• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Molecular Modulation of Structure and Ferroelectric Performance of Poly(vinylidene fluoride) Free Standing Films from Aspects of Molecular Weight and Crystallization Temperature

    2022-03-08 13:11:32MENGNanLIAOYaozu廖耀祖
    關(guān)鍵詞:耀祖

    MENG Nan(孟 楠), LIAO Yaozu(廖耀祖)*

    1 State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620, China2 College of Materials Science and Engineering, Donghua University, Shanghai 201620, China

    Abstract: Ferroelectric polymer poly(vinylidene fluoride) (PVDF) has received great research interest because of its special electroactive properties which are strongly dependent on the crystalline structures and in turn processing conditions. The effect of molecular weight and crystallization temperature on the micro-structure and macro-properties of PVDF films casted from dimethyl sulfoxide (DMSO) solvent is investigated. The results demonstrated that a low molecular weight (180 kg/mol) and a low evaporation temperature (50 ℃) favored the formation of polar γ-phase, while a high molecular weight (1 000 kg/mol) and a high evaporation temperature (125 ℃) made PVDF crystallize into α-phase. Compared with films casted at 50 ℃, films casted at 125 ℃ exhibited higher dielectric loss at a low electric field and less loss conductivity at a high electric field, which was due to their low degrees of crystallinity and fine evaporation of the solvent, respectively. PVDF with a molecular weight of 180 kg/mol casted at 125 ℃ exhibited the highest remnant polarization (0.062 C/m2) among all of the solution-processed films, being a result of high chain mobility resulted from the low molecular weight.

    Key words: ferroelectric polymer; poly(vinylidene fluoride)(PVDF); solution casting; remnant polarization; dielectric constant

    Introduction

    Recently, as an important category of functional polymers, poly(vinylidene fluoride) (PVDF) based ferroelectric polymers have raised great academic and industrial interests, being mainly ascribed to their excellent electroactive properties such as dielectric, piezoelectric, and ferroelectric properties[1-4]. These properties enable them to be utilized in various applications, especially in dielectric capacitors for energy storage, pressure sensors and touch screens, non-volatile memories,etc.[5-8].

    PVDF is a semi-crystalline polymer with at least four crystalline phases[9], arising from differently adopted chain conformations:α-phase with trans-gauche (TG) chain conformation (antiparallel packing of two adjacent chains),δ-phase with TG chain conformation (parallel packing of two adjacent chains),β-phase with all-trans (TTT) chain conformation, andγ-phase with mixed chain conformation of T3GT3G′. Among all of these phases,α-phase is non-polar because of the self-cancellation of dipole moment. When cooled from the melt, theα-plase usually forms and undergoes a phase transition toδ-phase at an applied electric field of 170 kV/mm, and further toβ-phase at 500 kV/mm[10-11]. Bothδ-phase andβ-phase are polar phases, and especiallyβ-phase has the highest dipole moment 7×10-30C·m perpendicular to the chain axis, and favourable piezoelectric and ferroelectric properties (piezoelectric coefficientd33: about 20-30 pC/N; spontaneous polarization: 0.13 C/m2)[9,12]. Treatingα-phase at a relatively high temperature (167-180 ℃) and high pressure (200 kPa) can transform the material toγ-phase[13].γ-phase can be also formed with the inclusions of specific fillers such as clays[14]or carbon materials[15]. Even thoughβ-phase exhibits the highest polarity, the transparency ofβ-PVDF is deteriorated on account of post-treatment[16], which makes the highly transparentγ-PVDF more attractive for practical applications. It was documented thatγ-phase could exhibit better dielectric energy storage properties compared toβ-phase because of the absence of early polarization saturation[17-18]. It was also reported that pureγ-phase could be formed when crystallized from the solvent[11]. However, there are controversies with respect to the formed crystalline phases using solution casting methods[19-20]. Herein, in order to clarify the crystalline structures of PVDF formed during solvent crystallization, PVDF with different molecular weightsMw(180, 534, and 1 000 kg/mol) is casted from dimethyl sulfoxide (DMSO) solvent at two different temperatures of 50 ℃ and 125 ℃. Through the characterization of structure, dielectric and ferroelectric properties, the crystallization features and ferroelectric properties of solution casting processed PVDF are analyzed.

    1 Experiments

    1.1 Materials

    PVDF (molecular weight: 180 kg/mol and 534 kg/mol) was purchased from Sigma-Aldrich Limited Liability Company(Missouri, USA). PVDF (Solef?5130; molecular weight: 1 000-1 200 kg/mol) was purchased from Solvay (Brussels, Belgium). DMSO (anhydrous, ≥99.9% in mass fraction, Sigma-Aldrich, Missouri, USA) with a density of 1.10 g/cm3was used as casting solvent.

    1.2 Preparation of PVDF films

    Appropriate amounts of PVDF powders or pellets were dissolved into DMSO to obtain a solution with a weight concentration of 10%. The mixtures were magnetically stirred at 70 ℃ for 2 h to fully dissolve PVDF. The solution was then casted on a glass petri dish, which was then incubated in a vacuum oven at 50 ℃ and 125 ℃ for at least 24 h. The thickness of solution casted(SC) films was about 50-100 μm. A list of films produced in this work is presented in Table 1.

