• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Topological properties of Sb(111)surface: A first-principles study

    2022-04-12 03:47:28ShuangxiWang王雙喜andPingZhang張平
    Chinese Physics B 2022年4期
    關(guān)鍵詞:雙喜張平

    Shuangxi Wang(王雙喜) and Ping Zhang(張平)

    1Department of Materials Science and Engineering,China University of Petroleum,Beijing 102249,China

    2Institute of Applied Physics and Computational Mathematics,Beijing 100088,China

    3Center for Applied Physics and Technology,Peking University,Beijing 100871,China

    Keywords: first-principles study,antimony,topological states

    1. Introduction

    A new state of quantum matter, topological insulator(TI), has received amount of attention in condensed matter physics.[1,2]The realization of TI HgTe both from theoretical prediction and experimental observation,[3,4]opens up opportunities for its potential application in semiconductor spintronics. It is believed that the quantum spin Hall effect as well as the time-reversal symmetry plays an important role in the new material,protecting the system from being disturbed by small perturbation caused by defects. This urges people to desire for more other promising materials,such as the Bi-based alloy Bi1-xSbx,and layered compound Bi2X3(X=Se,Te).[5-8]Recently, due to its novel topological properties, the semimetallic antimony(Sb)has become the ideal proto-type system for studying TI,thus has been investigated both theoretically and experimentally.[9-15]

    Theoretically,it has been proposed that the spin-orbit interaction (SOI) gives rise to the inverted structures between the valance and conduction band, and hence nontrivial gapless edge states emerge on the surface of Tls.[3]These studies revealed that the SOI plays a dominant role in characterizing the surface states of Sb,[9]and the properties of surface states depend on the thickness of this kind of two-dimensional(2D) material.[14,15]Experimental researches identified that the spin-split surface bands of Sb within its bulk band gap are connected to the conduction band and valence band.[9,10]Moreover, the topologically nontrivial Sb thin films exhibit novel properties and provide a promising playground for spintronic applications in low dimensions, such as device design and integration.[11]

    Nevertheless,there exist still many unanswered questions about the electronic structures of Sb. For Sb(111) surface, it is desirable to identify the layer-dependence of the topological states of Sb thin film,and the modulating of the surface properties by impurities with or without magnetic moment.[16,17]Moreover,the understanding of properties of Sb(111)surface can greatly facilitate the research of interaction between adsorbates and Sb(111) surface.[12]Therefore, it would be instructive to explore the electronic structures of Sb to make a thorough comprehension about the topological properties.

    The density functional theory (DFT) calculations based on first-principles method have proved to be an effective approach for studying the structural and electronic properties of materials including TIs.[18-23]In the present work, we study the properties of Sb(111) surface by performing firstprinciples calculations. The bulk band structure of Sb is presented to reveal the domination of SOI for topological properties of Sb. For the stoichiometric Sb(111) surface, we investigate the layer-dependence of the surface states of Sb thin film.Moreover,we calculate the surface properties of Sb when impurities are introduced, including nonmagnetic Bi and 3d transition metal ion Mn. The reason why we choose Bi as the doped impurity is that bismuth-antimony alloy has been investigated as a topological insulator, and it has potential application in developing next-generation quantum computing devices.[24-26]If the impurity carries a magnetic moment,the time-reversal symmetry is explicitly broken, and a local energy gap will be opened up near the Dirac point.[17]Moreover, transition metal element Mn doped HgTe[27]has been theoretically predicted to show the quantum anomalous Hall(QAH)effect. Hence Mn exhibits unique magnetic properties involved in the TI materials. While up to now further relevant study about Mn doped TIs is still lacking, we choose Mn as the doped magnetic impurity to have a direct and intuitional sight into it.

    This paper is outlined as follows. Firstly,the calculation method employed in our works is briefly introduced. Secondly,we present and discuss our results for the surface properties of Sb(111). Finally,we provide a summary.

    2. Calculation method

    The calculations were performed by using the density functional theory,as implemented in the Viennaab-initiosimulation package (VASP).[28]The Perdew-Burke-Ernzerhof(PBE)[29]parametrization of the generalized gradient approximation(GGA)was used for the exchange-correlation energy,and the projector-augmented wave potentials[30]were employed to describe the electron-ion interaction. Here the Sb 5s and 5p electrons were treated as valence electrons. The planewave cutoff energy was set to be 400 eV, with a smearing parameter[31]of 0.1 eV.The SOI was also included throughout the calculations.

    Fig. 1. Atomic structure of bulk Sb and Sb(111) surface. The nonequivalent antimony atoms are represented by blue and red balls separatively: (a)primitive cell of bulk Sb,(b)hexagonal unit cell of bulk Sb and(c)slab model of Sb(111)surface.

