• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    High-elevation Adaptation of Motion Visual Display Modifications in the Toad-Headed Agamid Lizards (Phrynocephalus)

    2022-03-26 03:25:58QiaohanHUYusongLINXiaQIUJinzhongFUandYinQI
    Asian Herpetological Research 2022年1期

    Qiaohan HU ,Yusong LIN ,Xia QIU ,Jinzhong FU,3 and Yin QI*

    1 Chengdu Institute of Biology,Chinese Academy of Sciences,Chengdu 610041,China

    2 University of Chinese Academy of Sciences,Beijing 101400,China

    3 Departments of Integrative Biology,University of Guelph,Guelph,Ontario N1G 2W1,Canada

    Abstract Understanding the process of adaptation is a key mission in modern evolutionary biology.Animals living at high elevations face challenges in energy metabolism due to several environmental constraints (e.g.,oxygen supply,food availability,and movement time).Animal behavioral processes are intimately related to energy metabolism,and therefore,behavioral modifications are expected to be an important mechanism for high-elevation adaptation.We tested this behavioral adaptation hypothesis using variations of motion visual displays in toad-headed agamid lizards of the genus Phrynocephalus.We predicted that complexity of visual motion displays would decrease with the increase of elevation,because motion visual displays are energetically costly.Displays of 12 Phrynocephalus species were collected with elevations ranging from sea level to 4600 m.We quantified display complexity using the number of display components,display duration,pathways of display components,as well as display speed for each species.Association between display complexity and elevation was analyzed using the phylogenetic generalized least squares (PGLS) model.We found that both the number of display components and the average value of tail coil speed were negatively correlated with elevation,suggesting that toad-headed lizards living at high-elevation areas reduced their display complexity to cope with the environmental constraints.Our research provides direct evidence for high-elevation adaptation from a behavioral aspect and illustrates the potential impacts of environment heterogeneity on motion visual display diversification.

    Keywords high-elevation adaptation,lizard,motion visual display,Phrynocephalus,signal complexity

    1.Introduction

    Understanding the process of adaptation is one key mission in modern evolutionary biology and high-elevation adaptation provides a fertile research ground (Cheviron and Brumfield,2012;Storz,2021;Sunet al.,2018;Yanget al.,2012).Environmental constraints at high elevations,including low oxygen partial pressure,low ambient temperature,strong ultraviolet radiation,and great daily and seasonal fluctuations,pose serious challenges to most animals,particularly for ectotherms who are more sensitive to environmental changes (Haoet al.,2019).Nevertheless,many species inhabit highelevation environments (Myerset al.,2000),and they often cope with these challenges by either suppressing total metabolism and oxygen demand,or increasing oxygen delivery efficiency and energy conversion (Liet al.,2018;Ramirezet al.,2007;Storzet al.,2010;Zhaoet al.,2020).Animal behavioral processes have an intimate relationship with energy metabolism (Biro and Stamps,2010;Kotiahoet al.,1998;Mowles,2014;Roset al.,2006;Suet al.,2020),and animals at high-elevation areas likely adjust their behavior to adapt the environment by either constraining the activity intensity or shortening the activity time (Wuet al.,2018;Zhuet al.,2020).For example,Anolislizards spent less time for activity and chose more open habitats with boulders for thermoregulation at high elevations (Mu?oz and Losos,2017).Compared with physiological and genetic adaptation (Beall,2007;Quet al.,2021;Yanget al.,2014;Yanget al.,2016),behavioral adaptation at high-elevation environment has rarely been examined.

    As a ritual behavior,social displays transmit specific information during animal communication (Laidre and Johnstone,2013).They play an important role in courtship,intra-sexual competition as well as territory defense,and their functions depend largely on complexity (Ordet al.,2001;Patricelli,2016;Petrieet al.,1991;Wuet al.,2018).A diversity of organisms rely heavily on communication with a variety of different modalities (e.g.,motion visual displays,olfactory,vocal;Endler,1992;Laidre and Johnstone,2013;Nelson and Jackson,2007).Physical movement-based motion visual displays are common in lizards’ communication (Bianet al.,2019;Fleishman and Pallus 2010;Rosenthal,2007),and their complexity varies greatly among closely-related species due to different selection pressures (Nadhurouet al.,2016;Ord and Martins 2006).These motion visual display signals are energetically costly and complex displays often stimulate anaerobic metabolism (Bennettet al.,1981;Biro and Stamps,2010;Clark,2012;Roset al.,2006;Wuet al.,2018;Zhu,2020;Zhuet al.,2021).For example,compared with resting and moving,male wolf spiders (Hygrolycosa rubrofasciata) increase their metabolic rate 22 times during drumming behavior (Kotiahoet al.,1998).However,long anaerobic metabolism produces high concentrations of acid,which can affect blood and muscle pH,disrupt enzyme function and oxygen transport (Bennett,1978).For highelevation dwellers,we would expect them to reduce their motion visual display complexity to cope with the challenging environment and to avoid adverse impact from anaerobic metabolism.

