• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Tunable electronic properties of GaS-SnS2 heterostructure by strain and electric field

    2022-04-12 03:44:46DaHuaRen任達(dá)華QiangLi李強(qiáng)KaiQian錢楷andXingYiTan譚興毅
    Chinese Physics B 2022年4期
    關(guān)鍵詞:任達(dá)華

    Da-Hua Ren(任達(dá)華) Qiang Li(李強(qiáng)) Kai Qian(錢楷) and Xing-Yi Tan(譚興毅)

    1School of Information Engineering,Hubei Minzu University,Enshi 44500,China

    2Science of Physics and Technology,Wuhan University,Wuhan 430072,China

    3School of Advanced Materials and Mechatronic Engineering,Hubei Minzu University,Enshi 44500,China

    4Department of Physics,Chongqing Three Gorges University,Wanzhou 404100,China

    Keywords: GaS-SnS2 heterostructure,type-II band alignment,optical properties,density functional theory

    1. Introduction

    Van der Waals (vdW) heterostructures can be used in unusual electronic devices because of their peculiar physical properties and excellent performances.[1]Additionally,vertically stacked heterostructures have innovative applications in electronic devices,such as ultrathin photodetectors,[2]solar cells,[3]memory devices,[4]flexible sensors, and transistors.[5,6]Specifically, two-dimensional (2D) vdW heterostructure with type-II band alignment has promising potentials in photovoltaics devices and photocatalysts[7-11]due to their fascinating electronic and optical properties. In type-II heterostructures, the photogenerated holes and electrons are spatially located in different layers. As a result, the recombination of carriers can be effectively prevented and the light energy utilization is significantly enhanced.[12]Moreover, GaS is a typical layered group III-VI compound and each layer is composed of S-Ga-Ga-S repeating units along thecaxis withD3hsymmetry. The interlayer interactions between layers belong in weak vdW force. The GaS can be used for a promising near-blue light emitting devices because of the indirect band gap of 2.5 eV.[13]More interestingly, monolayer GaS can be easily mechanically cleavaged.[14]The photodetectors based on GaS nanosheet have higher photoresponsivity than graphene, 2D MoS2.[15]Recent researches indicate that the vdW heterostructures based on monolayer GaS are able to exhibit type-II band alignment, such as GaS-GaSe,[16]GaSMoSe2,[17]and GaS-InS.[18]

    Furthermore,tin disulfide(SnS2)has attracted intense attention in solar energy conversion, optoelectronics, and photocatalyst because of its CdI2-type layered structure with a sustainable band gap (2.2 eV-2.35 eV) and high electrical conductivity.[19]The SnS2consists of an S-Sn-S triple layer and the interlayer interaction belongs in the vdW force. The SnS2single-layer is synthesized by liquid exfoliation. The experimental researches indicate that the SnS2single-layer is of a semiconductor with a band gap of 2.29 eV and can be used in visible-light water splitting due to the high photo-conversion efficiency.[20]However,an inconvenient band edge alignment of pristine SnS2hinders the efficient photocatalyst from splitting water.[21]Recent efforts have demonstrated that the electronic and optical properties of SnS2can be greatly tailored by external means, such as doping,[22]electric field,[23]and stacking heterostructure with other 2D materials.[24]

    Up to now,the combination of SnS2with different semiconductors, such as SnS2-TiO2,[24]SnS2-g-C3N4,[25]SnS2-SnO2,[26]SnS2-RGO,[27]and ZrS2-SnS2,[28]has been reported to enhance photocatalytic performance. In addition,the heterostructure based on 2D SnS2,such as SnS2-BiPO4[29]heterostructure,are able to be formed into a type-II band structure, which shows good electronic and optical behaviors in photocatalyst and optoelectronic applications. Even though there exist a few of researches on 2D heterostructure based on 2D SnS2,the understanding of the role and evolution of SnS2in the GaS-SnS2heterostrucutre has not been demonstrated.

    Herein,we constructe a novel 2D GaS-SnS2heterostructure and study the structural, electronic, optical, photocalytic properties. Note that 2D SnS2, together with 2D GaS, can form a vdW heterostructure due to their similar structures and same lattice constants. Generally,it is also worth studying the superior structure and excellent properties of GaS-SnS2heterostructure, which could potentially provide a platform for applications in photocalyst and optoelectronic devices.

    2. Computational methods

    Ab initio calculations were performed within the framework of density functional theory (DFT).[30,31]as implemented in the Viennaab initiosimulations package(VASP).[32]Electronic exchange and correlation effects were described with the Perdew-Burke-Ernzerhof (PBE)[33]functional of generalized gradient approximation (GGA)[34]and HSE06[35]hybrid function. Electron-ion interactions were treated with the projector augmented wave (PAW)method,[36,37]with an energy cutoff being 500 eV and Brillouin zone sampling ofK-mesh set to be 11×11×1 for relaxation. TheK-mesh points for density of states (DOS)and energy band structure calculations were assumed to be 13×13×1, and the energy criterion was set to be 105eV until the residual force was smaller than 103eV/°A.Especially,the vacuum layer thickness is fixed at more than 25 °A to avoid spurious interactions in the neighboring images. As the longrange vdW interaction is important for holding the 2D heterostructure together, the vdW-D3 approach[38]was used to describe long-range electron correlation effects.