    Table 1 Denoted names, preparation temperatures and molecular weights of produced films

    1.3 Instruments

    Scanning electron microscopy (SEM) (FEI Inspector-F, the Netherlands) was used to characterize the morphology of the film surface. Fourier-transform infrared spectroscopy (FTIR) (Tensor 27, Bruker Optik GmbH, Germany) and X-ray diffraction (XRD) with Cu/Kα(λ= 0.154 18 nm) and 2θrange of 5°-70° (X’Pert Pro, PANalytical, the Netherlands) were used to characterize the crystalline structure of PVDF films. The thermal analysis of PVDF films was conducted using differential scanning calorimetry (DSC) (DSC 25, TA Instruments, Belgium) with a temperature range of 25-200 ℃ and a heating rate of 10 ℃/min. The frequency dependence of dielectric spectra under an applied voltage of 0.5 V was characterized using a Precision Impendence Analyzer (4294A, Agilent, USA) at room temperature with frequency ranging from 100 Hz to 100 MHz. The ferroelectric hysteresis loops were measured using a ferroelectric tester (National Physical Laboratory, UK) with a triangle waveform at room temperature and 10 Hz[21]. Gold was sputtered on both sides of films to serve as electrodes for electric measurement. The diameter of electrodes for dielectric and ferroelectric characterization was 5 mm and 2 mm, respectively.

    2 Results and Discussion

    2.1 Morphology control of solution casted PVDF films

    The morphology analysis was elucidated using SEM. Films crystallized at 50 ℃ were highly porous and contained some slackly aggregated beads except for samples with ultrahigh molecular weight (1 000-1 200 kg/mol) which displayed a homogenous and smooth morphology shown in Fig. 1(a). The formed beads are suggested to be crystals since PVDF is a semi-crystalline polymer. Films formed from solution at 125 ℃ clearly displayed the morphology of spherulites shown in Fig. 1(b), where large spherulites with a diameter of about 40-50 μm could be seen in samples with a low molecular weight (180 kg/mol), and slightly irregular and smaller spherulites (about 25 μm) were formed in samples with a moderately higher molecular weight (534 kg/mol). A different morphology, ring-banded spherulite with separated lamellae bundles[22], was obtained in films produced at 125 ℃ with ultrahigh molecular weight (1 000 kg/mol). More details about crystallization characteristics will be discussed in section 2.2.

    Fig. 1 SEM images for the surface of SC PVDF films with different molecular weights at different casting temperatures: (a) 50 ℃ with Mw of 180 kg/mol; (b) 50 ℃ with Mw of 534 kg/mol; (c) 50 ℃ with Mw of 1 000 kg/mol; (d) 125 ℃ with Mw of 180 kg/mol; (e) 125 ℃ with Mw of 534 kg/mol; (f) 125 ℃ with Mw of 1 000 kg/mol

    2.2 Crystallization features of SC PVDF films

    2.2.1Determinationofcrystallinephase

    The crystalline structure of PVDF films was determined using FTIR shown in Fig. 2(a) and XRD shown in Fig. 2(b). FTIR shows characteristic bands for different phases[23-24].α-phase: 612, 766, 975, and 1 212 cm-1;β-phase: 840 cm-1and 1 270 cm-1;γ-phase: 812, 835, 840, and 1 234 cm-1. The sample with the highest molecular weight (1 000 kg/mol) casted at 125 ℃ (SC-125-1000) showed the invisible band at 835-840 cm-1, which suggested the almost pureα-phase crystallized in SC-125-1000 sample. The other films show the appearance of 835-840 cm-1, which demonstrates the possible existence of polarβ-phase andγ-phase. Bands at 1 270 cm-1(exclusive toβ-phase) and 1 234 cm-1(exclusive toγ-phase) were used to resolve the crystalline characterization. The absence of 1 270 cm-1band (β-) and the presence of 1 234 cm-1(γ-) highlighted the fact that the 835-840 cm-1band was only ascribed toγ-phase not to the combined contributions ofβ-phase andγ-phase, which suggested that PVDF did not form intoβ-phase when casted from DMSO solvent (dipole moment: 1.32×10-29C·m).

    Fig. 2 Phase determination of SC PVDF films with different molecular weights at different casting temperatures: (a) FTIR; (b) XRD; (c) content of γ-phase of SC samples calculated from FTIR data; (d) average mean size of crystallites calculated from XRD data

    The above results are consistent with the previous studies thatβ-phase only forms from the solvent with high dipole moment. For example, PVDF casted from hexamethylphosphoramide (HMPA) (dipole moment: 1.85×10-29C·m) can crystallize intoβ-phase regardless of casting temperatures ranging from 60-140 ℃[25]. PVDF with the lowest molecular weight (180 kg/mol) crystallized into the pureγ-phase when casted at a low temperature of 50 ℃ (SC-50-180), as concluded from the absence ofα-characteristic bands (766 cm-1and 612 cm-1). FTIR can also be used to determine the phase content of PVDF. The SC PVDF films only containedα-phase andγ-phase. Therefore, the content ofγ-phaseF(γ)[23]was calculated by

    (1)

    whereAαandAγare the absorbances at 766 cm-1and 835 cm-1, respectively;KαandKγare the corresponding absorbance coefficients, which are 0.365 μm-1and 0.150 μm-1, respectively. The calculated results are depicted in Fig. 2(c). It is clearly concluded that the low casting temperature and the low molecular weight favour the formation of polarγ-phase.