    Quantifying display complexity can be difficult,and three methods are often used.The number of distinct displays or components in displaying repertoire is the most classical measurement,and has been widely used in assessment of display complexity inAnolislizards (Decourcy and Jenssen,1994;Greenberg and MacLean,1978;Jenssen,1978;Ord and Martins,2006;).For example,Martinset al.(2004) used the number of head-bobbing displays as an indicator of signal complexity.With advancement of the information theory,a systembased method has recently been used,in which the sequence variation among display components in succession was used as an indicator of display complexity (Fischeret al.,2017;Ord and Martins,2006;Shannon and Weaver,1949).The higher the variation,the higher the signal complexity and the more information it may transmit (Peckreet al.,2019).Furthermore,variations within display components (e.g.,speed,duration) have also been used as indicators of signal complexity (Freeberget al.,2012;Hammerschmidt and Fischer,2008;Vehrencamp,2000).

    The toad-headed agamid lizards (genusPhrynocephalus) provide an excellent model system to explore the display behavior adaptation to high-elevation environments.These lizards are widely distributed in a large elevational range from sea level to 4 600 m and display a variety of motion visual signals.For example,both males and females ofP.vlangalii,a high-elevation species,use tail coil and tail lash in territory defense and courtship,and the speed of tail display likely encodes levels of individual threat (Qiet al.,2011;Qiuet al.,2018).Several lowlandPhrynocephalusspecies show more complex displays besides tail coil and tail lash,such as limbs flapping and body turning (Lin,2020).In addition,the athletic ability ofP.vlangaliidepends largely on elevation,and individuals from high altitudes have relatively weak locomotor performance compared with low-elevation individuals (Wuet al.,2018a).Furthermore,our recent studies have shown that speed of tail display inP.vlangaliiis mainly regulated by anaerobic metabolism,and fast display speed is associated with high blood lactate concentration (Zhuet al.,2020;Zhuet al.,2021).

    In this study,we explore the relationship between highelevation adaptation and complexity of motion visual display in the genusPhrynocephalus.We collected display data from 12 species and quantified the display complexity using the motion visual signal digitization method (Hedrick,2008;Peterset al.,2016).The association between display complexity and elevation was analyzed using the phylogenetic generalized least squares (PGLS) model.We predict that complexity of motion visual displays would decrease with elevation,because motion visual displays are energetically costly and total metabolism is constrained at high elevations.

    2.Materials and methods

    2.1.Species and study sitesWe collected motion visual display data from 12Phrynocephalusspecies in the Gobi Desert of northwestern China and the Qinghai-Tibetan Plateau (Figure 1).Lizards in different social context produce different signal,and all displays in this study were under a male-male social context,i.e.,male residents competing with male intruders.Habitats for each species are similar and mostly arid,varied from rock substrate to sand dunes,with sparse and low vegetation.Elevation of study sites varied from 604 m (P.alpherakii) to 4 550 m (P.erythrurus).For two widespread species,P.axillarisandP.versicolor,we examined two populations and their elevations were averaged between the populations.The study site and sampling information is presented in Table 1.

    Table 1 Study site and sample size information of the 12 Phrynocephalus species examined in this study.

    Table 2 Sixteen visual display components of the 12 Phrynocephalus species examined in this study.

    Figure 1 Map of study sites and the image of 12 Phrynocephalus species examined in this study.1.P.mystaceus,elevation 604 m.2.P.alpherakii,elevation 604 m.3.P.helioscopus,elevation 637 m.4.P.forsythii,elevation 894 m.5a.P.axillaris,elevation 894 m.5b.P.axillaris,elevation 1 150 m.6a.P.versicolor,elevation 870 m.6b.P.versicolor,elevation 1 872 m.7.P.przewalskii,elevation 1 393 m.8.P.putjatai,elevation 2 303 m.9.P.guinanensis,elevation 3 019 m.10.P.vlangalii,elevation 3 457 m.11.P.erythrurus,elevation 4 550 m.12.P.theobaldi,elevation 3 670 m.

    2.2.Display signal data collectionWe first located and sexed target lizards using binoculars.Once a target was selected,one investigator (QH) set up a video camera (Sony HDR PJ670) at approximately three meters away from the target.After a five minute acclimation period,a second investigator (XQ) introduced an intruder lizard toward the target from four meters away.The intruder was tied with a 30-centimeter-long dental floss around the waist and was tethered with a 4-meter fishing rod,which allowed the lizard to move freely.At the same time,the first investigator started the camera and filmed the motion visual displays of the target lizard.We would end the trial if there was a potential conflict escalation or target did not show displays within two minutes.Immediately after filming,we captured the target lizards and measured their body temperature.To alleviate the effect of individual physiological condition on display complexity,we confined our display trials only during 11 am to 4 pm in sunny days when lizards are most active.To avoid impacts from potential previous social interactions and individual body size,a size-matched intruder collected from a different population was used for each target.After each trial,a ping-pong ball was placed at the exact location of the target and was filmed to serve as a scale in subsequent display digitization.