    The optical properties of 2D GaS-SnS2heterostructures are described by the complex dielectric functionε(ω) =ε1(ω)+iε2(ω),whereε1(ω)andε2(ω)are the real part and the imaginary part,respectively. At the same time,the imaginary part is calculated by summing up all possible transitions from the occupied to the unoccupied states,which is related to the band structure in the absorption behaviors.[39]The imaginary part is given by

    wherePis the principal value. The absorption coefficient is then obtained as follows:[40,41]

    3. Results and discussion

    3.1. Stability and structures

    Stacking patterns can modulate the electronic properties of the vdW heterostructures. In stacking (AA), the Sn atom is placed on the top of Ga atom, while the S atom in SnS2layer is situated on the top of S atom in GaS layer. In stacking(AB),the S atom in SnS2layer is placed on the top of Ga atom while the Sn atom is located at the hexagonal site. In stacking (AC), the Sn atom is placed on the top of S atom in GaS layer, while the S atom in SnS2layer is settled at the hexagonal site. In stacking (AD), the Sn atom is placed on the top of S atom in GaS layer while the S atom in SnS2layer lies on the top of Ga atom. We check the structural stability of these heterostructures by calculating their binding energy values,interlayer distances and thermal stabilities. Therefore,a typical stacking configuration (AA) is constructed due to the lowest adhesion energy and thermal stability. The relaxed structure is shown in Fig.1. After relaxation,the equilibrium lattice constants of GaS monolayer(a=b=3.585 °A),SnS2monolayer(a=b=3.699 °A) and AA stacking GaS-SnS2heterostructure (a=b= 3.636 °A), calculated with GGA-PBE, are in consistence with other reported results.[14,16-19]It is clear that the hexagonal unit parameter of GaS-SnS2heterostructure is 3.636 °A.The lattice mismatch of GaS-SnS2heterostructure is 1.7%,meaning that the structure of GaS-SnS2heterostructure is acceptable.

    To describe the vdW interaction,the interface binding energy(ΔE)of GaS-SnS2heterostructure is calculated to be

    where ΔErefers to the interface binding energy at the interface of GaS-SnS2heterostructure;EHS,EGaS,ESnS2,Srepresent respectively the total energy of heterostructure, GaS monolayer, SnS2monolayer, the interface areas of the heterostructure. Obviously, the interface binding energy of GaS-SnS2heterostructure is-27.8 meV/°A2, demonstrating that the interaction between two layers is physically vdW force. The interface binding energy is negative,suggesting that the GaSSnS2heterostructure has favorable energy during the formation. In addition,the AIMD simulation of the GaS-SnS2heterostructure for the most favorable stacking AA pattern is also performed to confirm the thermal stability at room temperature as can be seen in Fig.2. Obviously,the variation of total energy of the GaS-SnS2heterostructure is quite small during 6800 fs,indicating that the GaS-SnS2heterostructure is thermally stable at room temperature.

    Fig.1. Relaxed structures of four typical stacking patterns of GaS-SnS2 heterostructure,with red,yellow,and blue spheres representing Ga,S,and Sn atoms,respectively.

    Fig.2. Thermal stability of GaS-SnS2 heterostructure.

    As shown in Fig.3,the optimal distance between S atom in the GaS layer and S atom in the SnS2layer is 3.705 °A,meaning that no bonds between S atoms are formed and this heterostructure is formed by the same magnitude order of vdW forces as typical vdW graphite.[42]

    Fig. 3. Plot for the 4-th order polynomial fit interface binding energy as a function of interlayer distance of GaS-SnS2 heterostructure.

    3.2. Electronic properties

    In the following, projection-resolved band structures of GaS monolayer, SnS2monolayer, GaS-SnS2heterostructure are depicted in Fig. 4. The GaS-SnS2heterostructure is an indirect band gap semiconductor. The valence band maximum (VBM) and the conduction band minimum (CBM) of the GaS-SnS2heterostructure are located at theMpoint andK →Gof Brillouin zone (BZ). The band gap of GaS-SnS2heterostructure is 1.82 eV from the HSE06 calculation,smaller than those of both individual GaS (3.19 eV) monolayer and individual SnS2(2.31 eV)monolayer,which accord well with the theoretical values of GaS(3.29 eV),[15]SnS2(2.39 eV).[43]Specially,GaS-SnS2heterostructure has a type-II band alignment, which is beneficial to separating the photogenerated holes and electrons in different layers, preventing the carriers from being recombined, and enhancing the light energy utilization. Therefore, the band gap of the GaS-SnS2heterostructure can be significantly changed by vertically stacking the heterostructure,which can provide a good opportunity to work on band engineering and photoelectronic device designs.

