and topologically protected by time-reversal symmetry.The Dirac point is about 0.16 eV below the Fermi level,within the bulk band gap. Compared with the experimental value of 0.23 eV,[2]the difference may arise from the subsurface defects observed in the experiment.

    Fig. 3. Surface band structure with one to six bilayer thickness. The energy zero is set at the valence band maximum.

    Various impurities may have different impact on the degeneracy and topological properties of Sb energy bands,which will be illustrated in the following discussions based on the six BLs film. It has been shown that the alloy Bi1-xSbxis a 3D TI.[24,25,36]Here it would be interesting to investigate the surface state properties of reduced Sb(111) surface with the existence of Bi as a nonmagnetic impurity. Moreover, as a comparison,a magnetic impurity(Mn atom)is also taken into consideration. During the calculations, thep(3×3) surface is adopted,and impurities are symmetrically introduced on both sides of the slab.

    We found that the substitutional Bi or Mn atoms take the position of one subsurface Sb2 atoms, and the adsorbed Mn atoms are found to be energetically stable at the hcp sites above Sb(111) surfaces. As depicted in the upper panels of Fig.4,the introduced Bi is about 0.06 °A lower than the adjacent Sb2 atom,and causes only slightly distortion of surrounding atoms. The substitutional Mn atom is 0.56 °A lower than the adjecent Sb2 atom,and causes the move of the surface Sb1 atom (0.31 °A downwards). The adsorbed Mn atom is higher than the outmost surface by 0.56 °A, and causes only slightly move of the surface atoms.

    Fig. 4. Structures of Sb(111) surfaces with impurities (upper panels)and surface charge density distributions (lower panels, in e/°A3) at the height of 2.0 °A above the Sb(111) surface: (a) Bi-substitutional, (b)Mn-substitutional and(c)Mn-adsorbed. The Bi and Mn atoms are represented by purple and orange balls,respectively.

    To explore the bonding information between impurities and surface, we calculated the charge density distributions of Sb(111)surfaces with impurities. As shown in Fig.4,the localized three-fold symmetric features can be identified from all of the surfaces,especially for the Mn-doped ones. For the Bisubstitutional surface, only tiny difference exists between the region above the Bi atom and others,and this can be attributed to that Bi and Sb belong to the same chemical group and possess the same number of valence electrons. As a result, the Bi-doped Sb(111) surface may maintain the topological features,which will be illustrated later by the band structure. For the Mn-doped surfaces, however, more evident different features can be observed. It is noticeable that the charge distribution is strongly depleted at the position just above the substitutional Mn atom,while the adsorbed Mn atom can be identified clearly by the charge accumulation. Keeping in mind the magnetism of Mn atom,we will see that the magnetic impurity can have significant effect on the surface states of Sb(111)surface.

    The band structure of Bi-doped Sb(111) surface is presented in Fig. 5(b). For comparison, in Fig. 5 we show the Sb bulk band structure projected onto the surface Brillouin zone, and also in next series of surface band structures. The band structure of stoichiometricp(3×3) Sb(111) surface is also shown in Fig.5(a). It is clear that the topological surface state remains to be robust despite of the existence of Bi impurity, and the Dirac point of this reduced surface almost stays at the same position as that of the stoichiometric surface,i.e.,residing in the bulk valence band gap.This can be attributed to the following reasons. (1)The time-reversal symmetry stands against nonmagnetic impurities. (2) The energy bands of Bidoped system remain degenerate thus keep gapless.Moreover,from the PDOS of Bi we determined that the doped Bi atom contributes little to the band structure near the Fermi level and the Dirac point, thus the topological features of Sb keep robust,which also consists with the fact that the alloy Bi1-xSbxis a 3D TI inherited from Sb.[24]

    Fig.5. The band structure of clean(a)and Bi substitutional(b)Sb(111)surface. Blue shaded areas correspond to the Sb bulk band structure projected onto the surface Brillouin zone.