    2.3.Display complexity measurementWe measured display complexity for each species using five parameters:the number of display components,display duration,number of pathways among different components,as well as tail coil and tail lash speed (Ord and Martins,2006;Shannon,1948).The component was defined as specific and repeatable display posture (Ramos and Peters,2017).Some components were shared by several species and others were species-specific,and therefore,the number of components represented an important aspect of display complexity (Freeberget al.,2012;Miller and Osmanski,2009;Vehrencamp,2000).The display duration was defined as the average time sustained by a species-typical display (Hammerschmidt and Fischer,2008;McComb and Semple,2005).For each species,the display sequence was mostly fixed,but individuals sometimes omitted some components under specific social context (Fischeret al.,2017).To establish the species-typical display sequence,we analyzed the motion visual display bout by bout and determined the starting and terminating component respectively for each species.We then calculated the transition probability (probability of one component followed by the other) between different components,and the display sequence was described as the sequence with the highest transition probability among components.The number of pathways between different components was determined using the number of different transition probability.The average speed of tail coil and tail lash were quantified following the methods outlined by Hedrick (2008) and Peterset al.(2016).Briefly,we extracted video footages of tail displays using the program iskysoft (iSkysoft Technology Corp.) and tracked the movement of tail tips in Matlab 2016b (MathWorks Inc.,Natick,MA,USA).The position of the tail tip was located in successive frames to generatex-ycoordinate data over time for each display.Thex-ycoordinates were then converted to millimeter using the ping-pang ball in the image as a scale (Peterset al.,2016;Wuet al.,2018).The Euclidean distance between successive digitized position points provided a vector of speed measurements for the whole sequence.We averaged these across the display sequence to determine the average speed.To reflect the potential difference between components,we calculated the speed for tail coil and tail lash respectively.To account for the effect of orientation of lizard relative to the camera,we categorized each display as either facing towards/away from the camera or at right angles to the camera,and calculated the display speed from different orientation respectively (Bianet al.,2016).

    2.4.Data analysisTo examine the association between display complexity and elevation,we tested the relationships of the number of display components,display duration,number of pathways among different components,tail coil speed,and tail lash speed against elevation.To account for the phylogenetic non-independent effect,we used the phylogenetic generalized least-squares (PGLS) model in package“caper”(Ormeet al.,2013).Elevation was treated as the predictor variable,while number of components,display duration,number of pathways among different components,tail coil speed,and tail lash speed were treated as the response variable,respectively.A phylogenetic tree of the 12 study species (Figure 2) was constructed and modified from Solovyevaet al.(2018).We only used the display speed from facing towards/away from the camera to avoid the effect of orientation of lizards.

    Figure 2 A phylogenetic tree of the 12 Phrynocephalus species examined in this study (modified from Solovyeva et al.,2018),along with schematic diagrams of the component network graph and display components for each species.

    To test the phylogenetic effect on display complexity,we also estimated Pagel’sλfor the number of display components,display duration,number of component connections,tail coil speed,and tail lash speed.Pagel’sλwas estimated using the“phytools”package (Lynch,1991;Pagel,1999;Revell,2012),which ranges from 0 to 1,with“0”meaning weak phylogenetic effect and“1”meaning strong phylogenetic effect (Freckletonet al.,2015).Previous studies suggested that Pagel’sλis an effective measurement and typically performs better than other commonly used metrics for discriminating between more complex models of trait evolution (Münkemülleret al.,2012).All statistical analysis were conducted in R 3.6.2 (R Development Core Team,2019).

    2.5.Ethical approvalAll applicable international,national,and institutional laws and guidelines for the care and use of animals were strictly followed.All activities were under permission from local conservation authorities and animal handling followed the approved protocols (protocol number 2017005,Chengdu Institute of Biology).

    3.Results

    3.1.Signal repertoire and species-typical sequenceWe analyzed a total of 261 display bouts from 131 individuals of 12 species.Among all those displays,16 different components were defined,including tail lashing (TL),tail coiling (TC),“8”tail lashing (8),standing up (SU),push-up (PU),leaning (LE),tail lashing with four limbs flapping (T+F),and several others.Table 2 presents a complete list of all components and their definitions.Among them,the first three types (TL,TC,and 8) were basic components,and they might give rise to other components.For example,tail lashing (TL) might appear as tail lashing at a low place (LTL),tail raising with waggling (HTW),tail raising with lashing (LU),or tail falling with lashing (LTD).Tail coiling (TC) might appear as tail coiling intermittently (IC) or tail coiling at a low place (LTC),while“8”tail lashing (8) might appear as“8”tail lashing with high coiling (S8U) or“8”tail lashing with low coiling (L8) (Table S1).

    Most species possess their own display repertoire and have a species-typical sequence.We provide a detailed description in Table S2.The index of display complexity,including number of components,display duration,number of pathways,average values for tail coil and tail lash speed are presented in Table 3.

    3.2.Correlation between display complexity and elevationWe found significant and strong phylogenetic signal in display duration (λ=0.9918,P=0.0090) and number of display components (λ=0.6000,P=0.0266).The average speed of tail lash had a largeλbut a marginally significantP(λ=0.9711,P=0.0906),which we interpreted as having less strong phylogenetic signal.The average speed of tail coil had a largeλbut insignificantPvalue (λ=0.8356,P=0.9393),which could be due to the small number of species.The number of pathways among display components had a smallλand an insignificantPvalue (λ=0.1872,P=0.4771),suggesting minimum phylogenetic signal for this trait (Figure S1).

    For the association between display complexity and elevation,the number of display components (β=-0.0007,P=0.0063,λ=0) and average tail coil speed (β=-0.0026,P=0.0459,λ=1) were negatively correlated with altitudes (Figure 3,Table 4).We found no association of the display duration (β=-0.0016,P=0.1985,λ=1),the number of pathways (β=-0.0008,P=0.2596,λ=0),the tail lash speed (β=-0.0071,P=0.1849,λ=1) with altitudes (Table 4).