    Fig. 4. Projection-resolved band structure of (a) GaS monolayer, (b) SnS2 monolyer,and(c)GaS-SnS2 heterostructure,with red and blue lines denoting contributions from GaS and SnS2 layers,respectively.

    As reflected in the projection-resolved band structure,the band gap of GaS monolayer decreases due to the downshift of CBM atMpoint as well as the upshift of VBM atK →Gpoint. The contribution of VBM of GaS-SnS2heterostructure is GaS layer and that of CBM is SnS2layer,in which the red and blue lines present the DOS of GaS and SnS2layer in GaS-SnS2heterostructure,respectively,in Fig.5. Obviously,in the GaS-SnS2heterostructure, the VBM and CBM are respectively confined in GaS and SnS2layer,respectively,indicating that the GaS-SnS2heterostructure has a type-II band alignment.

    Fig.5. Projected density of states(PDOS)of GaS monolayer,SnS2 monolayer, GaS-SnS2 heterostructure, where Fermi level is set to zero as indicated by the black dashed line.

    3.3. Effect of external electric field and biaxial strain on band gap of GaS-SnS222 heterostructure

    External electric field is extensively considered as an efficient strategy to expand the semiconductors with desirable band gap into photoelectronic devices. Therefore, it is extremely important that an external electric field (Eext) be applied to changing the band gap of GaS-SnS2heterostructure as depicted in Fig.6. The band gap of GaS-SnS2heterostructure, which remains indirect semiconductor, changes a lot in theEextrange from-0.1 V/°A to 0.1 V/°A.Note that the electric field direction from the bottom (GaS layer) to the top (SnS2layer) is the positiveZdirection ofEext, perpendicular to the interface. The band gap decreases from-0.1 V/°A to 0.1 V/°A,which accelerates electrons(holes)from the conduction band-CB(valence band-VB)of the SnS2(GaS)layer to the CB(VB)of the GaS(SnS2)layer as shown in Fig.6(b).

    Fig.6. Variation of(a)band gap and(b)band alignment of GaS-SnS2 heterostructure with external electric field.

    Biaxial strain is effectively able to tailor the electronic performance of heterostructure. Here, the effect of biaxial strain from-8% to 10% on the electronic property of GaSSnS2heterostructure is discussed, namely the corresponding lattice parameter of the heterostrucutre unit cell is effectively modified. Fortunately,the structure of the heterostructure under biaxial strain is successfully relaxed and has the hexagonal lattice symmetry according to the same state of the irreducible Brillouin zone. The change of the band gap under biaxial strain is shown in Fig. 7. As the compress strain increases from-4% to-8%, the band gap first decreases, for the VBM increases more rapidly than the CBM.And the compress strain increases from 0 to-4%, the band gap then increases due to the more fast-growing CBM. Meanwhile, the band gap decreases monotonically when the tensile strain increases from 0 to 10%due to the CBM moving more speedily down to fermi level than the VBM.

    Although the outermost two S layers in the GaS-SnS2heterostructure have the same electronegativity, the sixth Sn layer on the SnS2side has greater electronegativity (2.44e)than the second Ga layer on the GaS side(2.14e). Therefore,the electrons at the interface are depleted on the GaS side but accumulated on the SnS2side,forming a built-in electric field from GaS layer to SnS2layer. The smaller charge transfer at the interface leads to the weaker interaction between Sn and Ga atoms.

    Fig.7. Variation of(a)band gap and(b)band alignment with biaxial strain of GaS-SnS2 heterostructure.

    Fig.8. (a)Charge density difference and(b)planar-averaged charge density difference of GaS-SnS2 heterostructure along Z direction.

    The planar-averaged charge density difference along theZdirection is described as Δρ=ρGaS-SnS2-ρGaS-ρSnS2,where,ρGaS-SnS2,ρGaS,ρSnS2are the planar-averaged charge densities of GaS-SnS2heterostructure, GaS monolayer, and SnS2monolayer. As shown in Fig. 8, the positive value and the negative value represent the charge accumulation and the charge depletion, respectively. Both electrons and holes under built-in electric field move towards the opposite directions,which can accelerate the separation of photo-generated electrons or holes to improve photocatalytic activity.

    3.4. Photocatalyst and absorption behaviors

    The absorption coefficient of GaS-SnS2heterostructure is calculated,and the results are shown in Fig.9(a). It is clear that the first peak in the absorption spectrum of GaS-SnS2heterostructure is locates at 2.25 eV,which is mainly contributed by the SnS2layer. The absorption behavior of GaS-SnS2heterostructure is more improved than that of the individual GaS monlayer and SnS2monolayer. The absorption spectrum of GaS-SnS2heterostructure covers the visible light, which makes it well suitable for the application of optoelectronic devices in visible light region.

