• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      方鋼管混凝土柱-不等高鋼梁組合框架結構受力性能有限元分析

      2022-04-05 12:13:44許成祥張娟婷劉曉強李成玉
      武漢科技大學學報 2022年3期
      關鍵詞:鋼梁框架結構受力

      許成祥,張娟婷,劉曉強,李成玉

      (武漢科技大學城市建設學院,湖北 武漢,430065)

      在不等跨鋼管混凝土組合框架結構中,對型鋼梁采用傳統(tǒng)的等截面通長設計會造成材料浪費,同時框架結構節(jié)點域在地震作用下也易發(fā)生剪切破壞[1]。而方鋼管混凝土柱-不等高鋼梁組合框架結構在跨度較大的部位采用高梁、跨度較小的部位采用低梁,滿足“強剪弱彎、強節(jié)點弱構件”的抗震設計原則,因此該類結構在高層建筑和其它工業(yè)設施中的應用日益廣泛。

      目前,與鋼管混凝土柱-鋼梁組合框架結構受力性能相關的研究已有諸多報道,如Kang等[2]利用OpenSees軟件模擬了鋼管混凝土柱-鋼梁連接的二維梁柱節(jié)點單元受力性能,并對框架結構進行了抗震性能分析;也有研究者分別使用不同的非線性有限元分析軟件,對T形或L形鋼管混凝土柱-鋼梁組合框架結構進行了低周往復荷載作用下的數值模擬,研究了軸壓比、柱截面寬厚比、梁柱線剛度比等參數對框架結構受力性能的影響[3-7];付嘯博等[8]借助ABAQUS軟件對多層鋼管混凝土柱-鋼梁組合框架結構進行了非線性有限元分析,數值模擬值與試驗值吻合度良好,同時還研究了框架的受力特性和延性;Wang等[9]采用ABAQUS軟件對方鋼管混凝土柱及以端板梁柱(帶貫穿螺栓)連接的鋼梁平面框架抗震性能進行了非線性數值分析,研究了軸壓比和梁柱線剛度比對組合框架受力性能的影響。不過,類似研究大多針對等跨等高設計的組合框架結構,而圍繞不等跨不等高組合框架結構受力性能開展的研究工作相對不足。本課題組[10-12]對方鋼管混凝土柱-不等高鋼梁框架節(jié)點進行了抗震性能試驗及數值模擬初步研究,結果表明此類節(jié)點的承載能力和耗能能力較好。為了進一步探究具有此類節(jié)點的框架結構的受力性能,本文基于方鋼管混凝土柱-不等高鋼梁組合框架結構的低周往復荷載試驗,使用ABAQUS軟件建立三維精細化結構有限元模型來模擬此類框架結構在低周往復荷載作用下的受力情況,在所建有限元模型正確性得到驗證的基礎上,再借助該模型進一步研究軸壓比、核心混凝土強度等級、鋼管強度、左右側梁高比、柱截面寬厚比等參數對方鋼管混凝土柱-不等高鋼梁組合框架結構受力性能的影響,以期為此類組合框架結構的優(yōu)化設計提供參考。

      1 試驗概況

      以1榀1/4縮尺比例的兩跨三層方鋼管混凝土柱-不等高鋼梁組合平面框架為擬靜力試驗模型,試件幾何尺寸如圖1所示,其中鋼梁與腹板、帶孔板采用10.9級M16摩擦型高強螺栓連接,加強環(huán)與鋼梁翼緣、鋼管柱分別焊接,腹板與上下加強環(huán)焊接,環(huán)板與鋼梁翼緣焊接處為平滑坡面,鋼梁腹板、鋼管、外環(huán)板等均采用Q235B鋼材,相應的力學性能實測值見表1。方鋼管柱內灌注C40商品混凝土,混凝土立方體抗壓強度為38.8 MPa,彈性模量為3.15×104MPa。

      圖1 試件幾何尺寸

      表1 鋼材力學性能

      圖2所示為試驗現場照片及加載裝置示意圖。設定邊柱與中柱的軸壓比(n)分別為0.25、0.4,即在邊柱與中柱柱頂分別施加300、500 kN的軸向荷載,采用位移控制的加載制度在框架三層左側梁端施加水平低周往復荷載,水平加載系統(tǒng)如圖3所示,其中Δ表示加載位移,H為框架底端到加載點的高度,Δy為屈服位移,N為加載循環(huán)次數。