    For magnetic Mn-doped Sb(111) surface, we found that the magnetic impurities can obviously lift the degeneracy protected by the time-reversal symmetry. For clarity,here we plot the lifted band structures of Mn-substitutional and adsorbed Sb(111) surfaces dividedly in Figs. 6 and 7, labeled by spinup and spin-down,respectively. It can be seen that both of the magnetic impurities eliminate the Dirac point by opening up a gap atΓpoint, corresponding to the position of band gap of the bulk valence band. As depicted by the PDOS (Figs. 6(c)and 7(c)), compared with the doped Bi atom, the magnetic d orbital of Mn atom contributes much to the states near the Dirac point, hence clearly breaks the time-reversal symmetry. As expected,[17]a ferromagnetic ground state is formed on the TI surface by the introduced magnetic Mn impurity. As to the aforementioned QAH effect appearing in TIs, the Mndoped HgTe[27]and Cr(Fe)-doped Bi2Se3[37]exhibit insulating magnetic state, and QAH effect emerges. However, we can see from the PDOS that the metallic states are obtained for Mn-doped Sb(111)surface,similar to that for Ti(V)-doped Bi2Se3,[37]which is topologically trivial.

    Fig. 6. The band structure of Mn-substitutional Sb(111) surface: (a)spin-up, (b) spin-down and (c) the PDOS of the Mn atomic d-bands.Blue shaded areas correspond to the Sb bulk band structure projected onto the surface Brillouin zone.

    Fig. 7. The band structure of Mn-adsorbed Sb(111) surface: (a) spinup, (b) spin-down and (c) the PDOS of the Mn atomic d-bands. Blue shaded areas correspond to the Sb bulk band structure projected onto the surface Brillouin zone.

    4. Conclusion

    In summary,we used the first-principles method to study the topological properties of Sb(111) surface. We found that the stoichiometric Sb(111)surface possesses single Dirac point protected by the time-reversal symmetry and inverse symmetry. And the topological states are layer dependent and keep robust for six bilayers film. Moreover, we revealed that the non-trivial topological states stand for non-magnetic substitutional Bi, while the substitutional or adsorbed magnetic Mn atom can obviously destroy the topological states by eliminating the Dirac point. The present work may contribute to the further study in topological insulator.