    Table 3 Number of display components,average display duration (s),number of pathways among different components,and average values (cm/s) for tail coil speed and tail lash speed for each Phrynocephalus species.

    Table 4 The association between display complexity and elevation across 12 Phrynocephalus species.The display complexity was measured using number of display components,display duration,and number of pathways.Significant predictors are marked in bold.

    4.Discussion

    Our results clearly demonstrated thatPhrynocephalusspecies at high-elevation areas have modified their motion visual display signals.First,species at high elevations appear to have fewer display components in general (Figures 2-3).The negative correlation between elevation and the number of display components is clear and significant.Of all the highelevation species,P.guinanensishas the fewest components,but it is not the highest species.This species has an obvious colorful belly and trunk side for both male and female individuals,which most other species do not have.We postulate that the presence of colorful belly may compensate for the reduction of display components.P.forsythiipresents another interesting case.It is a part of the high-elevation clade but currently has a primary lowland distribution.It has a large number of display components similar to other lowland species.Its phylogenetic position suggests that it originated from a high-elevation ancestor and turned to lowland secondarily (Figure 2).Its large number of display components further supports the association between reduction in display component and high-elevation environment.Second,species at high elevations appear to have slower tail coil speed.Two other parameters,the display duration and tail lash speed,are also lower at high elevations,although the differences are not statistically significant.We suggest these modifications represent adaptations to highelevation environments of these lizards.Other behavioral modifications were also reported in lizards.For example,the horned lizards (Phrynosoma hernandesi) adjust their basking duration to cope with low temperature challenges when transplanted to high-elevation areas (Refsnideret al.,2018),andAnolislizards chose more open habitats with boulders forthermoregulation at high elevations (Mu?oz and Losos,2017).

    Figure 3 A:Correlation between number of display components and elevation (R2=0.4961,P=0.0063).B:Correlation between average tail coil speed and elevation (R2=0.2760,P=0.0459).

    The reduced visual display complexity at high elevations inPhr ynocephaluslizards is likely caused by metabolic capacity constraints.Many ectothermic species living in harsh high-elevation areas have reduced metabolic capacity (e.g.,reducing oxygen consumption and metabolic rate) due to environmental constraints (Tanet al.,2021).For example,the lactate dehydrogenase (LDH) activity,an indicator of anaerobic metabolism,is lower inP.erythrurus(elevation 5 300 m) than inP.przewalskii(elevation from 1 000 to 1 500 m) (Tanget al.,2013).Furthermore,recent research showed that the intensity of tail displays inP.vlangalii(altitude from 2 000 to 4 500 m) was primarily regulated by anaerobic metabolism (Zhuet al.,2021).Therefore,reduction in their number display components and speed of display by the high-elevationPhrynocephalusspecies is most likely response to their low anaerobic metabolic capacity.

    Alternatively,energy constraints on the nervous system at high-elevation environments may also contribute to the simplification of visual displays.The central nervous system regulates the movement of skeletal muscles in most vertebrates (Akinrodoye and Lui,2021;Kingsburyet al.,2019),and as accurate and complex communication signals,the tail displays ofPhrynocephalusmust be closely controlled by the brain.Nevertheless,the function of brain depends largely on continuous supply of blood sugar and oxygen (Erecińska and Silver,2001;Olesen,1986).High-altitude hypoxia undoubtedly imposes various constraints on brain functions and oxygen conditions during development can affect lizards’ cognition as well (Sunet al.,2014),which may lead to reduced display complexity.This has been partially evidenced by recent works on the Asiatic Toad (Bufo gargarizans) that individuals at highelevation areas have reduced brain sizes and limited movement capacity (Maiet al.,2017;Yaoet al.,2020).Future research on relationships between brain size and display complexity,as well as detection of the critical functional brain regions associated with display manipulation is needed.

    One confounding issue with the observed motion visual display simplification in high-elevationPhrynocephalusspecies is social complexity.According to the social complexity hypothesis (SCH),animals living in complex groups likely encounter more social interactions,and may evolve complex communication signals to cope with social conflict and maintain social coalitions (Freeberg,2006;Freeberget al.,2012).Our field observations show thatPhrynocephalusspeciesat high-elevation areas are more territorial (e.g.,stay near burrow and defend territory intensively) compared with species in lowland;based on SCH,we would expect that high-elevation species possess more complex signals.This is the opposite of our results in this study.We assumed that this is likely a compensation way for the effect of display simplification,species from high-elevation area likely increase their territoriality and avoid unnecessary social conflict.Potential associations among social complexity,territorial defense,and display complexity remain to be explored and tested.

    5.Conclusion

    Lizards of the genusPhrynocephalususe complex and speciesspecific motion visual displays during social communication.Species living in high-elevation areas reduce their display complexity,particularly the number of display components and tail coil speed.This is likely associated with limited metabolic capacity and brain function.The genusPhrynocephalusprovides an excellent system for studying high-elevation adaptation,and more research should be conducted on this group.

    AcknowledgmentsThis work was supported by grants from the National Natural Science Foundation of China (grant numbers:31872233,31572273) to Y.QI.

    Statement of authorshipY.QI and J.Z.FU conceived and finalized the manuscript,Q.H.HU finished data analysis and prepared the draft,Y.S.LIN and X.QIU contributed to display collection and digitization.All authors read and approved the final version of the manuscript.