    Contrary to FTIR, XRD can only be used to qualitatively analyze the crystalline structure of PVDF, sinceα-phase,β-phase andγ-phase show diffraction peaks at very close position (about 20.0°-21.0°), 20.0° (110) for pureα-phase, 20.7° (110)/(200) for pureβ-phase, and 20.4° (110)/(101) for pureγ-phase[11].

    All of the films show diffraction peaks at 20.0°-20.4° with no appearance of a peak at 20.7°, being consistent with FTIR data that DMSO SC PVDF films does not crystallize intoβ-phase. In addition to 20.0° (110),α-PVDF also exhibits peaks at 17.8°, 18.4° and 26.6°, which corresponds to the diffraction of (100), (020), and (021). Similarly,γ-PVDF shows diffraction peaks at 18.5° and 39.0° which are ascribed to the crystal planes of (020) and (211). The peak at 26.6° (021) is exclusive toα-phase. Samples with a higher content ofα-phase (weight ratio >15%) for example PVDF with the highest molecular weight (1 000 kg/mol) and the one with a moderate molecular weight casted at a high temperature (534 kg/mol at 125 ℃) clearly displayed peaks at 26.6°. The average size of crystalliteτwas evaluated using the diffraction at 2θ≈20° and Scherrer equation, which was shown as

    (2)

    whereKis dimensionless shape factor and equals 0.89;γis the wavelength of X-ray and is 0.154 06 nm;Bis the full width at half maximum (FWHM);θis a Bragg angle that corresponds to diffraction of (110)αand (110)/(101)γ. The calculated values are described in Fig. 2(d), where films formed at a low temperature (50 ℃) show a smaller mean size of crystallites (about 6 nm), being half of the samples ( about 12 nm) casted at a high temperature (125 ℃).

    2.2.2Thermalanalysis

    The thermal properties of SC films were characterized using DSC (shown in Fig. 3). The degree of crystallinity was evaluated using the ratio between the experimental fusion enthalpy and the theoretical value for a fully crystalline PVDF (104.6 J/g)[26]. The melting temperatureTmof PVDF samples is in the range of 160-172 ℃, and for PVDF with the same molecular weight, theTmpeaks are at almost the same position. However, the degree of crystallinity varies with the solution casting temperature. Films formed at 50 ℃ exhibit higher degrees of crystallinity (about 55%) compared to samples formed at 125 ℃ (40%-45%).

    Fig. 3 DSC analysis of SC PVDF films with different molecular weights at different casting temperatures

    2.2.3Discussionofcrystallizationfeatures

    The formed crystalline phase of PVDF is under the combined influence of crystallization temperatures and molecular weights. The high polarity of DMSO at a low temperature of 50 ℃ enables strong interaction between PVDF and DMSO, which induces the rotation of C—F bonds around polymer chain backbones and the formation of polar phases. However, the polarity of DMSO decreased and the chain mobility of PVDF increased at a high temperature of 125 ℃, which hindered the interaction between PVDF and DMSO, leading to the formation ofα-phase with trans-gauche chain conformation. As a result, PVDF with a molecular weight of 180 kg/mol crystallized into pureγ-phase when casted at 50 ℃ shown in Fig. 2(c). With respect to the molecular weight, a high molecular weight corresponds to low chain mobility, which is similar to the effect of decreasing the crystallization temperature. Therefore, PVDF with a high molecular weight of 1 000 kg/mol tended to crystallize intoα-phase. Apart from the crystalline phase, the low casting temperature enhances the degree of crystallinity of processed PVDF films shown in Fig. 3. One possible reason could be that the crystallization time was extended at a low evaporation temperature[27], giving PVDF more time to crystallize. Moreover, a low casting temperature favours the process of nucleation but hinders the growth of crystallites, as a result, PVDF films casted at 50 ℃ have smaller crystallites compared to films produced at 125 ℃ because of the reduction of the nucleus and the obstruction of crystal growth.

    2.3 Dielectric and ferroelectric properties

    The frequency dependence of dielectric spectra is shown in Fig. 4. All of the films exhibit similar values(about 12±2) of dielectric constants at 100 Hz, and display relaxation loss peaks above 100 kHz which is related to the dipolar relaxation of polymer chains in amorphous regions[28]. SC-50-1000 shows the lowest dielectric constant, being ascribed to the low mobility of polymer chains due to the ultrahigh molecular weight, which discourages the response of dipoles to applied external voltage. It is clearly suggested that the relaxation peaks of films casted at 125 ℃ show higher values of loss compared to films casted at 50 ℃. The dielectric response at low voltage (0.5 V) mainly arises from dipoles in the amorphous region. A high loss relaxation peak can be linked to a low degree of crystallinity, which is consistent with DSC results suggesting that films casted at 125 ℃ exhibit low degrees of crystallinity.