    Fig. 9. (a) Absorption spectra of GaS-SnS2 heterostructure and (b)schematic migrating carrier.

    A schematic plot to depict the dynamic process of photogenerated carrier at the GaS-SnS2interface is shown in Fig. 9(b). In the GaS-SnS2heterostructure, the photogenerated electrons of the GaS layer start to transfer to the SnS2layer in the conduction band,which are motivated by the conduction band offset (CBO) (1.45 eV). Meanwhile, the photogenerated holes move from the valence band of the SnS2layer into the GaS layer, which are driven by a large valence band offset (VBO) (0.57 eV). Hence, the GaS-SnS2heterostructure, exhibiting a type-II band alignment, can be utilized as a photocatalyst.

    As is well known,the lifetime of photogenerated carriers is significantly influenced by the build-in electric field.Hence,build-in electric field induced by ground state charge transfer are investigated based on bader charge analysis.[44]The charge transferring from the GaS layer to the SnS2layer is 0.938e, leading to an electric field from the GaS layer to the SnS2layer. This electric field will promote interlayer charge transfer and prohibit carrier recombination, favoring a good light harvesting efficiency.

    4. Conclusions

    In this work,the electronic and optical properties of GaSSnS2heterostructure have been investigated with density functional theory. It is found that the hexagonal GaS-SnS2heterostructure is a stable semiconductor with a suitable indirect band gap. Interestingly, the GaS-SnS2heterostructure has a type-II band alignment, which is beneficial to photocatalyst.In the GaS-SnS2heterostructure,the charge transferring from the GaS layer to the SnS2layer is 0.938ebased on bader charge analysis, forming a build-in electric field for charge separation.The absorption behavior of GaS-SnS2heterostructure is enhanced in comparison with that of the individual GaS monlayer and SnS2monolayer,indicating that the GaS-SnS2heterostructure is very efficient at absorbing the visible light to expand the application into photocatalyst and opto-electronic devices.

    Acknowledgements

    Project supported by the National Natural Science Foundation of China (Grant No. 1186040026), the Incubation Project for High-Level Scientific Research Achievements of Hubei Minzu University, China (Grant No. 4205009), and the Fund of the Educational Commission of Hubei Province,China(Grant No.T201914).