    国产伦精品一区二区三区四那| 久久6这里有精品| 一本一本综合久久| 久久久a久久爽久久v久久| 亚洲在久久综合| 99久久久亚洲精品蜜臀av| 精品一区二区免费观看| 久久久久九九精品影院| 免费黄网站久久成人精品| 欧美日韩国产亚洲二区| 亚洲精品日韩av片在线观看| 一级毛片久久久久久久久女| 亚洲精品456在线播放app| 精品久久久久久久人妻蜜臀av| 日本-黄色视频高清免费观看| 97人妻精品一区二区三区麻豆| 综合色av麻豆| 国产黄色视频一区二区在线观看 | 免费黄网站久久成人精品| 日韩国内少妇激情av| av在线观看视频网站免费| 国产精品日韩av在线免费观看| 给我免费播放毛片高清在线观看| 大又大粗又爽又黄少妇毛片口| 一级黄色大片毛片| 在线免费观看的www视频| 国产精品久久视频播放| 真实男女啪啪啪动态图| 你懂的网址亚洲精品在线观看 | 午夜福利在线观看吧| 欧美成人免费av一区二区三区| 麻豆一二三区av精品| 成年女人看的毛片在线观看| 欧美一区二区精品小视频在线| 美女黄网站色视频| 噜噜噜噜噜久久久久久91| 亚洲欧美清纯卡通| 欧美最黄视频在线播放免费| 12—13女人毛片做爰片一| 深夜精品福利| 亚洲人与动物交配视频| 免费一级毛片在线播放高清视频| 亚洲精品久久久久久婷婷小说 | 欧美zozozo另类| 蜜桃亚洲精品一区二区三区| 国产精品一区二区在线观看99 | 欧美最新免费一区二区三区| 爱豆传媒免费全集在线观看| 免费观看的影片在线观看| 国产又黄又爽又无遮挡在线| 色哟哟哟哟哟哟| 精品午夜福利在线看| 免费观看的影片在线观看| 国产精品麻豆人妻色哟哟久久 | 大香蕉久久网| 亚洲av男天堂| videossex国产| 国产av一区在线观看免费| 三级男女做爰猛烈吃奶摸视频| 搡女人真爽免费视频火全软件| 99久久无色码亚洲精品果冻| 在线播放国产精品三级| 我的老师免费观看完整版| 欧美精品国产亚洲| 免费在线观看成人毛片| 亚洲最大成人中文| 哪个播放器可以免费观看大片| 免费大片18禁| 高清毛片免费看| 婷婷精品国产亚洲av| www.色视频.com| 欧美成人一区二区免费高清观看| 亚洲三级黄色毛片| 自拍偷自拍亚洲精品老妇| 成人漫画全彩无遮挡| 欧美丝袜亚洲另类| 国产成人一区二区在线| 搡女人真爽免费视频火全软件| 一区二区三区免费毛片| 免费观看精品视频网站| 午夜福利高清视频| 亚洲无线在线观看| 老司机福利观看| 国产精品国产高清国产av| 最新中文字幕久久久久| 老司机影院成人| 国产探花在线观看一区二区| 久久99蜜桃精品久久| 天美传媒精品一区二区| 午夜久久久久精精品| 一级黄色大片毛片| 床上黄色一级片| 熟女人妻精品中文字幕| 国产精品乱码一区二三区的特点| 国产精品,欧美在线| 国产亚洲精品久久久com| 精品久久久久久久久久免费视频| 日日啪夜夜撸| 夜夜爽天天搞| 天堂网av新在线| 悠悠久久av| 久久久精品94久久精品| 亚洲av不卡在线观看| 国产毛片a区久久久久| 成人国产麻豆网| 最后的刺客免费高清国语| 亚洲在线自拍视频| 波多野结衣高清无吗| 最近视频中文字幕2019在线8| 国产视频内射| 久久精品国产亚洲av涩爱 | 精品久久久噜噜| 日韩欧美 国产精品| 国产一区二区亚洲精品在线观看| 蜜桃亚洲精品一区二区三区| h日本视频在线播放| 亚洲一级一片aⅴ在线观看| 午夜精品在线福利| 成人永久免费在线观看视频| 国产高清激情床上av| 性色avwww在线观看| 午夜精品一区二区三区免费看| 在线观看av片永久免费下载| 91在线精品国自产拍蜜月| 精品久久久噜噜| 在线观看av片永久免费下载| 免费人成视频x8x8入口观看| 青春草视频在线免费观看| 国产三级中文精品| 成人午夜高清在线视频| 啦啦啦观看免费观看视频高清| 精品人妻偷拍中文字幕| 成人午夜高清在线视频| 乱码一卡2卡4卡精品| 国产免费一级a男人的天堂| 丰满乱子伦码专区| 色尼玛亚洲综合影院| 精品熟女少妇av免费看| 我要搜黄色片| 亚洲不卡免费看| 日本-黄色视频高清免费观看| 久久精品综合一区二区三区| 免费看av在线观看网站| 亚洲电影在线观看av| 国产一区二区在线av高清观看| 久久久久性生活片| av天堂中文字幕网| 噜噜噜噜噜久久久久久91| 午夜福利成人在线免费观看| 国产精品综合久久久久久久免费| 有码 亚洲区| 国产69精品久久久久777片| 色综合色国产| 