    Fig. 4 Frequency dependence of dielectric properties of SC PVDF films with different molecular weights at different casting temperatures

    The ferroelectric properties of current-electric field (I-E) and displacement-electric field (D-E) loops of SC PVDF films are shown in Fig. 5. PVDF with a low molecular weight of 180 kg/mol displayed an obvious ferroelectric switching feature with switching current peaks at an electric field of 70-80 kV/mm. However, PVDF with a high molecular weight (534 kg/mol and 1 000 kg/mol) exhibited high loss conductivity corresponding to large slopes of I-E loops, and did not show apparent switching current peaks especially for PVDF casted at 50 ℃. The high loss conductivity can be attributed to the residual solvent caused by a low evaporation temperature. A high molecular weight contributes to low chain mobility that could be the reason for less obvious peaks of switching current, since the ferroelectric switching of PVDF is accomplished by the collaborative long-range rotation of polymer chains, and low chain mobility hinders the rotation of polymer chains[29]. Especially for PVDF with 180 kg/mol, films casted at 125 ℃ showed the highest remnant polarization (0.062 C/m2), being a result of a high fraction of polarγ-phase (about 90%) and well evaporation of DMSO solvent.

    Fig. 5 Ferroelectric properties of PVDF films with different molecular weight solution casted at 50 ℃ and 125 ℃: (a) 180 kg/mol; (b) 534 kg/mol; (c) 1 000 kg/mol

    3 Conclusions

    The crystallization characteristics of PVDF casted from DMSO solvent were studied in this work, where the crystalline phase, crystallinity and average crystallite size are influenced by the molecular weight and the evaporation temperature of the solvent. A low molecular weight (180 kg/mol) and a low evaporation temperature (50 ℃) favour the formation of polarγ-phase, while PVDF with a high molecular weight (1 000 kg/mol) casted at a high temperature (125 ℃) predominantly crystallized intoα-phase. Films casted at 125 ℃ exhibited high dielectric loss, being a result of a low degree of crystallinity. On the contrary, films casted at a high temperature showed less conductivity loss at 200 kV/mm, which was ascribed to the fine evaporation of the solvent. Moreover, high chain mobility resulted from a low molecular weight allowed PVDF to display obvious ferroelectric switching. As a result, PVDF with 180 kg/mol casted at 125 ℃ exhibited the highest remnant polarization (0.062 C/m2) among all of the solution-processed films.