    The crystal structure of Sb is rhombohedral with the space groupD53d(Rˉ3m),with two non-equivalent Sb atoms in the trigonal primitive cell (see Fig. 1(a)). We can also present it in terms of a hexagonally arranged layer structure, as shown in Fig. 1(b). The hexagonal unit cell can be regarded as three sets of bilayers,where each bilayer consists of two Sb atoms.Structurally,bilayers in Sb form a stable unit with strong intrabilayer bonds,while the interbilayer bonding is much weaker.To identify nonequivalent atoms in the slab structure,different layers of Sb are labeled with different colors in the hexagonal cell. The Sb(111) surface is modeled by a slab composing of several (1-6) bilayers (BLs) and a vacuum region of 20 °A as shown in Fig. 1(c). Integration over the Brillouin zone was done by using a 21×21×1 Monkhorst-Packk-point mesh[32]for thep(1×1)surface,in which each monolayer contains one Sb atom; for thep(3×3)surface, in which each monolayer contains nine Sb atoms, 7×7×1 grid points are used. The structures of slabs were fully optimized until the absolute value of the atomic force on each atom was below 0.02 eV/°A. The computed lattice constants of rhombohedral Sb area=4.39 °A andc=11.43 °A, which are in agreement with the experimental dataa=4.3007 °A andc=11.222 °A.[33]

    3. Results and discussion

    It has been proposed that Sb is a promising TI by calculating its Z2invariantν(=1)from the knowledge of the parity of the occupied Bloch wave function at the time-reversal invariantΓpoint in the Brillouin zone.[24]This means that the SOI dominates the electronic nature of Sb,and one can understand it from the band structure (see Fig. 2). It is clear that the band gap is very small without SOI. While as the SOI is taken into consideration,the band gap is enlarged up to about 0.24 eV. We notice that the GGA calculations generally tend to underestimate the band gap for nonmetals.[34]Nevertheless,previous study with standard DFT correctly described the band properties of TIs, such as Bi2Se3[5,35]and Bi2Te3.[6]Therefore, our calculations still yield physically reasonable results about the general properties of band energy of Sb. Moreover,because of its topological electronic nature,we can expect the existence of gapless surface states. Therefore, in the following we will focus our attention on the properties of Sb(111)surface.

    Fig. 2. Bulk band structure without SOI (a) and with SOI (b). The energy zero is set at the valence band maximum.

    Generally speaking,the surface topological properties are sensitive to the thickness of the TI thin film. For thinner film,the coupling between the top and bottom surfaces is strong enough to open up a whole insulating gap. With increasing thickness,the inter-surface coupling becomes weaker and the topological features will be recovered. This is the same case for Sb(111)surface. As illustrated in Fig.3,we show the evolution of band structure of Sb films with the thickness from the single BL to six BLs. In a single BL film,the Sb electronic states (mainly from 5p orbital) split into two parts forming a gap around the Fermi level.The gap is as large as about 0.9 eV,implying the strong coupling between two surfaces. In the case of two BLs films,the splitting of 5p states decrease with the decline of the coupling, leading to a semimetallic electronic structure. Obviously, the topological features start to appear in the three BLs case,where a non-trivial helical edge state(ν0=1)below the Fermi level atΓpoint can be identified. This helical state is consist of two surface states degenerated atΓpoint but separated in energy elsewhere by SOI.[11]Nevertheless,it is noticeable that for the case of four BLs and five BLs films,the gaps are opened up again atΓpoint. This can be attributed to the inverse asymmetry of the films with four and five BLs. While the topological states should be recovered when the number of BLs of the film is multiples of three, which conserves the inverse symmetry. As expected,it can be seen that the topological states are recovered for six BLs,which are consistent with the previous computational and experimental results.[15]The double degenerate Sb(111) surface states contain a single Dirac cone at theΓpoint,which is robust and topologically protected by time-reversal symmetry.The Dirac point is about 0.16 eV below the Fermi level,within the bulk band gap. Compared with the experimental value of 0.23 eV,[2]the difference may arise from the subsurface defects observed in the experiment.

    Fig. 3. Surface band structure with one to six bilayer thickness. The energy zero is set at the valence band maximum.

    Various impurities may have different impact on the degeneracy and topological properties of Sb energy bands,which will be illustrated in the following discussions based on the six BLs film. It has been shown that the alloy Bi1-xSbxis a 3D TI.[24,25,36]Here it would be interesting to investigate the surface state properties of reduced Sb(111) surface with the existence of Bi as a nonmagnetic impurity. Moreover, as a comparison,a magnetic impurity(Mn atom)is also taken into consideration. During the calculations, thep(3×3) surface is adopted,and impurities are symmetrically introduced on both sides of the slab.