成年女人永久免费观看视频| 亚洲精品乱码久久久v下载方式| 久久精品91蜜桃| 色综合站精品国产| 国产69精品久久久久777片| 婷婷精品国产亚洲av| 变态另类丝袜制服| 日本三级黄在线观看| 国产成人精品久久久久久| 亚洲最大成人av| 人妻久久中文字幕网| 全区人妻精品视频| 免费观看人在逋| 亚洲第一电影网av| 国产亚洲5aaaaa淫片| 色播亚洲综合网| 国产高清三级在线| 日本与韩国留学比较| 毛片一级片免费看久久久久| 久久久久久久久中文| 看非洲黑人一级黄片| 国产亚洲av嫩草精品影院| 日韩在线高清观看一区二区三区| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 欧美人与善性xxx| 男女做爰动态图高潮gif福利片| 午夜精品在线福利| 老熟妇乱子伦视频在线观看| 一边亲一边摸免费视频| 蜜桃久久精品国产亚洲av| 亚洲中文字幕一区二区三区有码在线看| 激情 狠狠 欧美| 亚洲久久久久久中文字幕| 寂寞人妻少妇视频99o| 一级二级三级毛片免费看| 色尼玛亚洲综合影院| 久久精品人妻少妇| 能在线免费看毛片的网站| 国产精品野战在线观看| 99久久中文字幕三级久久日本| 最近2019中文字幕mv第一页| 在线观看免费视频日本深夜| 偷拍熟女少妇极品色| 免费黄网站久久成人精品| 成人毛片a级毛片在线播放| av在线播放精品| 日韩视频在线欧美| 日韩欧美精品v在线| 国产精华一区二区三区| 岛国毛片在线播放| 乱人视频在线观看| 亚洲人成网站高清观看| 亚洲欧美成人综合另类久久久 | 在线国产一区二区在线| 在线免费观看的www视频| 麻豆av噜噜一区二区三区| 高清午夜精品一区二区三区 | 亚洲av二区三区四区| 男女边吃奶边做爰视频| 中文字幕制服av| 边亲边吃奶的免费视频| 97热精品久久久久久| 日韩欧美在线乱码| 五月玫瑰六月丁香| 99久久人妻综合| 22中文网久久字幕| 高清毛片免费观看视频网站| 白带黄色成豆腐渣| 欧美一区二区亚洲| 亚洲丝袜综合中文字幕| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国产免费一级a男人的天堂| 日日干狠狠操夜夜爽| 啦啦啦观看免费观看视频高清| www日本黄色视频网| 久久久国产成人免费| 日本熟妇午夜| 国产一区二区三区在线臀色熟女| 亚洲天堂国产精品一区在线| 最新中文字幕久久久久| 中文字幕精品亚洲无线码一区| 国产高清不卡午夜福利| av在线天堂中文字幕| 观看免费一级毛片| avwww免费| 热99re8久久精品国产| 欧美最新免费一区二区三区| av视频在线观看入口| 美女被艹到高潮喷水动态| 男女做爰动态图高潮gif福利片| 非洲黑人性xxxx精品又粗又长| 九九在线视频观看精品| 69av精品久久久久久| 国产精品电影一区二区三区| 国产成年人精品一区二区| 99久国产av精品| 国内少妇人妻偷人精品xxx网站| 亚洲精品影视一区二区三区av| 久久久久久久久中文| 久久中文看片网| 又爽又黄无遮挡网站| 国内精品美女久久久久久| 岛国在线免费视频观看| 91狼人影院| 国产亚洲91精品色在线| 国产在视频线在精品| 亚洲成人精品中文字幕电影| 99热6这里只有精品| 九九在线视频观看精品| 六月丁香七月| 久久久久国产网址| 成人漫画全彩无遮挡| 成人综合一区亚洲| avwww免费| a级毛色黄片| 三级国产精品欧美在线观看| 春色校园在线视频观看| av天堂中文字幕网| 色播亚洲综合网| 亚洲无线观看免费| 变态另类丝袜制服| 免费观看精品视频网站| 五月玫瑰六月丁香| 国产精品麻豆人妻色哟哟久久 | 久久99精品国语久久久| 日韩 亚洲 欧美在线| 插逼视频在线观看| 男人的好看免费观看在线视频| 两性午夜刺激爽爽歪歪视频在线观看| 日韩强制内射视频| 午夜视频国产福利| 成年女人永久免费观看视频| 成人欧美大片| 国产成人精品婷婷| 国内精品久久久久精免费| 亚洲美女视频黄频| 蜜桃久久精品国产亚洲av| 亚洲乱码一区二区免费版| 乱系列少妇在线播放| 人体艺术视频欧美日本| 国模一区二区三区四区视频| h日本视频在线播放| 午夜亚洲福利在线播放| 国产伦在线观看视频一区| 成年女人永久免费观看视频| 日韩一区二区视频免费看| 丰满人妻一区二区三区视频av| 精品日产1卡2卡| 国产三级在线视频| 成年免费大片在线观看| 自拍偷自拍亚洲精品老妇| 国产精品美女特级片免费视频播放器| 