    猜你喜歡
    耀祖
    Preparation of Polyaniline/Cellulose Nanofiber Aerogel for Efficient Removal of Cr(VI) from Aqueous Solution
    李鳳群和她的《伙伴》
    規(guī)矩
    扶貧可以很另類
    吳耀祖先生作品選登
    今日華人(2019年15期)2019-12-17 08:16:45
    男女有別
    北大留美碩士拉黑父母:“為你好”真的會(huì)“讓我痛”
    北大留美碩士拉黑父母:『為你好』真的會(huì)『讓我痛』
    有一種傷害叫關(guān)愛:北大留美碩士為何拉黑父母
    同鄉(xiāng)小妹之死:有求必應(yīng)的大哥扛不住了
    国产高清不卡午夜福利| 国产精品一区二区在线不卡| 1024视频免费在线观看| 97在线人人人人妻| 国产免费一区二区三区四区乱码| 国产成人一区二区三区免费视频网站 | 久久久精品区二区三区| 亚洲欧美日韩高清在线视频 | 一级a爱视频在线免费观看| 啦啦啦中文免费视频观看日本| 国产精品偷伦视频观看了| 19禁男女啪啪无遮挡网站| 999精品在线视频| 悠悠久久av| 侵犯人妻中文字幕一二三四区| 黄色怎么调成土黄色| 99香蕉大伊视频| 国产黄色免费在线视频| 日韩大码丰满熟妇| 国产精品 国内视频| 国产熟女欧美一区二区| 老司机影院毛片| 美女午夜性视频免费| 国产成人a∨麻豆精品| 国产成人91sexporn| 91国产中文字幕| 久久精品亚洲av国产电影网| 最近最新中文字幕大全免费视频 | 日韩大片免费观看网站| 波野结衣二区三区在线| 国产xxxxx性猛交| 欧美日韩黄片免| 一边摸一边做爽爽视频免费| 午夜日韩欧美国产| 久久国产精品人妻蜜桃| 一级,二级,三级黄色视频| e午夜精品久久久久久久| 老汉色av国产亚洲站长工具| av视频免费观看在线观看| 中文字幕精品免费在线观看视频| 99热网站在线观看| 国产精品国产三级专区第一集| 香蕉丝袜av| 久久久欧美国产精品| 狂野欧美激情性bbbbbb| 在线av久久热| 国产欧美日韩综合在线一区二区| 久久这里只有精品19| 狠狠婷婷综合久久久久久88av| 久久亚洲精品不卡| 一边摸一边做爽爽视频免费| 少妇人妻 视频| 51午夜福利影视在线观看| 精品视频人人做人人爽| 少妇粗大呻吟视频| 人妻人人澡人人爽人人| 2018国产大陆天天弄谢| 成人黄色视频免费在线看| cao死你这个sao货| 国产亚洲一区二区精品| 国产黄色视频一区二区在线观看| 水蜜桃什么品种好| 国产精品久久久久久精品古装| 色婷婷久久久亚洲欧美| 国产人伦9x9x在线观看| 如日韩欧美国产精品一区二区三区| 亚洲欧美一区二区三区黑人| 国产精品一区二区在线观看99| 岛国毛片在线播放| 国产成人精品在线电影| 国产主播在线观看一区二区 | 亚洲国产看品久久| av国产久精品久网站免费入址| av不卡在线播放| 女人爽到高潮嗷嗷叫在线视频| 美女主播在线视频| 国产av精品麻豆| 九草在线视频观看| 久久国产精品大桥未久av| 成年美女黄网站色视频大全免费| 成人免费观看视频高清| 国产真人三级小视频在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 乱人伦中国视频| 亚洲中文字幕日韩| 又紧又爽又黄一区二区| 亚洲欧美精品综合一区二区三区| 日韩中文字幕欧美一区二区 | 99国产精品一区二区蜜桃av | 国产真人三级小视频在线观看| 丁香六月天网| avwww免费| 国产成人欧美| 国产一区有黄有色的免费视频| 亚洲午夜精品一区,二区,三区| 亚洲中文日韩欧美视频| 搡老乐熟女国产| 亚洲情色 制服丝袜| 成人国语在线视频| 中文精品一卡2卡3卡4更新| 国产精品一区二区免费欧美 | 国产一区二区三区av在线| cao死你这个sao货| 19禁男女啪啪无遮挡网站| 久久精品熟女亚洲av麻豆精品| 久久精品国产a三级三级三级| 国产一级毛片在线| 日韩视频在线欧美| 亚洲欧美激情在线| 菩萨蛮人人尽说江南好唐韦庄| 18禁国产床啪视频网站| 亚洲欧美中文字幕日韩二区| 欧美精品av麻豆av| 后天国语完整版免费观看| 亚洲 国产 在线| 中文字幕人妻熟女乱码| 热99久久久久精品小说推荐| 亚洲欧美日韩另类电影网站| 在线观看免费高清a一片| 大片电影免费在线观看免费| 人人妻人人澡人人看| 欧美人与善性xxx| 久久久久国产一级毛片高清牌| 国产精品香港三级国产av潘金莲 | 女人久久www免费人成看片| 蜜桃国产av成人99| 男男h啪啪无遮挡| 中国国产av一级| 91老司机精品| 