    We found that the substitutional Bi or Mn atoms take the position of one subsurface Sb2 atoms, and the adsorbed Mn atoms are found to be energetically stable at the hcp sites above Sb(111) surfaces. As depicted in the upper panels of Fig.4,the introduced Bi is about 0.06 °A lower than the adjacent Sb2 atom,and causes only slightly distortion of surrounding atoms. The substitutional Mn atom is 0.56 °A lower than the adjecent Sb2 atom,and causes the move of the surface Sb1 atom (0.31 °A downwards). The adsorbed Mn atom is higher than the outmost surface by 0.56 °A, and causes only slightly move of the surface atoms.

    Fig. 4. Structures of Sb(111) surfaces with impurities (upper panels)and surface charge density distributions (lower panels, in e/°A3) at the height of 2.0 °A above the Sb(111) surface: (a) Bi-substitutional, (b)Mn-substitutional and(c)Mn-adsorbed. The Bi and Mn atoms are represented by purple and orange balls,respectively.

    To explore the bonding information between impurities and surface, we calculated the charge density distributions of Sb(111)surfaces with impurities. As shown in Fig.4,the localized three-fold symmetric features can be identified from all of the surfaces,especially for the Mn-doped ones. For the Bisubstitutional surface, only tiny difference exists between the region above the Bi atom and others,and this can be attributed to that Bi and Sb belong to the same chemical group and possess the same number of valence electrons. As a result, the Bi-doped Sb(111) surface may maintain the topological features,which will be illustrated later by the band structure. For the Mn-doped surfaces, however, more evident different features can be observed. It is noticeable that the charge distribution is strongly depleted at the position just above the substitutional Mn atom,while the adsorbed Mn atom can be identified clearly by the charge accumulation. Keeping in mind the magnetism of Mn atom,we will see that the magnetic impurity can have significant effect on the surface states of Sb(111)surface.

    The band structure of Bi-doped Sb(111) surface is presented in Fig. 5(b). For comparison, in Fig. 5 we show the Sb bulk band structure projected onto the surface Brillouin zone, and also in next series of surface band structures. The band structure of stoichiometricp(3×3) Sb(111) surface is also shown in Fig.5(a). It is clear that the topological surface state remains to be robust despite of the existence of Bi impurity, and the Dirac point of this reduced surface almost stays at the same position as that of the stoichiometric surface,i.e.,residing in the bulk valence band gap.This can be attributed to the following reasons. (1)The time-reversal symmetry stands against nonmagnetic impurities. (2) The energy bands of Bidoped system remain degenerate thus keep gapless.Moreover,from the PDOS of Bi we determined that the doped Bi atom contributes little to the band structure near the Fermi level and the Dirac point, thus the topological features of Sb keep robust,which also consists with the fact that the alloy Bi1-xSbxis a 3D TI inherited from Sb.[24]

    Fig.5. The band structure of clean(a)and Bi substitutional(b)Sb(111)surface. Blue shaded areas correspond to the Sb bulk band structure projected onto the surface Brillouin zone.

    For magnetic Mn-doped Sb(111) surface, we found that the magnetic impurities can obviously lift the degeneracy protected by the time-reversal symmetry. For clarity,here we plot the lifted band structures of Mn-substitutional and adsorbed Sb(111) surfaces dividedly in Figs. 6 and 7, labeled by spinup and spin-down,respectively. It can be seen that both of the magnetic impurities eliminate the Dirac point by opening up a gap atΓpoint, corresponding to the position of band gap of the bulk valence band. As depicted by the PDOS (Figs. 6(c)and 7(c)), compared with the doped Bi atom, the magnetic d orbital of Mn atom contributes much to the states near the Dirac point, hence clearly breaks the time-reversal symmetry. As expected,[17]a ferromagnetic ground state is formed on the TI surface by the introduced magnetic Mn impurity. As to the aforementioned QAH effect appearing in TIs, the Mndoped HgTe[27]and Cr(Fe)-doped Bi2Se3[37]exhibit insulating magnetic state, and QAH effect emerges. However, we can see from the PDOS that the metallic states are obtained for Mn-doped Sb(111)surface,similar to that for Ti(V)-doped Bi2Se3,[37]which is topologically trivial.

    Fig. 6. The band structure of Mn-substitutional Sb(111) surface: (a)spin-up, (b) spin-down and (c) the PDOS of the Mn atomic d-bands.Blue shaded areas correspond to the Sb bulk band structure projected onto the surface Brillouin zone.