寂寞人妻少妇视频99o| 卡戴珊不雅视频在线播放| 中文资源天堂在线| av在线天堂中文字幕| 国产激情偷乱视频一区二区| 久久人人爽人人爽人人片va| 中文字幕久久专区| 亚洲av.av天堂| 午夜福利成人在线免费观看| 色噜噜av男人的天堂激情| 女人被狂操c到高潮| 国产三级中文精品| 一级黄片播放器| 成人毛片60女人毛片免费| 插阴视频在线观看视频| 国产熟女欧美一区二区| 欧美在线一区亚洲| 久久久久久久久久久免费av| 天天躁日日操中文字幕| 网址你懂的国产日韩在线| 最近中文字幕高清免费大全6| 久久亚洲国产成人精品v| 亚洲内射少妇av| 国产成人精品一,二区 | 熟妇人妻久久中文字幕3abv| 一个人免费在线观看电影| 免费av观看视频| 国产黄a三级三级三级人| 久久人妻av系列| 久久婷婷人人爽人人干人人爱| 特大巨黑吊av在线直播| 亚洲自拍偷在线| 日本撒尿小便嘘嘘汇集6| 亚洲精品乱码久久久久久按摩| 国产淫片久久久久久久久| 亚洲欧美精品自产自拍| 久久久国产成人免费| 身体一侧抽搐| 麻豆国产av国片精品| 亚洲中文字幕一区二区三区有码在线看| 插阴视频在线观看视频| 成年女人看的毛片在线观看| 亚洲欧美日韩高清专用| 国内少妇人妻偷人精品xxx网站| 亚洲欧美日韩高清专用| 国内少妇人妻偷人精品xxx网站| 国产片特级美女逼逼视频| 日本黄色视频三级网站网址| 老司机影院成人| 国产成人精品久久久久久| 日本一二三区视频观看| 色哟哟哟哟哟哟| 久久午夜亚洲精品久久| 全区人妻精品视频| 亚洲欧美日韩高清专用| 日韩人妻高清精品专区| 在线免费观看不下载黄p国产| 成人毛片a级毛片在线播放| av女优亚洲男人天堂| 人妻夜夜爽99麻豆av| 精品欧美国产一区二区三| 永久网站在线| 欧美色视频一区免费| 麻豆久久精品国产亚洲av| 欧美色视频一区免费| 两个人的视频大全免费| 亚洲欧美中文字幕日韩二区| 在线观看av片永久免费下载| 久久久久性生活片| 国产av在哪里看| 成年免费大片在线观看| 精华霜和精华液先用哪个| 特大巨黑吊av在线直播| 久久精品国产亚洲av香蕉五月| 亚洲国产精品久久男人天堂| 色吧在线观看| 日韩大尺度精品在线看网址| 有码 亚洲区| 波多野结衣巨乳人妻| 一级毛片电影观看 | 少妇高潮的动态图| 亚洲精品久久国产高清桃花| 亚洲电影在线观看av| 久久午夜亚洲精品久久| 天天躁夜夜躁狠狠久久av| 午夜激情欧美在线| 国产精品无大码| 久久精品国产99精品国产亚洲性色| 少妇人妻一区二区三区视频| 一卡2卡三卡四卡精品乱码亚洲| 久久亚洲精品不卡| av在线老鸭窝| 亚洲国产欧美人成| 国产午夜精品论理片| 日本av手机在线免费观看| www.av在线官网国产| 日韩av在线大香蕉| 夫妻性生交免费视频一级片| 日本欧美国产在线视频| 天天躁夜夜躁狠狠久久av| 99热全是精品| eeuss影院久久| 99久久人妻综合| 免费电影在线观看免费观看| 成人欧美大片| 一级毛片久久久久久久久女| 亚洲色图av天堂| 国产成人a∨麻豆精品| 国产高清不卡午夜福利| 久久久久网色| av天堂在线播放| 亚洲精品456在线播放app| 色噜噜av男人的天堂激情| 色尼玛亚洲综合影院| 在线免费观看的www视频| 免费观看精品视频网站| 黄色视频,在线免费观看| 国产成人一区二区在线| 国产成人a∨麻豆精品| 插逼视频在线观看| 乱系列少妇在线播放| 国产av在哪里看| 欧美成人精品欧美一级黄| 热99在线观看视频| 欧美一级a爱片免费观看看| 成年女人永久免费观看视频| 亚洲在久久综合| 天天躁日日操中文字幕| 色哟哟哟哟哟哟| 午夜激情欧美在线| eeuss影院久久| av黄色大香蕉| 亚洲国产欧美人成| 日韩国内少妇激情av| 亚洲婷婷狠狠爱综合网| 12—13女人毛片做爰片一| 秋霞在线观看毛片| 久久精品国产自在天天线| 精品人妻一区二区三区麻豆| 麻豆国产97在线/欧美| 中国美白少妇内射xxxbb| 亚洲av熟女| 国产老妇女一区| 99在线视频只有这里精品首页| 男女啪啪激烈高潮av片| 久久精品国产99精品国产亚洲性色| 亚洲欧美成人综合另类久久久 | 国产一级毛片七仙女欲春2| 国产黄色视频一区二区在线观看 | 国产麻豆成人av免费视频| 亚洲真实伦在线观看| 女的被弄到高潮叫床怎么办| 国产精品国产三级国产av玫瑰| 99久久精品一区二区三区| 免费观看人在逋| 国产精品1区2区在线观看.