免费观看av网站的网址| av不卡在线播放| 午夜日韩欧美国产| 一本久久精品| 午夜免费鲁丝| 国产精品久久久久成人av| 天堂俺去俺来也www色官网| 精品福利观看| 黄色怎么调成土黄色| 99久久99久久久精品蜜桃| 99九九在线精品视频| 一边摸一边抽搐一进一出视频| 男女边吃奶边做爰视频| 又大又爽又粗| 亚洲av日韩在线播放| 久久免费观看电影| 亚洲欧洲国产日韩| 国产精品欧美亚洲77777| 日韩av免费高清视频| 免费不卡黄色视频| 亚洲五月婷婷丁香| 久久精品国产亚洲av高清一级| 亚洲av电影在线进入| 国产在线免费精品| 看免费成人av毛片| 亚洲av美国av| av在线app专区| 欧美变态另类bdsm刘玥| 久久毛片免费看一区二区三区| 涩涩av久久男人的天堂| 亚洲国产精品国产精品| 男人舔女人的私密视频| 精品少妇一区二区三区视频日本电影| 夜夜骑夜夜射夜夜干| netflix在线观看网站| 色视频在线一区二区三区| 免费av中文字幕在线| 夫妻午夜视频| 国产99久久九九免费精品| 亚洲av片天天在线观看| 成年人午夜在线观看视频| 欧美国产精品va在线观看不卡| 国产免费视频播放在线视频| 男男h啪啪无遮挡| 国产老妇伦熟女老妇高清| 亚洲精品国产av蜜桃| 一区二区日韩欧美中文字幕| 国产伦理片在线播放av一区| 男女免费视频国产| 大话2 男鬼变身卡| 国产精品 国内视频| 菩萨蛮人人尽说江南好唐韦庄| svipshipincom国产片| 久久青草综合色| 老司机在亚洲福利影院| 欧美乱码精品一区二区三区| 老司机午夜十八禁免费视频| 国产黄色免费在线视频| 精品国产一区二区三区久久久樱花| 亚洲av美国av| 美女中出高潮动态图| 国产野战对白在线观看| 热re99久久精品国产66热6| 亚洲精品久久午夜乱码| 亚洲国产av影院在线观看| 国产精品成人在线| 国产高清不卡午夜福利| 午夜影院在线不卡| 国产视频一区二区在线看| 亚洲欧洲日产国产| 亚洲激情五月婷婷啪啪| 18禁观看日本| 巨乳人妻的诱惑在线观看| 亚洲欧美色中文字幕在线| 午夜福利乱码中文字幕| 赤兔流量卡办理| 亚洲成色77777| 欧美日韩亚洲综合一区二区三区_| 国产高清不卡午夜福利| 人体艺术视频欧美日本| 男的添女的下面高潮视频| 嫁个100分男人电影在线观看 | 一级毛片我不卡| 亚洲精品日本国产第一区| 日韩精品免费视频一区二区三区| 国产熟女欧美一区二区| 最新在线观看一区二区三区 | 在线观看免费视频网站a站| 欧美精品一区二区大全| 极品人妻少妇av视频| 国产视频首页在线观看| 9热在线视频观看99| 国产精品久久久av美女十八| 亚洲人成77777在线视频| 日本一区二区免费在线视频| 亚洲精品av麻豆狂野| 国产精品久久久久久精品古装| 成人午夜精彩视频在线观看| 日本a在线网址| 国产成人91sexporn| 精品久久久精品久久久| 老司机深夜福利视频在线观看 | 一边摸一边抽搐一进一出视频| 晚上一个人看的免费电影| 考比视频在线观看| 国产福利在线免费观看视频| 两性夫妻黄色片| 伦理电影免费视频| 久久精品亚洲熟妇少妇任你| 亚洲欧美日韩高清在线视频 | av网站免费在线观看视频| 亚洲欧美成人综合另类久久久| 国产成人免费无遮挡视频| 国产成人欧美| 午夜免费男女啪啪视频观看| 久久99一区二区三区| 国产精品 欧美亚洲| 国产精品熟女久久久久浪| 国产精品麻豆人妻色哟哟久久| 亚洲九九香蕉| 欧美人与性动交α欧美精品济南到| av天堂久久9| 又紧又爽又黄一区二区| 精品国产一区二区三区四区第35| 国产不卡av网站在线观看| 亚洲黑人精品在线| 欧美日韩福利视频一区二区| 成年女人毛片免费观看观看9 | 国产精品亚洲av一区麻豆| 午夜福利视频精品| 妹子高潮喷水视频| 亚洲人成网站在线观看播放| 欧美精品人与动牲交sv欧美| 青草久久国产| 女人被躁到高潮嗷嗷叫费观| 亚洲欧美日韩另类电影网站| 亚洲少妇的诱惑av| 成人免费观看视频高清| 亚洲一卡2卡3卡4卡5卡精品中文| 狂野欧美激情性xxxx| 亚洲欧美日韩高清在线视频 | 看十八女毛片水多多多| 美女大奶头黄色视频| 亚洲伊人久久精品综合| 脱女人内裤的视频| 秋霞在线观看毛片| 欧美变态另类bdsm刘玥| av网站免费在线观看视频| 亚洲国产av新网站| 国产精品一区二区在线不卡| 少妇的丰满在线观看| 黑人欧美特级aaaaaa片| 曰老女人黄片| 搡老岳熟女国产| 成在线人永久免费视频| 欧美人与性动交α欧美精品济南到| 亚洲熟女精品中文字幕| 99久久精品国产亚洲精品| 美女扒开内裤让男人捅视频| 国产一区二区 视频在线| 国语对白做爰xxxⅹ性视频网站| 99热全是精品| 国产在线观看jvid| 熟女av电影| 久久精品国产亚洲av高清一级| 