      (a)試驗現場

      (b)框架加載裝置示意圖

      圖3 水平加載系統(tǒng)

      2 有限元模型

      2.1 材料本構模型

      使用ABAQUS軟件對試件進行數值模擬,其中混凝土本構模型采用混凝土損傷塑性模型(concrete damaged plasticity model,CDP模型)。CDP模型由Lubliner等[13]首次提出,后來又經Lee等[14]通過引入剛度恢復概念進行了修正,該模型由損傷因子實現剛度變化,并考慮了循環(huán)荷載下混凝土的裂縫發(fā)展、閉合以及部分剛度恢復,可應用于各向同性塑性材料[15]。

      在方鋼管混凝土柱-不等高鋼梁組合框架結構中,混凝土在矩形鋼管的約束作用下處于三向受力狀態(tài),其強度和延性因鋼管的約束效應而得到提高,本文使用改進后的約束混凝土本構模型[16]對混凝土受力狀態(tài)進行模擬,該模型適用于CDP模型并簡化了韓林海[17]提出的計算方法,通過引入約束效應系數ξ能很好地反映鋼管與核心混凝土的協同工作機理。核心混凝土應力(σ)-應變(ε)曲線如圖4所示。

      (a) 壓應力-應變曲線 (b) 拉應力-應變曲線

      方鋼管受力狀態(tài)采用雙線性隨動強化模型進行模擬,該模型考慮了一定范圍內的Bausinger效應,被廣泛應用于鋼材在循環(huán)往復荷載作用下的三維數值模擬分析并取得了良好效果[18],鋼管應力-應變曲線見圖5。H型鋼梁采用在Varma模型基礎上考慮了鋼材局部屈曲和開裂的循環(huán)本構模型(見圖(6))[19],該模型由單調加載曲線、循環(huán)骨架曲線和滯回準則三部分組成[20]。

      圖5 鋼管的應力-應變曲線 圖6 H型鋼梁循環(huán)本構模型

      2.2 模型的建立

      根據實際試驗工況采用C3D8R單元建立相應的有限元模型,鋼管與混凝土之間的相互作用定義為面面接觸,切向采用庫侖摩擦模型,摩擦系數取0.25[21],法向為硬接觸,滑移方式為有限滑移。方鋼管柱、加強環(huán)板、H型鋼梁與節(jié)點開孔腹板之間均定義為綁定約束。帶孔板與梁腹板、節(jié)點開孔腹板之間定義為面面接觸,容差調整為0.01。螺栓預緊力為100 kN(按GB 50017—2017《鋼結構設計標準》要求)。模型中的邊界條件與試驗保持一致,柱底完全固定,在柱頂設置耦合點約束模型沿平面外的移動和轉動,并在柱頂耦合點上施加集中荷載以模擬千斤頂施加的豎向荷載,在三層梁端柱側建立耦合點并施加位移控制的水平往復荷載。

      2.3 有限元模擬與試驗結果對比分析

      方鋼管混凝土柱-不等高鋼梁組合框架結構經試驗和有限元模擬所得滯回曲線如圖7所示,圖中P為承載力。由圖7可見,該組合框架結構滯回曲線形狀、滯回環(huán)面積以及加、卸載剛度的數值模擬結果均與試驗結果相吻合,但滯回曲線數值模擬結果的捏攏效應不如相應試驗結果明顯,一方面是因為在使用ABAQUS軟件建模時,對鋼管與混凝土之間的黏結滑移作用考慮不充分;另一方面是因為數值模擬在理想狀態(tài)下進行,螺栓預緊力始終恒定,而試驗過程中存在螺栓松動、預緊力下降等實際問題,導致所得滯回曲線捏攏效應更加明顯。此外,在框架結構滯回曲線的數值模擬結果中,反向承載力比正向承載力高,而相應試驗曲線中則是反向加載力高于正向加載力,這主要是受試件制作過程中的混凝土澆筑方式影響以及因安裝和加載過程中傳力拉桿(見圖2(b))變形產生的松弛滑脫誤差所致。