    Fig. 7. The band structure of Mn-adsorbed Sb(111) surface: (a) spinup, (b) spin-down and (c) the PDOS of the Mn atomic d-bands. Blue shaded areas correspond to the Sb bulk band structure projected onto the surface Brillouin zone.

    4. Conclusion

    In summary,we used the first-principles method to study the topological properties of Sb(111) surface. We found that the stoichiometric Sb(111)surface possesses single Dirac point protected by the time-reversal symmetry and inverse symmetry. And the topological states are layer dependent and keep robust for six bilayers film. Moreover, we revealed that the non-trivial topological states stand for non-magnetic substitutional Bi, while the substitutional or adsorbed magnetic Mn atom can obviously destroy the topological states by eliminating the Dirac point. The present work may contribute to the further study in topological insulator.

    猜你喜歡
    雙喜張平
    嘰嘰喳喳的小喜鵲
    山中送別
    寶藏(2021年8期)2021-09-15 02:19:44
    High-pressure elastic anisotropy and superconductivity of hafnium:A first-principles calculation*
    羊跑羔
    小小說月刊(2021年2期)2021-03-11 02:07:07
    母親
    寶藏(2021年11期)2021-01-01 06:17:20
    這是你爺倆
    金秋(2020年16期)2020-12-09 01:41:50
    Enhanced spin-dependent thermopower in a double-quantum-dot sandwiched between two-dimensional electron gases?
    神韻真切 意境深邃——崔白《雙喜圖》欣賞
    老年教育(2018年12期)2018-12-29 12:43:16
    張平書法作品選
    Mechanical Behavior of Bistable Bump Surface for Morphing Inlet
    内射极品少妇av片p| 国产白丝娇喘喷水9色精品| 欧美激情国产日韩精品一区| 日韩中文字幕欧美一区二区| 亚洲国产精品999在线| 国产免费av片在线观看野外av| 国产精品一及| 天美传媒精品一区二区| 中文字幕精品亚洲无线码一区| 男人狂女人下面高潮的视频| 国产精品电影一区二区三区| 网址你懂的国产日韩在线| 亚洲专区中文字幕在线| 色吧在线观看| 一区二区三区免费毛片| 成年女人毛片免费观看观看9| 亚洲人成网站高清观看| av福利片在线观看| avwww免费| 黄色视频,在线免费观看| 久久九九热精品免费| 色av中文字幕| 特级一级黄色大片| 人人妻人人澡欧美一区二区| 国产欧美日韩一区二区三| av在线天堂中文字幕| 男人的好看免费观看在线视频| 如何舔出高潮| 午夜免费男女啪啪视频观看 | 国产69精品久久久久777片| 人妻丰满熟妇av一区二区三区| 黄色配什么色好看| 无遮挡黄片免费观看| 色哟哟·www| a在线观看视频网站| 如何舔出高潮| 少妇熟女aⅴ在线视频| 日本与韩国留学比较| 国产国拍精品亚洲av在线观看| 久久午夜福利片| 亚洲av不卡在线观看| netflix在线观看网站| 12—13女人毛片做爰片一| 久久精品国产清高在天天线| 日韩欧美精品免费久久 | www.