    猜你喜歡
    雙喜張平
    嘰嘰喳喳的小喜鵲
    山中送別
    寶藏(2021年8期)2021-09-15 02:19:44
    High-pressure elastic anisotropy and superconductivity of hafnium:A first-principles calculation*
    羊跑羔
    小小說月刊(2021年2期)2021-03-11 02:07:07
    母親
    寶藏(2021年11期)2021-01-01 06:17:20
    這是你爺倆
    金秋(2020年16期)2020-12-09 01:41:50
    Enhanced spin-dependent thermopower in a double-quantum-dot sandwiched between two-dimensional electron gases?
    神韻真切 意境深邃——崔白《雙喜圖》欣賞
    老年教育(2018年12期)2018-12-29 12:43:16
    張平書法作品選
    Mechanical Behavior of Bistable Bump Surface for Morphing Inlet
    午夜免费观看性视频| 国产精品av久久久久免费| 美女高潮到喷水免费观看| h视频一区二区三区| 90打野战视频偷拍视频| 制服诱惑二区| av天堂久久9| 不卡av一区二区三区| 男人舔女人的私密视频| 国产成人一区二区在线| 十八禁人妻一区二区| 日韩不卡一区二区三区视频在线| 亚洲熟女精品中文字幕| 国产熟女午夜一区二区三区| 国产黄色免费在线视频| 永久免费av网站大全| 亚洲精品视频女| 麻豆av在线久日| 国产成人精品久久二区二区91 | 最新在线观看一区二区三区 | 嫩草影院入口| 亚洲少妇的诱惑av| 肉色欧美久久久久久久蜜桃| 成年女人毛片免费观看观看9 | 亚洲五月色婷婷综合| 少妇精品久久久久久久| 制服丝袜香蕉在线| xxx大片免费视频| 夜夜骑夜夜射夜夜干| 伊人久久国产一区二区| 欧美日韩一区二区视频在线观看视频在线| 狂野欧美激情性xxxx| 一区二区三区乱码不卡18| 亚洲av在线观看美女高潮| 不卡视频在线观看欧美| 亚洲精品久久久久久婷婷小说| 夫妻午夜视频| 建设人人有责人人尽责人人享有的| h视频一区二区三区| 国产成人精品无人区| 可以免费在线观看a视频的电影网站 | 黄片小视频在线播放| 亚洲av中文av极速乱| 丰满乱子伦码专区| 在线观看www视频免费| 亚洲,欧美精品.| 亚洲av中文av极速乱| 国产片内射在线| 久久久久国产精品人妻一区二区| 国产午夜精品一二区理论片| 日本av免费视频播放| 中文字幕最新亚洲高清| 丝袜在线中文字幕| 成年人免费黄色播放视频| 波多野结衣一区麻豆| 日韩成人av中文字幕在线观看| 免费黄色在线免费观看| 欧美老熟妇乱子伦牲交| 一区二区三区精品91| 两个人看的免费小视频| 国产精品蜜桃在线观看| 夫妻性生交免费视频一级片| 久久久亚洲精品成人影院| 久久久国产精品麻豆| 只有这里有精品99| 欧美精品人与动牲交sv欧美| 老鸭窝网址在线观看| 啦啦啦 在线观看视频| 天堂中文最新版在线下载| 香蕉国产在线看| 日本一区二区免费在线视频| 精品一区二区三区四区五区乱码 | 热re99久久精品国产66热6| 超碰97精品在线观看| 女人高潮潮喷娇喘18禁视频| 热99久久久久精品小说推荐| 99国产综合亚洲精品| bbb黄色大片| 国精品久久久久久国模美| 欧美日韩亚洲高清精品| 午夜福利在线免费观看网站| 一级片'在线观看视频| 美女国产高潮福利片在线看| 精品视频人人做人人爽| 91国产中文字幕| 黄色怎么调成土黄色| 