    猜你喜歡
    任達(dá)華
    Band alignment in SiC-based one-dimensional van der Waals homojunctions?
    腳踏500雙皮鞋一路走來,任達(dá)華戲里戲外纖塵不染
    任達(dá)華:抱著學(xué)習(xí)的態(tài)度在內(nèi)地拍戲
    《密戰(zhàn)》首映 任達(dá)華摸郭富城肌肉
    《密戰(zhàn)》首映 任達(dá)華摸郭富城肌肉
    《極致追擊》 昆凌感恩任達(dá)華“護(hù)腹”
    任達(dá)華:甜蜜老爸
    cookie world(2010年7期)2010-08-12 01:41:26
    影帝任達(dá)華:愛妻永遠(yuǎn)是我的“女王”
    家庭百事通(2010年6期)2010-04-29 00:44:03
    譚詠麟 曾志偉 任達(dá)華
    電影畫刊(1999年10期)1999-06-05 14:43:50
    人人妻人人爽人人添夜夜欢视频| 久久人妻熟女aⅴ| 91麻豆精品激情在线观看国产 | 国产在线一区二区三区精| 久久久久久免费高清国产稀缺| 欧美激情久久久久久爽电影 | 老司机午夜十八禁免费视频| 两人在一起打扑克的视频| 怎么达到女性高潮| 亚洲五月色婷婷综合| 欧美精品高潮呻吟av久久| 女性生殖器流出的白浆| 免费不卡黄色视频| 午夜91福利影院| 三上悠亚av全集在线观看| 99热只有精品国产| 中国美女看黄片| 熟女少妇亚洲综合色aaa.| 无限看片的www在线观看| 自线自在国产av| 亚洲精品美女久久久久99蜜臀| 久久天躁狠狠躁夜夜2o2o| 狂野欧美激情性xxxx| 色播在线永久视频| 美女视频免费永久观看网站| 久久久水蜜桃国产精品网| 在线观看免费日韩欧美大片| 在线播放国产精品三级| 日本黄色视频三级网站网址 | 人人澡人人妻人| 侵犯人妻中文字幕一二三四区| 精品一区二区三卡| 最近最新中文字幕大全免费视频| 午夜久久久在线观看| 亚洲一区中文字幕在线| 午夜福利一区二区在线看| 69av精品久久久久久| 欧美黄色淫秽网站| 无限看片的www在线观看| 久久久久久人人人人人| 欧美日韩瑟瑟在线播放| 国产精品 国内视频| 两性夫妻黄色片| 黑人猛操日本美女一级片| 又黄又爽又免费观看的视频| 午夜福利一区二区在线看| 久久亚洲真实| www.精华液| 欧美精品啪啪一区二区三区| 国产真人三级小视频在线观看| 男女之事视频高清在线观看| 久久久久国产一级毛片高清牌| 美国免费a级毛片| 99国产极品粉嫩在线观看| 90打野战视频偷拍视频| 久久精品国产99精品国产亚洲性色 | 免费少妇av软件| 精品国产乱码久久久久久男人| 亚洲免费av在线视频| 搡老熟女国产l中国老女人| av中文乱码字幕在线| 91成年电影在线观看| 视频区图区小说| 久久国产亚洲av麻豆专区| 女人被躁到高潮嗷嗷叫费观| 精品久久久久久久毛片微露脸| 视频区图区小说| 午夜日韩欧美国产| 精品一区二区三卡| 黄片大片在线免费观看| 中文字幕av电影在线播放| 国产高清视频在线播放一区| 日韩视频一区二区在线观看| 99久久综合精品五月天人人| 成年人午夜在线观看视频| 亚洲国产看品久久| 午夜福利在线观看吧| 欧美另类亚洲清纯唯美| 亚洲熟女毛片儿| 亚洲成av片中文字幕在线观看| 国产色视频综合| 亚洲在线自拍视频| 伊人久久大香线蕉亚洲五| 亚洲人成77777在线视频| 老司机午夜十八禁免费视频| 精品福利观看| 国产精品香港三级国产av潘金莲| 满18在线观看网站| 国产成人啪精品午夜网站| 777久久人妻少妇嫩草av网站| 久久亚洲精品不卡| 桃红色精品国产亚洲av| 一级毛片精品| 波多野结衣av一区二区av| 亚洲欧美一区二区三区黑人| 美女扒开内裤让男人捅视频| 亚洲欧美激情在线| 美女高潮到喷水免费观看| 三级毛片av免费| 王馨瑶露胸无遮挡在线观看| 波多野结衣av一区二区av| 亚洲av熟女| 午夜成年电影在线免费观看| 欧美日韩亚洲高清精品| 日韩熟女老妇一区二区性免费视频| 午夜老司机福利片| 在线十欧美十亚洲十日本专区| 国产又色又爽无遮挡免费看| tocl精华| 久久精品亚洲精品国产色婷小说| 18禁国产床啪视频网站| 精品熟女少妇八av免费久了| 美国免费a级毛片| 国产又色又爽无遮挡免费看| 免费观看a级毛片全部| 美女福利国产在线| 日韩精品免费视频一区二区三区| 午夜福利在线观看吧| 午夜免费鲁丝| 国产一区有黄有色的免费视频| 国产成人精品久久二区二区91| 国产精品久久电影中文字幕 | 一夜夜www| 国产男女内射视频| 飞空精品影院首页| 