色视频.com| 狠狠狠狠99中文字幕| x7x7x7水蜜桃| 免费av观看视频| 亚洲精品在线美女| 亚洲自偷自拍三级| 夜夜爽天天搞| 国内久久婷婷六月综合欲色啪| 日韩国内少妇激情av| 99国产极品粉嫩在线观看| 亚洲国产欧美人成| 午夜激情福利司机影院| 国产精品亚洲美女久久久| 亚洲精品在线观看二区| 18禁在线播放成人免费| 极品教师在线视频| 国产精品1区2区在线观看.| 精华霜和精华液先用哪个| 亚洲最大成人av| 精品人妻熟女av久视频| 成人一区二区视频在线观看| 一区二区三区高清视频在线| 噜噜噜噜噜久久久久久91| av女优亚洲男人天堂| 精品久久久久久久久久免费视频| 人妻夜夜爽99麻豆av| 久久中文看片网| 欧美黑人巨大hd| 亚洲av电影不卡..在线观看| 国语自产精品视频在线第100页| 搡老岳熟女国产| 免费高清视频大片| 中文字幕精品亚洲无线码一区| 精品国内亚洲2022精品成人| 变态另类成人亚洲欧美熟女| 亚洲av.av天堂| 亚洲18禁久久av| 男插女下体视频免费在线播放| 日韩欧美国产在线观看| 1000部很黄的大片| 国产一区二区激情短视频| 麻豆成人午夜福利视频| 国产亚洲精品综合一区在线观看| 91av网一区二区| 午夜亚洲福利在线播放| 国产精品久久电影中文字幕| 变态另类成人亚洲欧美熟女| 88av欧美| 亚洲国产色片| 看片在线看免费视频| 12—13女人毛片做爰片一| 久久精品影院6| 一本一本综合久久| 少妇的逼水好多| 嫩草影视91久久| 亚洲18禁久久av| 午夜精品在线福利| 真实男女啪啪啪动态图| 免费在线观看影片大全网站| 国产一区二区三区在线臀色熟女| 亚洲av不卡在线观看| 一个人看视频在线观看www免费| 久久国产乱子伦精品免费另类| 国产精品,欧美在线| 日韩欧美免费精品| 精品99又大又爽又粗少妇毛片 | 亚洲国产精品999在线| 欧美性猛交╳xxx乱大交人| 一级黄片播放器| 乱码一卡2卡4卡精品| 五月伊人婷婷丁香| 日本 欧美在线| 亚洲精品乱码久久久v下载方式| 网址你懂的国产日韩在线| 搡女人真爽免费视频火全软件 | 日本 av在线| 岛国在线免费视频观看| 精品久久久久久久久久久久久| 黄色日韩在线| 一二三四社区在线视频社区8| 国产人妻一区二区三区在| 欧美潮喷喷水| 久久热精品热| 欧美性感艳星| 国产久久久一区二区三区| 国产精品98久久久久久宅男小说| 久久精品影院6| 欧美xxxx性猛交bbbb| 欧美日本视频| 国产真实伦视频高清在线观看 | 中出人妻视频一区二区| av天堂中文字幕网| 国产亚洲欧美在线一区二区| 蜜桃亚洲精品一区二区三区| 在线观看66精品国产| 一进一出好大好爽视频| 成人性生交大片免费视频hd| 国产在线男女| 欧美在线黄色| 欧美成人a在线观看| 色尼玛亚洲综合影院| 黄色日韩在线| 久久久久久久久久黄片| 国产麻豆成人av免费视频| 精品久久久久久久人妻蜜臀av| 亚洲 国产 在线| 国产精品自产拍在线观看55亚洲| 99热6这里只有精品| 中文字幕av在线有码专区| 自拍偷自拍亚洲精品老妇| 国产精品女同一区二区软件 | 色5月婷婷丁香| 午夜福利18| 国产精品爽爽va在线观看网站| 亚洲人成伊人成综合网2020| 成年版毛片免费区| 国产三级黄色录像| 亚洲人成网站在线播| 变态另类成人亚洲欧美熟女| 九九热线精品视视频播放| 国产69精品久久久久777片| 激情在线观看视频在线高清| 九色成人免费人妻av| 老司机午夜十八禁免费视频| 免费av不卡在线播放| 国产高清视频在线观看网站| 一级av片app| 成年版毛片免费区| 久久久久久国产a免费观看| 色视频www国产| 久久久久国产精品人妻aⅴ院| 五月伊人婷婷丁香| 国产淫片久久久久久久久 | 美女黄网站色视频| 一级黄片播放器| 欧美精品啪啪一区二区三区| 亚洲内射少妇av| 最新在线观看一区二区三区| .