999精品在线视频| 国产成人精品福利久久| 视频区图区小说| 精品卡一卡二卡四卡免费| 99久久人妻综合| 美女脱内裤让男人舔精品视频| 日日撸夜夜添| 热99国产精品久久久久久7| 欧美97在线视频| 中文天堂在线官网| svipshipincom国产片| 国产亚洲av高清不卡| 亚洲男人天堂网一区| 午夜av观看不卡| 校园人妻丝袜中文字幕| 十八禁高潮呻吟视频| 国产有黄有色有爽视频| 国产男女内射视频| 精品少妇一区二区三区视频日本电影 | 精品少妇黑人巨大在线播放| av福利片在线| 热99国产精品久久久久久7| 日韩精品免费视频一区二区三区| 欧美日韩成人在线一区二区| 亚洲欧美一区二区三区久久| 另类亚洲欧美激情| 日韩伦理黄色片| av国产久精品久网站免费入址| 无遮挡黄片免费观看| 国产成人精品无人区| 免费av中文字幕在线| 丝袜脚勾引网站| 97人妻天天添夜夜摸| 欧美日韩亚洲综合一区二区三区_| 90打野战视频偷拍视频| 永久免费av网站大全| 亚洲精品,欧美精品| 亚洲一卡2卡3卡4卡5卡精品中文| 91老司机精品| 老汉色∧v一级毛片| 亚洲成人免费av在线播放| 老熟女久久久| 啦啦啦在线观看免费高清www| 咕卡用的链子| 欧美变态另类bdsm刘玥| 美女主播在线视频| 午夜91福利影院| 国产xxxxx性猛交| 午夜日本视频在线| 免费观看性生交大片5| av线在线观看网站| 国产黄色免费在线视频| 一二三四中文在线观看免费高清| 青春草视频在线免费观看| 又大又爽又粗| 丝袜美足系列| 久久精品熟女亚洲av麻豆精品| 国产极品天堂在线| 嫩草影院入口| 久久狼人影院| 亚洲熟女精品中文字幕| 久久久久网色| 欧美日本中文国产一区发布| av又黄又爽大尺度在线免费看| 97精品久久久久久久久久精品| 91精品三级在线观看| 精品久久久久久电影网| 亚洲熟女毛片儿| 五月开心婷婷网| 可以免费在线观看a视频的电影网站 | 午夜福利视频在线观看免费| 日韩一本色道免费dvd| 成人漫画全彩无遮挡| 成年av动漫网址| 亚洲av日韩在线播放| av一本久久久久| 中文字幕制服av| 欧美日韩一区二区视频在线观看视频在线| 色视频在线一区二区三区| 亚洲av成人不卡在线观看播放网 | videos熟女内射| 制服丝袜香蕉在线| 啦啦啦中文免费视频观看日本| 国产乱人偷精品视频| 电影成人av| 国精品久久久久久国模美| 涩涩av久久男人的天堂| 久久性视频一级片| 亚洲精品国产av成人精品| 精品人妻在线不人妻| 亚洲精品,欧美精品| 国精品久久久久久国模美| 搡老岳熟女国产| 汤姆久久久久久久影院中文字幕| 国产在视频线精品| 99re6热这里在线精品视频| 日日撸夜夜添| 亚洲成人一二三区av| 欧美日韩综合久久久久久| 日本猛色少妇xxxxx猛交久久| 婷婷成人精品国产| 一级毛片黄色毛片免费观看视频| 亚洲情色 制服丝袜| 19禁男女啪啪无遮挡网站| 色吧在线观看| 18禁动态无遮挡网站| 欧美日韩一区二区视频在线观看视频在线| av国产精品久久久久影院| 欧美av亚洲av综合av国产av | 男人舔女人的私密视频| av网站免费在线观看视频| 久久青草综合色| 国产精品久久久av美女十八| 大香蕉久久成人网| 五月天丁香电影| 精品人妻熟女毛片av久久网站| 精品一区二区三区四区五区乱码 | 晚上一个人看的免费电影| 成年美女黄网站色视频大全免费| 卡戴珊不雅视频在线播放| 久久婷婷青草| 欧美日韩福利视频一区二区| 亚洲精品成人av观看孕妇| 90打野战视频偷拍视频| 国产精品 欧美亚洲| 狠狠精品人妻久久久久久综合| 亚洲av日韩在线播放| 国产99久久九九免费精品| 天天影视国产精品| 国产精品无大码| 亚洲欧美清纯卡通| 欧美激情极品国产一区二区三区| 男女国产视频网站| 