制服诱惑二区| 久久人人爽av亚洲精品天堂| 一边摸一边做爽爽视频免费| 巨乳人妻的诱惑在线观看| 欧美黑人欧美精品刺激| 99国产综合亚洲精品| 在线观看免费日韩欧美大片| 国产男人的电影天堂91| 黄色视频在线播放观看不卡| 女人高潮潮喷娇喘18禁视频| 国产成人一区二区在线| 99精国产麻豆久久婷婷| 国产一区二区三区av在线| 国产亚洲欧美精品永久| 91九色精品人成在线观看| 侵犯人妻中文字幕一二三四区| 男女午夜视频在线观看| 在线观看一区二区三区激情| 日韩,欧美,国产一区二区三区| 欧美人与性动交α欧美精品济南到| 久久综合国产亚洲精品| 国产一级毛片在线| 女人久久www免费人成看片| 丝袜人妻中文字幕| 日韩大片免费观看网站| 精品高清国产在线一区| 啦啦啦啦在线视频资源| 国产一区二区三区综合在线观看| 中文字幕人妻熟女乱码| 亚洲 欧美一区二区三区| 亚洲精品中文字幕在线视频| 国产精品九九99| 永久免费av网站大全| 一级毛片 在线播放| 2021少妇久久久久久久久久久| 国产又爽黄色视频| 99国产精品一区二区蜜桃av | 日韩伦理黄色片| 首页视频小说图片口味搜索 | 在线观看免费视频网站a站| 性色av乱码一区二区三区2| 两性夫妻黄色片| 亚洲精品国产色婷婷电影| 1024视频免费在线观看| 国产精品成人在线| 亚洲 欧美一区二区三区| 久热爱精品视频在线9| 涩涩av久久男人的天堂| 国产高清不卡午夜福利| 自拍欧美九色日韩亚洲蝌蚪91| 一级毛片我不卡| 丝瓜视频免费看黄片| 波野结衣二区三区在线| 一边亲一边摸免费视频| 侵犯人妻中文字幕一二三四区| 午夜福利一区二区在线看| 母亲3免费完整高清在线观看| √禁漫天堂资源中文www| 女性被躁到高潮视频| av在线老鸭窝| 久久国产精品大桥未久av| 欧美日韩福利视频一区二区| 亚洲av电影在线观看一区二区三区| 亚洲欧美日韩另类电影网站| 在线天堂中文资源库| 99精品久久久久人妻精品| 国精品久久久久久国模美| 亚洲av综合色区一区| 久久毛片免费看一区二区三区| 满18在线观看网站| 少妇的丰满在线观看| 91精品伊人久久大香线蕉| 亚洲 国产 在线| 女性生殖器流出的白浆| 女警被强在线播放| 精品少妇久久久久久888优播| 一区二区三区激情视频| 一个人免费看片子| 天堂中文最新版在线下载| 亚洲欧洲精品一区二区精品久久久| 麻豆乱淫一区二区| 亚洲成av片中文字幕在线观看| 一级片免费观看大全| 精品久久久久久电影网| 亚洲精品av麻豆狂野| 晚上一个人看的免费电影| 日本黄色日本黄色录像| 婷婷色综合大香蕉| 久久精品久久精品一区二区三区| 999精品在线视频| 国产在线视频一区二区| 久9热在线精品视频| 2018国产大陆天天弄谢| 午夜激情av网站| h视频一区二区三区| 久久久亚洲精品成人影院| 免费在线观看日本一区| 悠悠久久av| 亚洲成色77777| 制服人妻中文乱码| 欧美日韩亚洲高清精品| 男女床上黄色一级片免费看| 一区二区三区精品91| 国产人伦9x9x在线观看| 久久人人爽人人片av| 视频区欧美日本亚洲| 一本—道久久a久久精品蜜桃钙片| 97精品久久久久久久久久精品| 啦啦啦 在线观看视频| 成人国语在线视频| 国产片特级美女逼逼视频| 欧美变态另类bdsm刘玥| 国产成人av教育| 2021少妇久久久久久久久久久| 亚洲精品美女久久av网站| 亚洲成国产人片在线观看| 国产精品一区二区精品视频观看| 一二三四社区在线视频社区8| 日本午夜av视频| 9色porny在线观看| 日韩中文字幕欧美一区二区 | 成人手机av| 一区二区三区四区激情视频| 无遮挡黄片免费观看| 在线看a的网站| 国产一区二区 视频在线| 纯流量卡能插随身wifi吗| 在线看a的网站| 精品一区在线观看国产| 久久久久久人人人人人| 免费高清在线观看日韩| 成人18禁高潮啪啪吃奶动态图| 性色av一级| 久久鲁丝午夜福利片| 别揉我奶头~嗯~啊~动态视频 | 真人做人爱边吃奶动态| 天天躁狠狠躁夜夜躁狠狠躁| 日韩欧美一区视频在线观看| 亚洲欧美色中文字幕在线| 国产一区二区三区av在线| 少妇猛男粗大的猛烈进出视频| 在线观看人妻少妇| 男的添女的下面高潮视频| 久久热在线av| 免费在线观看影片大全网站 | 欧美人与性动交α欧美精品济南到| 91精品国产国语对白视频| av在线老鸭窝| 嫁个100分男人电影在线观看 | 亚洲精品美女久久av网站| 国产精品亚洲av一区麻豆| 亚洲专区国产一区二区| 性高湖久久久久久久久免费观看| 黄色视频不卡| 久9热在线精品视频| 亚洲精品av麻豆狂野| 免费黄频网站在线观看国产| 天天躁夜夜躁狠狠久久av| 黑人欧美特级aaaaaa片| 99久久人妻综合| 