国产精品久久| 长腿黑丝高跟| 99久国产av精品| 国产视频一区二区在线看| 精品久久久久久久久av| 内地一区二区视频在线| 国产爱豆传媒在线观看| 中亚洲国语对白在线视频| 怎么达到女性高潮| 亚洲真实伦在线观看| 日韩av在线大香蕉| 免费av观看视频| 男人舔女人下体高潮全视频| 三级毛片av免费| 天天一区二区日本电影三级| 长腿黑丝高跟| 欧洲精品卡2卡3卡4卡5卡区| 亚洲专区中文字幕在线| 一区二区三区免费毛片| 好看av亚洲va欧美ⅴa在| 男女做爰动态图高潮gif福利片| 亚洲av免费高清在线观看| 成人精品一区二区免费| 免费电影在线观看免费观看| 桃色一区二区三区在线观看| 久久精品91蜜桃| 舔av片在线| 国产成人啪精品午夜网站| 国产免费一级a男人的天堂| 美女xxoo啪啪120秒动态图 | 噜噜噜噜噜久久久久久91| 中文字幕免费在线视频6| 亚洲人成网站在线播放欧美日韩| 亚洲内射少妇av| 成人鲁丝片一二三区免费| 亚洲色图av天堂| 欧美午夜高清在线| 成人av在线播放网站| 亚洲国产日韩欧美精品在线观看| 久久中文看片网| 亚洲人与动物交配视频| 三级男女做爰猛烈吃奶摸视频| 少妇的逼好多水| 久久精品国产99精品国产亚洲性色| 在线a可以看的网站| 波多野结衣高清作品| aaaaa片日本免费| 成人国产综合亚洲| 综合色av麻豆| 在线播放国产精品三级| 午夜福利在线在线| 国产亚洲av嫩草精品影院| 在线观看舔阴道视频| 一区福利在线观看| 中文字幕精品亚洲无线码一区| 国产精品一区二区三区四区免费观看 | 国内久久婷婷六月综合欲色啪| av在线蜜桃| 九九热线精品视视频播放| 91麻豆av在线| 成人国产一区最新在线观看| 亚洲精品久久国产高清桃花| 搡老熟女国产l中国老女人| 男女下面进入的视频免费午夜| 性色avwww在线观看| 99精品在免费线老司机午夜| 男女下面进入的视频免费午夜| 好男人在线观看高清免费视频| 看黄色毛片网站| 18禁黄网站禁片免费观看直播| 久久久久九九精品影院| 麻豆一二三区av精品| 日韩成人在线观看一区二区三区| 一本久久中文字幕| 在线免费观看不下载黄p国产 | 午夜a级毛片| 久久久国产成人免费| 国产伦在线观看视频一区| 国产私拍福利视频在线观看| 欧美日韩亚洲国产一区二区在线观看| 婷婷精品国产亚洲av在线| 色精品久久人妻99蜜桃| 欧美日韩国产亚洲二区| 国产精品一区二区三区四区久久| 国产精品永久免费网站| 两个人的视频大全免费| 日韩av在线大香蕉| 亚洲一区二区三区不卡视频| 精品久久久久久久久av| 午夜久久久久精精品| 成人国产一区最新在线观看| 男插女下体视频免费在线播放| 国产午夜精品论理片| 久久国产乱子伦精品免费另类| 黄色视频,在线免费观看| 一区二区三区激情视频| 三级国产精品欧美在线观看| 成人三级黄色视频| 深爱激情五月婷婷| 少妇人妻精品综合一区二区 | 性插视频无遮挡在线免费观看| 午夜激情福利司机影院| 99热这里只有是精品50| 欧美日韩瑟瑟在线播放| 日韩欧美 国产精品| 亚州av有码| 久久午夜福利片| 人妻久久中文字幕网| 亚洲一区二区三区不卡视频| 91久久精品电影网| 欧美黄色片欧美黄色片| 欧美高清性xxxxhd video| 午夜福利在线在线| 99在线视频只有这里精品首页| 欧美激情国产日韩精品一区| 嫩草影院精品99| 午夜精品一区二区三区免费看| 男女下面进入的视频免费午夜| 中文字幕精品亚洲无线码一区| 夜夜看夜夜爽夜夜摸| 一夜夜www| 午夜视频国产福利| 亚洲熟妇中文字幕五十中出| 国产又黄又爽又无遮挡在线| 久久亚洲精品不卡| 婷婷丁香在线五月| 美女大奶头视频| 午夜激情福利司机影院| 精品人妻偷拍中文字幕| 日韩有码中文字幕| 国产精品久久久久久久电影| 嫩草影院入口| 伦理电影大哥的女人| 听说在线观看完整版免费高清| 精品一区二区三区av网在线观看| 国产主播在线观看一区二区| 亚洲av不卡在线观看| 午夜福利18| 精品人妻熟女av久视频| 久久久久久九九精品二区国产| 淫秽高清视频在线观看| 