天天影视国产精品| 性少妇av在线| 国产欧美日韩一区二区三区在线| 国产极品天堂在线| 一边摸一边抽搐一进一出视频| 在线天堂中文资源库| av网站在线播放免费| 中文字幕亚洲精品专区| 欧美日韩成人在线一区二区| 老司机在亚洲福利影院| 亚洲人成77777在线视频| 亚洲精品国产色婷婷电影| 女人高潮潮喷娇喘18禁视频| 99香蕉大伊视频| 欧美精品亚洲一区二区| 色网站视频免费| 国产精品一区二区在线不卡| 国产av码专区亚洲av| 在线观看三级黄色| av在线app专区| 超色免费av| 9191精品国产免费久久| 波多野结衣av一区二区av| 麻豆av在线久日| 啦啦啦在线免费观看视频4| 飞空精品影院首页| 久久久亚洲精品成人影院| 丰满少妇做爰视频| 欧美黑人欧美精品刺激| 色综合欧美亚洲国产小说| 晚上一个人看的免费电影| 日韩一本色道免费dvd| 午夜91福利影院| 在线精品无人区一区二区三| 国产人伦9x9x在线观看| 一区福利在线观看| 久久久久视频综合| 精品人妻一区二区三区麻豆| 日本一区二区免费在线视频| 国产一级毛片在线| 国产精品偷伦视频观看了| 久久精品亚洲熟妇少妇任你| 大陆偷拍与自拍| 9色porny在线观看| 日韩欧美一区视频在线观看| 久久久久视频综合| 在线观看人妻少妇| 人人妻人人澡人人看| 亚洲欧美一区二区三区国产| 最近最新中文字幕大全免费视频 | 国产爽快片一区二区三区| 这个男人来自地球电影免费观看 | 免费人妻精品一区二区三区视频| 国产精品99久久99久久久不卡 | 精品少妇一区二区三区视频日本电影 | 日本wwww免费看| 欧美成人午夜精品| a级毛片在线看网站| 亚洲自偷自拍图片 自拍| videosex国产| 亚洲精品av麻豆狂野| 亚洲欧美成人精品一区二区| 欧美另类一区| 在线观看免费视频网站a站| 免费不卡黄色视频| 久久久久久人妻| 青草久久国产| av不卡在线播放| 欧美黑人欧美精品刺激| 久久影院123| 国产精品麻豆人妻色哟哟久久| 别揉我奶头~嗯~啊~动态视频 | 免费日韩欧美在线观看| 亚洲av电影在线进入| 国产成人av激情在线播放| 日韩欧美一区视频在线观看| 可以免费在线观看a视频的电影网站 | 亚洲精品久久久久久婷婷小说| 热99国产精品久久久久久7| 女性生殖器流出的白浆| 成人三级做爰电影| 性色av一级| 老司机影院毛片| 欧美中文综合在线视频| 999久久久国产精品视频| 狠狠婷婷综合久久久久久88av| 久久ye,这里只有精品| 精品人妻一区二区三区麻豆| 日韩大码丰满熟妇| 一本久久精品| 两个人免费观看高清视频| 男人操女人黄网站| 日韩欧美精品免费久久| 成年动漫av网址| 国产极品天堂在线| 黄色毛片三级朝国网站| 精品免费久久久久久久清纯 | 精品人妻一区二区三区麻豆| 性少妇av在线| 女的被弄到高潮叫床怎么办| 亚洲色图 男人天堂 中文字幕| 久久人人爽人人片av| 午夜福利网站1000一区二区三区| 亚洲自偷自拍图片 自拍| 大香蕉久久网| 男男h啪啪无遮挡| 在线天堂中文资源库| 人人澡人人妻人| 亚洲人成网站在线观看播放| 欧美少妇被猛烈插入视频| 成年动漫av网址| 久久久久国产一级毛片高清牌| 精品亚洲乱码少妇综合久久| 99热网站在线观看| 精品亚洲成a人片在线观看| 一区二区av电影网| 18禁观看日本| 国产极品粉嫩免费观看在线| 亚洲图色成人| 亚洲伊人久久精品综合| 高清在线视频一区二区三区| 亚洲av男天堂| 丁香六月天网| 国产一区亚洲一区在线观看| 青春草视频在线免费观看| 日韩中文字幕视频在线看片| 日本欧美视频一区| xxx大片免费视频| 欧美精品高潮呻吟av久久| 国产一区二区在线观看av| www.