国产伦人伦偷精品视频| 久久人妻av系列| 悠悠久久av| 人人妻人人澡人人爽人人夜夜| 国产亚洲欧美98| 女性被躁到高潮视频| 久久精品国产亚洲av香蕉五月 | 人人妻,人人澡人人爽秒播| 狠狠婷婷综合久久久久久88av| 久久久国产一区二区| 黑人巨大精品欧美一区二区mp4| 99re6热这里在线精品视频| 一进一出抽搐动态| 在线十欧美十亚洲十日本专区| 国产免费av片在线观看野外av| 欧美成狂野欧美在线观看| 少妇猛男粗大的猛烈进出视频| 村上凉子中文字幕在线| 午夜福利在线观看吧| av国产精品久久久久影院| 久久精品国产a三级三级三级| 天堂中文最新版在线下载| 国产片内射在线| 亚洲精品国产区一区二| 性色av乱码一区二区三区2| 亚洲国产中文字幕在线视频| ponron亚洲| 欧美日韩亚洲综合一区二区三区_| 婷婷丁香在线五月| 国产亚洲精品久久久久久毛片 | 国产免费男女视频| 免费在线观看完整版高清| 99精品久久久久人妻精品| 咕卡用的链子| 精品乱码久久久久久99久播| 久久草成人影院| 亚洲五月色婷婷综合| 国产一区二区激情短视频| 国产成人欧美在线观看 | 国产国语露脸激情在线看| 午夜福利影视在线免费观看| 99热只有精品国产| 精品久久蜜臀av无| 黄色 视频免费看| 极品教师在线免费播放| 久久人人爽av亚洲精品天堂| 国产又爽黄色视频| 欧美日韩一级在线毛片| 欧美国产精品va在线观看不卡| 国产91精品成人一区二区三区| 香蕉国产在线看| 欧美精品av麻豆av| 9191精品国产免费久久| 999精品在线视频| 丰满的人妻完整版| 18禁美女被吸乳视频| 免费在线观看亚洲国产| 一区二区三区国产精品乱码| 日韩免费av在线播放| 日本黄色日本黄色录像| 制服诱惑二区| 91大片在线观看| 国产精品一区二区精品视频观看| 欧美在线黄色| 午夜亚洲福利在线播放| av片东京热男人的天堂| 久久精品亚洲精品国产色婷小说| 日本精品一区二区三区蜜桃| 91麻豆av在线| 亚洲av成人不卡在线观看播放网| 久久性视频一级片| 欧美激情久久久久久爽电影 | 他把我摸到了高潮在线观看| 国产97色在线日韩免费| 一进一出抽搐gif免费好疼 | 91大片在线观看| 人人妻,人人澡人人爽秒播| 午夜福利在线观看吧| 看黄色毛片网站| 日韩精品免费视频一区二区三区| 99热网站在线观看| 丝袜在线中文字幕| 久久久久国内视频| netflix在线观看网站| 在线永久观看黄色视频| 国产成人欧美在线观看 | 国产区一区二久久| 亚洲精品在线美女| 一夜夜www| 亚洲精品久久午夜乱码| 啦啦啦免费观看视频1| 一区在线观看完整版| 欧美日韩瑟瑟在线播放| 99精国产麻豆久久婷婷| 亚洲 欧美一区二区三区| 亚洲国产看品久久| 女人精品久久久久毛片| 女人被躁到高潮嗷嗷叫费观| 十八禁人妻一区二区| 亚洲欧美一区二区三区久久| 日本黄色日本黄色录像| 国产亚洲欧美精品永久| 国产深夜福利视频在线观看| 欧美日韩视频精品一区| 免费日韩欧美在线观看| 国产精品一区二区在线观看99| 大片电影免费在线观看免费| 国产在线一区二区三区精| 最新的欧美精品一区二区| 看黄色毛片网站| 精品国产美女av久久久久小说| 性少妇av在线| 丰满饥渴人妻一区二区三| 久久人妻熟女aⅴ| 欧美最黄视频在线播放免费 | 99re6热这里在线精品视频| 精品午夜福利视频在线观看一区| 每晚都被弄得嗷嗷叫到高潮| 嫁个100分男人电影在线观看| 好看av亚洲va欧美ⅴa在| 欧美黑人欧美精品刺激| 正在播放国产对白刺激| 午夜免费成人在线视频| 成人黄色视频免费在线看| 在线十欧美十亚洲十日本专区| 欧美激情极品国产一区二区三区| www.熟女人妻精品国产| 午夜福利欧美成人| 十分钟在线观看高清视频www| 妹子高潮喷水视频| 99riav亚洲国产免费| 99国产精品一区二区三区| 国产欧美亚洲国产| 国产精品一区二区免费欧美| 精品视频人人做人人爽| 精品久久久久久电影网| 男人舔女人的私密视频| 免费观看a级毛片全部| 777久久人妻少妇嫩草av网站| 大陆偷拍与自拍| 人人澡人人妻人| 亚洲精品久久成人aⅴ小说| 很黄的视频免费| 国产精品久久久久久精品古装| 国产成人精品无人区| 91精品国产国语对白视频| 他把我摸到了高潮在线观看| www.