      圖7 滯回曲線

      方鋼管混凝土柱-不等高鋼梁組合框架結構經試驗和有限元模擬所得骨架曲線對比如圖8所示,其中各特征點的荷載與位移列于表2,表中數值均取正反平均值。結合圖8及表2可知,特征點的荷載和位移模擬結果與相應試驗結果吻合度較高,屈服位移Δy試驗值略大于相應模擬值是因試驗裝置與試件之間的小間隙被壓實所致,峰值荷載Pm模擬值略小于相應試驗值應歸因于軸力加載處滑動軸承與側向支撐件之間存在摩擦,而屈服荷載Py與破壞荷載Pu的模擬值均略大于相應試驗值則主要是因為數值模擬在理想狀態(tài)下進行,未考慮試件材料初始缺陷的影響。

      圖8 骨架曲線

      表2 特征點的試驗值與模擬值

      試件側向承載力分別達到屈服荷載、峰值荷載以及破壞荷載時的應力分布見圖9。在水平荷載作用下,當側移達到16 mm時,左跨高梁左端首先屈服,塑性鉸位于外環(huán)板與梁翼緣連接處,一、二層高梁左端上、下翼緣都進入彈塑性階段,頂層高梁左端只有上翼緣進入彈塑性階段,而高梁右端、低梁和柱都還處在彈性階段(圖9(a));隨著側向位移的增大,高梁端部塑性區(qū)逐漸擴大,當側移達到72 mm時,試件側向承載力達到峰值,左跨各層高梁翼緣全部進入塑性階段,且高梁左端受力較右端更大,底層柱腳部分進入塑性階段,不等高節(jié)點域應力也較大,但試件整體仍具有良好的剛度和承載能力(圖9(b));繼續(xù)增加側向位移,試件側向承載力逐漸下降,當側移達到112 mm時,試件側向承載力下降到峰值荷載的85%以下,即達到破壞荷載,此時試件整體應力分布較均勻,最大應力主要集中在梁端、柱腳以及不等高節(jié)點域,破壞先后順序為左跨高梁-右跨低梁-底層柱-不等高節(jié)點域-左右邊節(jié)點域(圖9(c))。試件破壞時各層不等高節(jié)點域的模擬應力分布與相應試驗現象對照如圖10所示。從圖10可以看出,試件破壞時不同節(jié)點處的應力分布與相應的實際破壞形態(tài)基本相符。不等高節(jié)點域存在較大的剪力,沿斜對角線的剪切變形較明顯,在受到兩側梁及柱的彎矩、剪力和軸力共同作用下,會同時產生軸向、剪切和彎曲變形,其中對節(jié)點域受力以及試件承載力和側移影響最大的是剪切變形。力通過節(jié)點域的剪壓區(qū)傳至高梁與低梁的高差處,在高差處產生明顯的應力集中并在高梁和柱局部范圍內引起較大的主拉應力,從而導致左跨高梁發(fā)生屈曲斷裂,但右跨低梁左端翼緣處受力較小,這是因為力主要通過低梁的腹板傳至低梁右端,使其產生塑性鉸,并在右邊節(jié)點域產生一定應力集中。傳至柱的力也較大,造成二層和頂層柱上部嚴重變形以及底層柱腳彎曲破壞。因此,方鋼管混凝土柱-不等高鋼梁組合框架結構的設計符合“強柱弱梁、強節(jié)點弱構件”的抗震設計原則。在設計組合框架的不等高節(jié)點時,建議加強高梁翼緣與外環(huán)板的連接以避免高梁梁端過早出現塑性鉸,優(yōu)化低梁翼緣加強環(huán)與柱的連接方式以減緩梁高差處的應力集中,以及適當加厚高梁的翼緣和低梁的腹板以使不等高節(jié)點域傳遞至梁柱的力更加均勻。

      通過上述方鋼管混凝土柱-不等高鋼梁組合框架結構受力特性有限元模擬結果與相應試驗結果的對比分析可知,數值模型能較全面地反映試驗組合框架結構的受力性能,模擬結果可信度高,因此,可借助該模型對方鋼管混凝土柱-不等高鋼梁組合框架結構的受力性能展開深入研究。