自偷自拍.com| 日本vs欧美在线观看视频| 18禁观看日本| 性少妇av在线| av在线老鸭窝| 啦啦啦在线观看免费高清www| 国产一区有黄有色的免费视频| 国产精品秋霞免费鲁丝片| 国产精品蜜桃在线观看| 亚洲欧美成人综合另类久久久| 丰满饥渴人妻一区二区三| 日韩人妻精品一区2区三区| 久久久久精品性色| 亚洲精品自拍成人| 麻豆精品久久久久久蜜桃| 18在线观看网站| 97精品久久久久久久久久精品| a级毛片在线看网站| 水蜜桃什么品种好| 又大又爽又粗| 蜜桃国产av成人99| av免费观看日本| 999精品在线视频| 欧美日韩视频精品一区| 国产欧美日韩一区二区三区在线| 国产熟女午夜一区二区三区| 韩国精品一区二区三区| 最新在线观看一区二区三区 | 亚洲欧美成人精品一区二区| 综合色丁香网| www.av在线官网国产| 一区二区三区四区激情视频| 亚洲av日韩精品久久久久久密 | 五月天丁香电影| 在线看a的网站| av女优亚洲男人天堂| 美女大奶头黄色视频| 777久久人妻少妇嫩草av网站| 欧美精品一区二区大全| 狂野欧美激情性bbbbbb| 青草久久国产| 999久久久国产精品视频| 亚洲av成人精品一二三区| 日日啪夜夜爽| 又粗又硬又长又爽又黄的视频| 男人添女人高潮全过程视频| 男女国产视频网站| 国产毛片在线视频| 中文字幕av电影在线播放| 岛国毛片在线播放| 91老司机精品| 精品人妻熟女毛片av久久网站| 成人18禁高潮啪啪吃奶动态图| 深夜精品福利| av卡一久久| 叶爱在线成人免费视频播放| 老司机亚洲免费影院| 欧美精品人与动牲交sv欧美| 国产亚洲一区二区精品| av免费观看日本| 嫩草影视91久久| 亚洲免费av在线视频| 国产日韩欧美在线精品| 国产成人啪精品午夜网站| 国产精品香港三级国产av潘金莲 | 亚洲精品成人av观看孕妇| 国产精品成人在线| 18禁动态无遮挡网站| 国产精品秋霞免费鲁丝片| 超碰97精品在线观看| 日本午夜av视频| 亚洲专区中文字幕在线 | 久热这里只有精品99| 欧美少妇被猛烈插入视频| 亚洲第一青青草原| 中文字幕av电影在线播放| 亚洲人成77777在线视频| 中文字幕精品免费在线观看视频| 亚洲国产欧美一区二区综合| 亚洲av综合色区一区| 欧美日韩一级在线毛片| 免费黄频网站在线观看国产| 久久久国产一区二区| 蜜桃在线观看..| 青青草视频在线视频观看| 欧美激情极品国产一区二区三区| 午夜福利影视在线免费观看| av网站免费在线观看视频| 日韩一区二区三区影片| 久久久久精品久久久久真实原创| 精品人妻一区二区三区麻豆| 一边亲一边摸免费视频| 人人妻人人爽人人添夜夜欢视频| 少妇猛男粗大的猛烈进出视频| 大陆偷拍与自拍| 夜夜骑夜夜射夜夜干| 国产免费福利视频在线观看| 国产日韩欧美视频二区| 99香蕉大伊视频| 新久久久久国产一级毛片| 一边亲一边摸免费视频| 欧美黑人欧美精品刺激| 亚洲欧美一区二区三区久久| 电影成人av| 亚洲成人一二三区av| 精品国产一区二区久久| 搡老岳熟女国产| av一本久久久久| 国产一区二区三区综合在线观看| 欧美乱码精品一区二区三区| 亚洲精品,欧美精品| 亚洲av欧美aⅴ国产| 女人爽到高潮嗷嗷叫在线视频| 波野结衣二区三区在线| 卡戴珊不雅视频在线播放| 亚洲在久久综合| 国产男女内射视频| 午夜福利乱码中文字幕| 啦啦啦在线观看免费高清www| 欧美97在线视频| 操美女的视频在线观看| www.