精华液| 91成人精品电影| 后天国语完整版免费观看| 欧美不卡视频在线免费观看 | 亚洲精品乱久久久久久| 精品人妻1区二区| 免费观看a级毛片全部| 一二三四在线观看免费中文在| 俄罗斯特黄特色一大片| 亚洲午夜理论影院| 久久精品人人爽人人爽视色| 一级毛片精品| 日韩三级视频一区二区三区| 亚洲欧美日韩高清在线视频| 99精品欧美一区二区三区四区| √禁漫天堂资源中文www| 亚洲成人免费av在线播放| 麻豆国产av国片精品| 一级黄色大片毛片| 国产精品久久久久久人妻精品电影| 韩国av一区二区三区四区| 亚洲精品粉嫩美女一区| 亚洲 欧美一区二区三区| 午夜免费观看网址| svipshipincom国产片| 午夜福利视频在线观看免费| 极品人妻少妇av视频| 超碰97精品在线观看| 视频在线观看一区二区三区| 岛国在线观看网站| 亚洲精品中文字幕一二三四区| 男男h啪啪无遮挡| 一本一本久久a久久精品综合妖精| 日韩欧美在线二视频 | 欧美大码av| 丁香欧美五月| 欧美丝袜亚洲另类 | 久久久久久免费高清国产稀缺| 久久久久久久久久久久大奶| 精品福利观看| a级毛片在线看网站| 超碰成人久久| 亚洲精品中文字幕一二三四区| 亚洲欧美一区二区三区久久| 成在线人永久免费视频| 99精品在免费线老司机午夜| 国产欧美日韩精品亚洲av| 国产人伦9x9x在线观看| 国产蜜桃级精品一区二区三区 | 十八禁网站免费在线| 久久午夜综合久久蜜桃| 欧美激情 高清一区二区三区| 免费av中文字幕在线| 亚洲国产看品久久| 国产男女内射视频| 久久久精品免费免费高清| 久久草成人影院| 国产亚洲精品第一综合不卡| 99久久国产精品久久久| 老熟妇仑乱视频hdxx| 两性夫妻黄色片| 中文亚洲av片在线观看爽 | 午夜激情av网站| 久久久水蜜桃国产精品网| 在线观看日韩欧美| 免费在线观看视频国产中文字幕亚洲| 久久香蕉国产精品| 99国产精品99久久久久| 大香蕉久久网| 真人做人爱边吃奶动态| 亚洲人成77777在线视频| 真人做人爱边吃奶动态| 欧美激情极品国产一区二区三区| 国产成人免费无遮挡视频| 天堂动漫精品| 免费在线观看日本一区| 国产三级黄色录像| 一区二区三区国产精品乱码| 成人免费观看视频高清| 丁香六月欧美| 五月开心婷婷网| 丁香六月欧美| 亚洲人成77777在线视频| 亚洲 欧美一区二区三区| 亚洲av成人av| 国产精品电影一区二区三区 | 国产精品 欧美亚洲| 极品少妇高潮喷水抽搐| 18禁裸乳无遮挡动漫免费视频| 国产视频一区二区在线看| 大陆偷拍与自拍| 黑人操中国人逼视频| 国产一区二区三区在线臀色熟女 | 国产在线一区二区三区精| 热99re8久久精品国产| 欧美日韩亚洲高清精品| 日本wwww免费看| 亚洲 国产 在线| 一进一出抽搐动态| 免费看a级黄色片| 亚洲欧美激情综合另类| 国产在线一区二区三区精| 精品国产一区二区久久| 色在线成人网| 精品欧美一区二区三区在线| 久热这里只有精品99| 国产精品永久免费网站| 欧美午夜高清在线| 久久人人爽av亚洲精品天堂| 国产精品九九99| 日日摸夜夜添夜夜添小说| 国产午夜精品久久久久久| 黄色毛片三级朝国网站| 国产av精品麻豆| 香蕉久久夜色| 高清黄色对白视频在线免费看| 美女国产高潮福利片在线看| 亚洲精品自拍成人| 亚洲精品国产区一区二| 无人区码免费观看不卡| 不卡一级毛片| 欧美色视频一区免费| 老熟妇仑乱视频hdxx| 热99re8久久精品国产| av天堂在线播放| 99热网站在线观看| 精品国产一区二区三区四区第35| 色尼玛亚洲综合影院| 1024香蕉在线观看| 国产精品电影一区二区三区 | 欧美不卡视频在线免费观看 | 久热这里只有精品99| 法律面前人人平等表现在哪些方面| avwww免费| www.熟女人妻精品国产| 99国产精品免费福利视频| xxxhd国产人妻xxx| 久久国产精品大桥未久av| 国产成+人综合+亚洲专区| 亚洲av日韩在线播放| 女性被躁到高潮视频| a级毛片在线看网站| 亚洲成人免费电影在线观看| 一级作爱视频免费观看| 精品人妻1区二区| 久久久久视频综合| 久久亚洲精品不卡| 精品久久久久久久久久免费视频 | 51午夜福利影视在线观看| 一边摸一边抽搐一进一出视频| 久久精品91无色码中文字幕| 妹子高潮喷水视频| 精品一区二区三区四区五区乱码| 免费少妇av软件| 欧美国产精品一级二级三级| 亚洲男人天堂网一区| 一级毛片女人18水好多| 精品国产一区二区三区久久久樱花| 国产免费男女视频| 中国美女看黄片| 妹子高潮喷水视频| 亚洲人成伊人成综合网2020| 天天影视国产精品| 高清在线国产一区| 黄色视频不卡| 老司机深夜福利视频在线观看| 日本欧美视频一区| 欧美中文综合在线视频| 日韩欧美三级三区| 看片在线看免费视频| 日韩视频一区二区在线观看| 老熟妇乱子伦视频在线观看| 一区二区三区精品91| 亚洲国产欧美日韩在线播放| 性少妇av在线| 日韩欧美一区视频在线观看| 黄片播放在线免费| 国产精品一区二区在线观看99| 国产免费男女视频| 丝袜人妻中文字幕| 精品电影一区二区在线| 