      (a)屈服荷載 (b)峰值荷載

      (c)破壞荷載

      (a)頂層節(jié)點應力云圖 (b)中層節(jié)點應力云圖 (c)底層節(jié)點應力云圖

      (d)頂層節(jié)點破壞形態(tài) (e)中層節(jié)點破壞形態(tài) (f)底層節(jié)點破壞形態(tài)

      3 參數分析

      3.1 軸壓比

      在其它相關參數保持不變的條件下,取中柱軸壓比n分別為0.2、0.4、0.6、0.8,邊柱軸壓比隨中柱軸壓比按比例變化,借助有限元模擬獲得不同軸壓比下方鋼管混凝土柱-不等高鋼梁組合框架結構的荷載-位移骨架曲線及相應的側向荷載變化如圖11所示。由圖11(a)可見,軸壓比的變化對組合框架結構彈性階段的剛度無明顯影響,且軸壓比不大于0.6時對結構延性也基本無影響。從圖11(b)中可以看出,隨著軸壓比的增大,結構的峰值荷載與破壞荷載不斷減小,而屈服荷載卻無明顯變化,這應歸因于彈性階段軸壓比的增大對結構P-Δ效應影響不大,當結構進入彈塑性階段后P-Δ效應隨軸壓比的增大愈發(fā)顯著。此外注意到,當軸壓比由0.6增至0.8時,相應破壞荷載降幅明顯增大,達到13.82%,這是因軸壓比過大而導致結構延性變差所致。

      (a)骨架曲線 (b)側向荷載

      3.2 核心混凝土強度

      在其它相關參數保持不變的條件下,當核心混凝土強度等級分別為C30、C40、C50和C60時,方鋼管混凝土柱-不等高鋼梁組合框架結構荷載-位移骨架曲線模擬結果及相應的側向荷載變化如圖12所示。由圖12(a)可知,隨著核心混凝土強度等級的提高,結構剛度不斷小幅增加,但變形能力基本不變,這表明提高核心混凝土強度等級并不能有效增加結構延性。從圖12(b)中可以看出,結構各特征點荷載值均隨核心混凝土強度等級的提高而增加,不過當強度等級達到C50后,荷載增幅明顯降低,這表明此時結構承載力主要取決于鋼管的強度。

      3.3 鋼管強度

      在其它相關參數保持不變的條件下,當鋼管材質分別為Q235、Q345、Q390、Q420鋼時,方鋼管混凝土柱-不等高鋼梁組合框架結構荷載-位移骨架曲線模擬結果及相應的側向荷載變化如圖13所示。由圖13(a)可見,鋼管材質分別為Q390、Q420鋼時對應的骨架曲線接近重合,當鋼管材質為Q235、Q345鋼時,相應框架結構的變形能力明顯不如鋼管材質為Q390、Q420鋼時。鋼管屈服強度的提高對組合框架結構彈性階段的剛度影響不大,當結構進入彈塑性階段后,鋼管對核心混凝土的約束作用隨其屈服強度的提高而增強,同時結構的剛度、承載力均相應增大。從圖13(b)中可以看出,框架結構的峰值荷載和破壞荷載均隨鋼管屈服強度的提高而增大,尤其當鋼管材質由Q345鋼變?yōu)镼390鋼時,相應峰值荷載與破壞荷載增幅較大,分別達到7.64%、12.25%,不過,鋼管屈服強度變化對框架結構屈服荷載的影響并不明顯。

      (a)骨架曲線 (b)側向荷載

      3.4 左右側梁高比

      控制節(jié)點和框架對應層的高梁高度h2為定值(200 mm),改變低梁高度h1,在其它相關參數保持不變的條件下,當左右側梁高比(ΔH=h1/h2)分別為0.5、0.75和1.0時,方鋼管混凝土柱-不等高鋼梁組合框架結構荷載-位移骨架曲線模擬結果及相應的側向荷載變化如圖14所示。由圖14(a)可知,左右側梁高比對組合框架結構初始剛度影響較小,在進入屈服階段后結構剛度隨左右側梁高比的增加而明顯增大,但是當加載至峰值荷載后左右側梁高比對結構延性的影響較小。從圖14(b)中可以看出,結構各特征點荷載值均隨左右側梁高比的減小而降低。這是因為左右側梁的不等高導致結構傳力不明確,左右側梁高比越小,應力就越集中,同時傳力就越困難,從而導致結構承載力下降。當左右側梁高比從1.0降至0.75時,相應的結構峰值荷載和屈服荷載分別下降5.21%、9.30%;當左右側梁高比從0.75繼續(xù)降至0.5時,相應的結構峰值荷載和屈服荷載分別下降7.56%、12.03%。這表明左右側梁高比的變化不僅會影響結構的側向承載力,而且還會改變結構彈性階段的受力情況。