自偷自拍.com| 亚洲欧洲国产日韩| 国产欧美日韩一区二区三区在线| 国产欧美日韩综合在线一区二区| 国产无遮挡羞羞视频在线观看| 欧美在线一区亚洲| 亚洲精品日本国产第一区| 国产有黄有色有爽视频| 日本欧美国产在线视频| 久久av网站| 亚洲成国产人片在线观看| 午夜影院在线不卡| 大片电影免费在线观看免费| 精品一品国产午夜福利视频| 激情五月婷婷亚洲| 亚洲精品一二三| 亚洲情色 制服丝袜| 国产一区二区三区综合在线观看| 久久青草综合色| 人人妻人人澡人人爽人人夜夜| 亚洲国产最新在线播放| 人体艺术视频欧美日本| 日韩欧美精品免费久久| 亚洲中文av在线| 大片免费播放器 马上看| 久久女婷五月综合色啪小说| 亚洲婷婷狠狠爱综合网| 亚洲人成77777在线视频| 精品久久久精品久久久| 天堂8中文在线网| 久久毛片免费看一区二区三区| www.精华液| 男人添女人高潮全过程视频| 亚洲成国产人片在线观看| 伊人久久国产一区二区| 亚洲成国产人片在线观看| 人人妻,人人澡人人爽秒播 | 人成视频在线观看免费观看| 免费看av在线观看网站| 一区在线观看完整版| 天天躁狠狠躁夜夜躁狠狠躁| 成人18禁高潮啪啪吃奶动态图| 免费高清在线观看日韩| 欧美日韩av久久| 久久久亚洲精品成人影院| 一级a爱视频在线免费观看| 国产福利在线免费观看视频| 午夜激情av网站| 最近最新中文字幕大全免费视频 | 国产片特级美女逼逼视频| 在线看a的网站| 日本欧美国产在线视频| videosex国产| 午夜91福利影院| 国产成人精品在线电影| 亚洲欧美一区二区三区久久| 国产av精品麻豆| 国产在视频线精品| 国产成人精品久久久久久| 国产片特级美女逼逼视频| 国产女主播在线喷水免费视频网站| 欧美日韩国产mv在线观看视频| 亚洲第一青青草原| √禁漫天堂资源中文www| 国产成人午夜福利电影在线观看| 99久久精品国产亚洲精品| 丝袜在线中文字幕| 哪个播放器可以免费观看大片| 国产精品久久久久久久久免| 视频区图区小说| videos熟女内射| 777米奇影视久久| av在线老鸭窝| 国产精品免费大片| 1024香蕉在线观看| 好男人视频免费观看在线| 亚洲精品日韩在线中文字幕| 熟妇人妻不卡中文字幕| 2018国产大陆天天弄谢| 日韩熟女老妇一区二区性免费视频| 不卡av一区二区三区| 日本午夜av视频| 日韩精品免费视频一区二区三区| 久久韩国三级中文字幕| 亚洲精品自拍成人| videos熟女内射| 我的亚洲天堂| 亚洲精品aⅴ在线观看| 狠狠精品人妻久久久久久综合| 国产精品 欧美亚洲| 老司机影院毛片| 日韩中文字幕欧美一区二区 | 国产免费一区二区三区四区乱码| 亚洲人成电影观看| 欧美精品高潮呻吟av久久| 亚洲 欧美一区二区三区| 老鸭窝网址在线观看| 久久精品国产a三级三级三级| 中文字幕最新亚洲高清| 欧美日韩一区二区视频在线观看视频在线| 老汉色∧v一级毛片| 免费久久久久久久精品成人欧美视频| 久久久久久久久久久免费av| 99热全是精品| 日韩中文字幕视频在线看片| 国产成人精品福利久久| 精品少妇一区二区三区视频日本电影 | 美女福利国产在线| 视频在线观看一区二区三区| 在线观看人妻少妇| 久久精品久久精品一区二区三区| 国产精品久久久久久人妻精品电影 | 亚洲av中文av极速乱| 国产亚洲av片在线观看秒播厂| 丰满迷人的少妇在线观看| 天堂中文最新版在线下载| 国产欧美日韩一区二区三区在线| 自拍欧美九色日韩亚洲蝌蚪91| 欧美激情 高清一区二区三区| 校园人妻丝袜中文字幕| 亚洲第一区二区三区不卡| 激情视频va一区二区三区| 中文精品一卡2卡3卡4更新| 久久av网站| 国产免费一区二区三区四区乱码| 成人手机av| 国产色婷婷99| 精品卡一卡二卡四卡免费| 亚洲美女黄色视频免费看| 在线观看免费视频网站a站| 亚洲国产最新在线播放| 亚洲天堂av无毛| 80岁老熟妇乱子伦牲交| 又黄又粗又硬又大视频| 最黄视频免费看| 一区福利在线观看| 女人爽到高潮嗷嗷叫在线视频| 一区在线观看完整版| 另类亚洲欧美激情| 欧美 亚洲 国产 日韩一| 视频区图区小说| 一本一本久久a久久精品综合妖精| 高清欧美精品videossex| 美女主播在线视频| 宅男免费午夜|