| 久久午夜亚洲精品久久| 人人妻人人澡欧美一区二区| 亚洲美女搞黄在线观看| 亚洲av.av天堂| 黄片无遮挡物在线观看| 最近的中文字幕免费完整| 午夜福利在线观看免费完整高清在 | 少妇被粗大猛烈的视频| 99久国产av精品国产电影| 色哟哟哟哟哟哟| 日本一二三区视频观看| 天堂中文最新版在线下载 | 美女内射精品一级片tv| 大香蕉久久网| 搡老妇女老女人老熟妇| 伊人久久精品亚洲午夜| 天美传媒精品一区二区| 黄色一级大片看看| 色播亚洲综合网| 在线a可以看的网站| 在线观看午夜福利视频| av.在线天堂| 一个人免费在线观看电影| 国产伦理片在线播放av一区 | 亚洲第一电影网av| 久久久成人免费电影| 亚洲成a人片在线一区二区| 神马国产精品三级电影在线观看| 狂野欧美白嫩少妇大欣赏| 日本五十路高清| 国产亚洲欧美98| 黄片wwwwww| 九九爱精品视频在线观看| 91麻豆精品激情在线观看国产| 亚洲精品乱码久久久v下载方式| 搡女人真爽免费视频火全软件| 国产精品久久电影中文字幕| 久久99蜜桃精品久久| 干丝袜人妻中文字幕| 亚洲精品成人久久久久久| 老司机福利观看| 亚洲欧洲国产日韩| 国内久久婷婷六月综合欲色啪| 色综合亚洲欧美另类图片| 亚洲国产精品国产精品| 97人妻精品一区二区三区麻豆| 国产单亲对白刺激| 亚洲自拍偷在线| 男人狂女人下面高潮的视频| 免费观看a级毛片全部| 婷婷色av中文字幕| 久久国产乱子免费精品| 欧美成人精品欧美一级黄| 久久精品国产自在天天线| 成熟少妇高潮喷水视频| 日韩中字成人| 高清毛片免费看| 免费av毛片视频| 天堂影院成人在线观看| 国产私拍福利视频在线观看| 天堂影院成人在线观看| 99热只有精品国产| 久久久精品大字幕| 久久精品影院6| 国产激情偷乱视频一区二区| 成人特级av手机在线观看| 亚洲欧美成人精品一区二区| 青青草视频在线视频观看| 久久久久国产网址| 国产精品久久久久久av不卡| 女同久久另类99精品国产91| 春色校园在线视频观看| 国产精品综合久久久久久久免费| 欧美另类亚洲清纯唯美| 97在线视频观看| 国产精品一区二区三区四区免费观看| 精品一区二区三区视频在线| 26uuu在线亚洲综合色| 联通29元200g的流量卡| 免费人成视频x8x8入口观看| 91午夜精品亚洲一区二区三区| 国产91av在线免费观看| 国产一区二区在线av高清观看| 成年版毛片免费区| 少妇人妻精品综合一区二区 | 久久精品久久久久久久性| 日韩欧美三级三区| 欧美人与善性xxx| 一本一本综合久久| 久久精品国产自在天天线| 日韩一区二区视频免费看| 欧美成人a在线观看| 日日啪夜夜撸| 丝袜喷水一区| 91在线精品国自产拍蜜月| 一进一出抽搐gif免费好疼| 蜜桃久久精品国产亚洲av| 成人特级av手机在线观看| 小说图片视频综合网站| 麻豆乱淫一区二区| 国产私拍福利视频在线观看| 内射极品少妇av片p| 好男人在线观看高清免费视频| 97人妻精品一区二区三区麻豆| 大又大粗又爽又黄少妇毛片口| 丝袜美腿在线中文| 久久欧美精品欧美久久欧美| 乱码一卡2卡4卡精品| 欧美日韩乱码在线| 欧美精品一区二区大全| 国内久久婷婷六月综合欲色啪| 黄色视频,在线免费观看| 午夜福利在线观看免费完整高清在 | 国产精品久久久久久久电影| 国产一级毛片在线| 亚洲国产欧美人成| 在线观看免费视频日本深夜| 国产精品伦人一区二区| 亚洲欧洲日产国产| 99视频精品全部免费 在线| 久久精品夜色国产| 丰满人妻一区二区三区视频av| 国产精品乱码一区二三区的特点| 国产成人aa在线观看| 免费av毛片视频| 国产免费男女视频| 可以在线观看的亚洲视频| 丰满的人妻完整版| av在线亚洲专区| 久久久国产成人免费| 久久久成人免费电影| 国产精品99久久久久久久久| 亚洲国产精品成人久久小说 | 少妇的逼水好多| 日本一二三区视频观看| 少妇丰满av| 中文资源天堂在线| 精品一区二区三区视频在线| 菩萨蛮人人尽说江南好唐韦庄 | 欧美日韩综合久久久久久| 成人二区视频| 一边亲一边摸免费视频| 小说图片视频综合网站| 99久国产av精品| 国产视频首页在线观看| 国产一级毛片七仙女欲春2| 欧美高清性xxxxhd video| 最近视频中文字幕2019在线8| 精品一区二区三区人妻视频| 国内久久婷婷六月综合欲色啪| 日本免费a在线| 亚洲激情五月婷婷啪啪| 国产日韩欧美在线精品| 18禁在线无遮挡免费观看视频|