      (a)骨架曲線 (b)側向荷載

      3.5 柱截面寬厚比

      (a)骨架曲線 (b)側向荷載

      4 結語

      本文基于一榀兩跨三層方鋼管混凝土柱-不等高鋼梁組合框架結構的低周往復荷載試驗,使用ABAQUS有限元軟件建立了相應的數值模型來模擬該結構在相同試驗條件下的受力性能,在模型可信度得到驗證的基礎上,利用該模型進一步研究了軸壓比、核心混凝土強度等級、鋼管屈服強度、左右側梁高比和柱截面寬厚比等參數對方鋼管混凝土柱-不等高鋼梁組合框架結構受力性能的影響。結果表明,方鋼管混凝土柱-不等高鋼梁組合框架結構的設計符合“強柱弱梁,強節(jié)點弱構件”的抗震設計原則。在設計組合框架的不等高節(jié)點時,建議加強高梁翼緣與外環(huán)板的連接以避免高梁梁端過早出現塑性鉸、優(yōu)化低梁翼緣加強環(huán)與柱的連接方式以減緩梁高差處的應力集中以及適當加厚高梁的翼緣和低梁的腹板以使不等高節(jié)點域傳遞至梁柱的應力更加均勻。隨著軸壓比的增大,該框架結構的峰值荷載和破壞荷載均不斷減小,但屈服荷載沒有明顯變化,當軸壓比超過0.6后,框架結構的延性明顯變差;當核心混凝土強度等級提高至C50后,框架結構的承載力主要取決于鋼管強度;當鋼管屈服強度由345 MPa增至390 MPa時,框架結構峰值荷載與破壞荷載增幅較大,分別達到7.64%、12.25%,與此同時,鋼管屈服強度變化對框架結構屈服荷載的影響并不明顯;框架結構各特征點荷載值均隨左右側梁高比的減小而減小,且左右側梁高比的變化還會影響結構在彈性階段的受力情況;框架結構的剛度和承載力均隨柱截面寬厚比的增大而逐漸減小,當柱截面寬厚比從25增至38時,相應的框架結構峰值荷載下降了22.88%,但結構的變形能力明顯增強。

      猜你喜歡
      鋼梁框架結構受力
      無黏結預應力框架結構的拆改加固設計
      結構工程師(2022年2期)2022-07-15 02:23:50
      混凝土框架結構抗震加固方法簡述
      與鳥相撞飛機受力幾何
      一種建筑鋼結構用便于安裝的鋼梁
      基于ANSYS的多層框架結構隔震性能分析
      受力分析的三個“囑托”
      CFRP板加固鋼梁疲勞壽命理論研究
      底排藥受力載荷及其分布規(guī)律
      火炸藥學報(2014年3期)2014-03-20 13:17:44
      對鐵磁質在非均勻磁場中受力的一點說明
      物理與工程(2014年5期)2014-02-27 11:23:19
      一種帶折腹板槽形鋼梁的組合箱梁橋
      图们市| 孝感市| 嵊州市| 乳山市| 罗江县| 永福县| 开江县| 班戈县| 澜沧| 库车县| 铜山县| 美姑县| 石棉县| 诸城市| 沂水县| 岳阳市| 巴东县| 余干县| 石狮市| 江山市| 交城县| 万安县| 霍林郭勒市| 宁陵县| 马鞍山市| 漠河县| 阜新| 田东县| 平顶山市| 河源市| 和静县| 高安市| 巴马| 宜章县| 交口县| 建湖县| 芒康县| 莫力| 山阴县| 平邑县| 临朐县|