午夜激情欧美在线| 亚洲黑人精品在线| 18禁黄网站禁片午夜丰满| 久久精品国产亚洲av天美| 亚洲国产精品合色在线| 精品人妻1区二区| 国产精品爽爽va在线观看网站| 狂野欧美白嫩少妇大欣赏| 丁香六月欧美| 国产极品精品免费视频能看的| 美女黄网站色视频| 亚洲国产色片| 高潮久久久久久久久久久不卡| 亚洲精品在线美女| 九色成人免费人妻av| 亚洲人与动物交配视频| 9191精品国产免费久久| 久久人人精品亚洲av| 嫩草影院新地址| 亚洲一区高清亚洲精品| 内射极品少妇av片p| 午夜a级毛片| 成人av在线播放网站| 熟女电影av网| 最后的刺客免费高清国语| 欧美激情久久久久久爽电影| 黄色视频,在线免费观看| 成人一区二区视频在线观看| 国产精品一及| 国产在视频线在精品| 97人妻精品一区二区三区麻豆| 久99久视频精品免费| 欧美区成人在线视频| 亚洲av第一区精品v没综合| 真人做人爱边吃奶动态| 琪琪午夜伦伦电影理论片6080| 国产综合懂色| 国产91精品成人一区二区三区| 精品99又大又爽又粗少妇毛片 | 免费电影在线观看免费观看| 99久久成人亚洲精品观看| 成人三级黄色视频| 女人被狂操c到高潮| 国产av在哪里看| 精品人妻熟女av久视频| 中文字幕av成人在线电影| 免费观看的影片在线观看| 在线观看免费视频日本深夜| 欧美zozozo另类| 一个人看视频在线观看www免费| 国产精品精品国产色婷婷| 啦啦啦韩国在线观看视频| 国产私拍福利视频在线观看| 国产成人啪精品午夜网站| 丁香欧美五月| 又爽又黄无遮挡网站| 亚洲精品在线观看二区| 夜夜夜夜夜久久久久| 亚洲 国产 在线| 可以在线观看的亚洲视频| 精品一区二区三区人妻视频| 禁无遮挡网站| 国产午夜福利久久久久久| 日本一二三区视频观看| 麻豆成人av在线观看| 欧美成人一区二区免费高清观看| 国产亚洲精品久久久久久毛片| 18禁裸乳无遮挡免费网站照片| 一级黄色大片毛片| 国产成人影院久久av| 亚洲中文字幕日韩| 久9热在线精品视频| 人妻夜夜爽99麻豆av| 简卡轻食公司| 此物有八面人人有两片| 国产中年淑女户外野战色| 婷婷精品国产亚洲av在线| xxxwww97欧美| 午夜福利18| 国产精品久久久久久久久免 | 国内精品久久久久久久电影| 自拍偷自拍亚洲精品老妇| 首页视频小说图片口味搜索| 深夜a级毛片| 99久国产av精品| 精华霜和精华液先用哪个| 国产v大片淫在线免费观看| 久久精品国产自在天天线| 婷婷丁香在线五月| 国产精品久久久久久精品电影| 国产精品永久免费网站| 在线免费观看的www视频| 在现免费观看毛片| 亚洲 国产 在线| 午夜激情福利司机影院| 精品人妻视频免费看| 久久精品国产99精品国产亚洲性色| 午夜福利18| 免费看日本二区| 日本与韩国留学比较| 亚洲人成伊人成综合网2020| 色哟哟哟哟哟哟| 久久久久国内视频| 三级国产精品欧美在线观看| 无人区码免费观看不卡| 日本五十路高清| 首页视频小说图片口味搜索| 婷婷六月久久综合丁香| 亚洲精品乱码久久久v下载方式| 99久久精品热视频| 中文字幕久久专区| 国产一区二区三区在线臀色熟女| 成人高潮视频无遮挡免费网站| 久久久久久久精品吃奶| 久久久久国产精品人妻aⅴ院| 亚洲狠狠婷婷综合久久图片| 午夜精品一区二区三区免费看| 精品人妻一区二区三区麻豆 | 精品久久久久久,| 欧美成狂野欧美在线观看| 又黄又爽又免费观看的视频| 精品久久国产蜜桃| 国产又黄又爽又无遮挡在线| 色噜噜av男人的天堂激情| 两人在一起打扑克的视频| 两个人的视频大全免费| 国模一区二区三区四区视频| 一个人看视频在线观看www免费| 久久久久久国产a免费观看| 99热这里只有是精品50| 国产免费av片在线观看野外av| 色综合欧美亚洲国产小说| 99国产极品粉嫩在线观看| 麻豆国产av国片精品| 欧美三级亚洲精品| 久久久久国内视频| 免费av不卡在线播放| 成人午夜高清在线视频| 久久香蕉精品热| 亚洲精华国产精华精| 少妇熟女aⅴ在线视频| 午夜福利在线观看吧| 一级黄色大片毛片| 亚洲欧美清纯卡通| 亚洲成人免费电影在线观看| 中亚洲国语对白在线视频| 全区人妻精品视频| 一边摸一边抽搐一进一小说| 