精品欧美一区二区三区在线| 久久中文看片网| 黄色毛片三级朝国网站| а√天堂www在线а√下载 | 亚洲欧美激情综合另类| 在线观看免费视频网站a站| 久久热在线av| 免费高清在线观看日韩| 国产精品国产高清国产av | 午夜免费成人在线视频| 亚洲国产中文字幕在线视频| 一二三四社区在线视频社区8| 99久久99久久久精品蜜桃| 国产成人精品无人区| 黄网站色视频无遮挡免费观看| 在线观看日韩欧美| 搡老岳熟女国产| 国产精品一区二区在线不卡| 美女高潮到喷水免费观看| 中文字幕精品免费在线观看视频| 久久天躁狠狠躁夜夜2o2o| 老司机靠b影院| 国产97色在线日韩免费| 国产不卡av网站在线观看| 精品国产乱子伦一区二区三区| 黑丝袜美女国产一区| 精品福利观看| 亚洲人成电影免费在线| 欧美在线黄色| 黄色怎么调成土黄色| 国产av精品麻豆| av免费在线观看网站| tocl精华| 国产一区有黄有色的免费视频| 国产人伦9x9x在线观看| 露出奶头的视频| 女性被躁到高潮视频| 欧美乱妇无乱码| 国产男靠女视频免费网站| 国产成人啪精品午夜网站| 日本黄色日本黄色录像| 热99国产精品久久久久久7| 亚洲五月婷婷丁香| 涩涩av久久男人的天堂| av天堂久久9| 五月开心婷婷网| 岛国在线观看网站| 麻豆国产av国片精品| 在线视频色国产色| 人人澡人人妻人| 久久中文字幕一级| 亚洲中文字幕日韩| 十分钟在线观看高清视频www| 国产精品国产av在线观看| 窝窝影院91人妻| 黄频高清免费视频| 在线观看www视频免费| 免费不卡黄色视频| 国产91精品成人一区二区三区| 丝袜美足系列| 视频在线观看一区二区三区| 99久久人妻综合| 国内久久婷婷六月综合欲色啪| 美女高潮到喷水免费观看| 国产精品国产高清国产av | 国产又爽黄色视频| 怎么达到女性高潮| 国产成人精品无人区| 美女视频免费永久观看网站| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲第一青青草原| 国产在视频线精品| 黄片大片在线免费观看| 久久久国产欧美日韩av| 久久久久久久久免费视频了| 免费女性裸体啪啪无遮挡网站| 亚洲中文字幕日韩| 国产精品亚洲av一区麻豆| a级片在线免费高清观看视频| 99久久99久久久精品蜜桃| 亚洲一区二区三区欧美精品| 99国产极品粉嫩在线观看| 成人影院久久| 国产一区二区三区在线臀色熟女 | 国产在线一区二区三区精| 亚洲成a人片在线一区二区| 女人高潮潮喷娇喘18禁视频| 操美女的视频在线观看| 国产男靠女视频免费网站| 亚洲免费av在线视频| 亚洲国产毛片av蜜桃av| av片东京热男人的天堂| 村上凉子中文字幕在线| 久久精品国产99精品国产亚洲性色 | 色94色欧美一区二区| 丝袜美足系列| 久久精品人人爽人人爽视色| 一级毛片高清免费大全| 91成年电影在线观看| 韩国av一区二区三区四区| 免费观看人在逋| 欧美国产精品va在线观看不卡| 亚洲一码二码三码区别大吗| 欧美不卡视频在线免费观看 | 一级毛片精品| av超薄肉色丝袜交足视频| 黑人巨大精品欧美一区二区蜜桃| 久久ye,这里只有精品| 叶爱在线成人免费视频播放| 一区二区三区激情视频| 欧美丝袜亚洲另类 | 男女床上黄色一级片免费看| 国产精品久久久久成人av| 欧美乱妇无乱码| 精品国产一区二区三区四区第35| 正在播放国产对白刺激| 亚洲av成人av| 亚洲av熟女| 久久国产亚洲av麻豆专区| 精品久久久久久久毛片微露脸| 欧美性长视频在线观看| 国产黄色免费在线视频| 每晚都被弄得嗷嗷叫到高潮| 国产成人欧美在线观看 | 久久久精品国产亚洲av高清涩受| 亚洲精品在线观看二区| 久久久国产成人精品二区 | 国产又色又爽无遮挡免费看| 国产精品久久电影中文字幕 | 69精品国产乱码久久久| 亚洲 国产 在线| 国产97色在线日韩免费| 日韩 欧美 亚洲 中文字幕| 搡老乐熟女国产| 欧美日本中文国产一区发布| a级毛片黄视频| 亚洲人成伊人成综合网2020| 午夜福利,免费看| 热99国产精品久久久久久7| 一进一出抽搐动态| 欧美老熟妇乱子伦牲交| 亚洲国产精品合色在线| 很黄的视频免费| 天堂动漫精品| av免费在线观看网站| 国产成人免费观看mmmm| 91精品三级在线观看| 国产精品98久久久久久宅男小说| 最新在线观看一区二区三区| 亚洲熟妇熟女久久| 精品少妇一区二区三区视频日本电影| 免费在线观看亚洲国产| 深夜精品福利| 水蜜桃什么品种好| 免费不卡黄色视频| 日本黄色日本黄色录像| 亚洲精品成人av观看孕妇| 狂野欧美激情性xxxx| 久久久国产精品麻豆| 国产99白浆流出| 中文字幕色久视频| 亚洲精品粉嫩美女一区|