欧美激情久久久久久爽电影| 成年人黄色毛片网站| 午夜福利高清视频| 久久久国产成人精品二区| 亚洲精品一区av在线观看| 99久国产av精品| 97人妻精品一区二区三区麻豆| 精品久久久久久久久久久久久| 亚洲国产欧洲综合997久久,| 看免费av毛片| 中文字幕熟女人妻在线| 国产精品不卡视频一区二区 | 蜜桃亚洲精品一区二区三区| 午夜福利18| 亚洲美女搞黄在线观看 | 成人国产综合亚洲| 国产亚洲精品久久久com| 日韩欧美国产一区二区入口| 在线免费观看不下载黄p国产 | 深夜精品福利| 9191精品国产免费久久| 偷拍熟女少妇极品色| 看十八女毛片水多多多| 欧美zozozo另类| 成人特级黄色片久久久久久久| 欧美日韩福利视频一区二区| 成人国产一区最新在线观看| 校园春色视频在线观看| 国产真实伦视频高清在线观看 | 欧美另类亚洲清纯唯美| 五月玫瑰六月丁香| 9191精品国产免费久久| 在线观看美女被高潮喷水网站 | 久久人人精品亚洲av| 最新在线观看一区二区三区| 草草在线视频免费看| 亚洲男人的天堂狠狠| 国产成年人精品一区二区| 别揉我奶头 嗯啊视频| 美女高潮喷水抽搐中文字幕| 午夜视频国产福利| 极品教师在线免费播放| 白带黄色成豆腐渣| 亚洲精品影视一区二区三区av| 精品不卡国产一区二区三区| 国产成人av教育| 97碰自拍视频| 亚洲久久久久久中文字幕| 国产高清视频在线观看网站| 一本综合久久免费| 女人十人毛片免费观看3o分钟| 三级国产精品欧美在线观看| 亚洲一区高清亚洲精品| 久久精品夜夜夜夜夜久久蜜豆| 国产成人a区在线观看| 美女黄网站色视频| 天堂网av新在线| 国产欧美日韩精品亚洲av| 精品国内亚洲2022精品成人| 久久久久久大精品| 成人国产综合亚洲| 午夜精品久久久久久毛片777| 国内少妇人妻偷人精品xxx网站| 美女高潮的动态| 久久久久久久久大av| 国产大屁股一区二区在线视频| 99在线人妻在线中文字幕| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲国产精品成人综合色| 麻豆久久精品国产亚洲av| 又爽又黄无遮挡网站| 日韩欧美精品v在线| 国产 一区 欧美 日韩| 久久精品影院6| 黄色一级大片看看| av女优亚洲男人天堂| 欧美又色又爽又黄视频| 亚洲男人的天堂狠狠| 变态另类丝袜制服| 人人妻人人看人人澡| 亚洲精华国产精华精| 欧美区成人在线视频| 真人一进一出gif抽搐免费| 少妇人妻一区二区三区视频| 国产精品久久电影中文字幕| 国产一区二区激情短视频| 成人国产综合亚洲| 女人十人毛片免费观看3o分钟| 麻豆久久精品国产亚洲av| 国产精品美女特级片免费视频播放器| 男女下面进入的视频免费午夜| 天堂av国产一区二区熟女人妻| 欧美性感艳星| 亚洲 欧美 日韩 在线 免费| 久久性视频一级片| 成人毛片a级毛片在线播放| 欧洲精品卡2卡3卡4卡5卡区| 深夜精品福利| 天天一区二区日本电影三级| 国产精品嫩草影院av在线观看 | 亚洲国产日韩欧美精品在线观看| 欧美性猛交╳xxx乱大交人| 国产精品亚洲一级av第二区| 成人鲁丝片一二三区免费| 88av欧美| 国产毛片a区久久久久| 99在线视频只有这里精品首页| 99国产极品粉嫩在线观看| 中文在线观看免费www的网站| 国产精品精品国产色婷婷| 黄色一级大片看看| 18禁黄网站禁片午夜丰满| 99久久精品热视频| 精品国内亚洲2022精品成人| 两个人视频免费观看高清| 午夜福利高清视频| 男人狂女人下面高潮的视频| 日韩欧美三级三区| 好看av亚洲va欧美ⅴa在| 亚洲av熟女| 久久热精品热| 亚洲第一电影网av| 国产精品av视频在线免费观看| 午夜日韩欧美国产| 午夜免费激情av| 老熟妇仑乱视频hdxx| 日韩欧美在线二视频| 欧美一区二区国产精品久久精品| 亚洲最大成人中文| 简卡轻食公司| 欧美在线黄色| 午夜久久久久精精品| 乱人视频在线观看| 亚洲av日韩精品久久久久久密| 久久精品国产亚洲av涩爱 | a级一级毛片免费在线观看| 亚洲性夜色夜夜综合| h日本视频在线播放| 久久亚洲真实| 变态另类成人亚洲欧美熟女| 美女高潮的动态| 亚洲av成人av| 特级一级黄色大片|