亚洲av电影在线观看一区二区三区| 欧美亚洲日本最大视频资源| 精品久久久久久久毛片微露脸 | 国产欧美亚洲国产| 首页视频小说图片口味搜索 | 国产成人精品久久久久久| 精品国产超薄肉色丝袜足j| 亚洲精品一区蜜桃| 国产成人精品久久久久久| 青春草亚洲视频在线观看| 国产深夜福利视频在线观看| 纵有疾风起免费观看全集完整版| 国产高清videossex| 蜜桃国产av成人99| 亚洲九九香蕉| 黑人欧美特级aaaaaa片| 国产又爽黄色视频| 电影成人av| 久久人人爽av亚洲精品天堂| 亚洲av在线观看美女高潮| 欧美亚洲 丝袜 人妻 在线| 在现免费观看毛片| 巨乳人妻的诱惑在线观看| 男女之事视频高清在线观看 | 国产精品三级大全| 免费在线观看影片大全网站 | 欧美日韩福利视频一区二区| 不卡av一区二区三区| 欧美激情 高清一区二区三区| 自拍欧美九色日韩亚洲蝌蚪91| 久久精品国产a三级三级三级| 成年人黄色毛片网站| 欧美国产精品va在线观看不卡| 国产在线视频一区二区| 青春草亚洲视频在线观看| 欧美av亚洲av综合av国产av| 日韩大码丰满熟妇| 欧美日韩国产mv在线观看视频| 久久鲁丝午夜福利片| 亚洲av电影在线观看一区二区三区| 亚洲第一av免费看| 亚洲伊人久久精品综合| 老汉色∧v一级毛片| 大型av网站在线播放| 精品第一国产精品| 在线观看人妻少妇| 香蕉国产在线看| 精品卡一卡二卡四卡免费| 热99久久久久精品小说推荐| 亚洲成国产人片在线观看| 亚洲精品在线美女| 满18在线观看网站| www日本在线高清视频| 人妻一区二区av| 美女扒开内裤让男人捅视频| 亚洲国产成人一精品久久久| 久久天躁狠狠躁夜夜2o2o | av有码第一页| 啦啦啦在线免费观看视频4| 久久久精品免费免费高清| 国产一区二区在线观看av| 亚洲欧美激情在线| 欧美激情高清一区二区三区| 啦啦啦视频在线资源免费观看| 亚洲,欧美精品.| 午夜久久久在线观看| 国产又爽黄色视频| 日韩一卡2卡3卡4卡2021年| 欧美成人精品欧美一级黄| 国产精品成人在线| 亚洲成人免费电影在线观看 | 国语对白做爰xxxⅹ性视频网站| 国产一区二区三区综合在线观看| 国产精品亚洲av一区麻豆| 婷婷成人精品国产| 十八禁人妻一区二区| 中文乱码字字幕精品一区二区三区| 你懂的网址亚洲精品在线观看| 99久久99久久久精品蜜桃| 国产欧美日韩精品亚洲av| av一本久久久久| 久久国产精品男人的天堂亚洲| 国产精品一国产av| 国产精品国产三级国产专区5o| 交换朋友夫妻互换小说| www日本在线高清视频| 欧美xxⅹ黑人| 丝袜美足系列| 国产免费又黄又爽又色| 国产黄频视频在线观看| 热re99久久国产66热| 国产午夜精品一二区理论片| 99久久精品国产亚洲精品| 午夜日韩欧美国产| 男人添女人高潮全过程视频| 欧美日韩福利视频一区二区| 中文字幕精品免费在线观看视频| 亚洲国产成人一精品久久久| 欧美xxⅹ黑人| 亚洲精品国产一区二区精华液| 中文乱码字字幕精品一区二区三区| 国产精品国产av在线观看| 观看av在线不卡| 日韩免费高清中文字幕av| 人妻 亚洲 视频| 91国产中文字幕| 欧美日韩国产mv在线观看视频| 久久精品熟女亚洲av麻豆精品| 欧美亚洲 丝袜 人妻 在线| 国产99久久九九免费精品| 纯流量卡能插随身wifi吗| cao死你这个sao货| 男女国产视频网站| 狠狠精品人妻久久久久久综合| av网站免费在线观看视频| 在线观看免费高清a一片| 久久国产精品男人的天堂亚洲| 欧美激情高清一区二区三区| av又黄又爽大尺度在线免费看| 少妇 在线观看| 日韩,欧美,国产一区二区三区| av片东京热男人的天堂| 欧美 亚洲 国产 日韩一| 国产一卡二卡三卡精品| av福利片在线| 国产成人欧美| 这个男人来自地球电影免费观看| 一本大道久久a久久精品| 成人亚洲欧美一区二区av| 美女福利国产在线| 岛国毛片在线播放| 久久青草综合色| 精品人妻熟女毛片av久久网站| 国产精品一区二区免费欧美 | 国产一级毛片在线| 久久九九热精品免费| 九色亚洲精品在线播放| 精品福利永久在线观看| netflix在线观看网站| 久久精品国产亚洲av涩爱| 我的亚洲天堂| 欧美国产精品一级二级三级| 我的亚洲天堂| 久久精品国产亚洲av涩爱| 少妇猛男粗大的猛烈进出视频| 99国产综合亚洲精品| 女性被躁到高潮视频| 中国美女看黄片| 国产精品免费视频内射| 亚洲黑人精品在线| 九色亚洲精品在线播放| 欧美亚洲 丝袜 人妻 在线| 亚洲精品中文字幕在线视频| 美女主播在线视频| 999久久久国产精品视频| 亚洲一区二区三区欧美精品| 亚洲欧美日韩另类电影网站| 最新的欧美精品一区二区| 国产亚洲一区二区精品| 一区在线观看完整版| 久久人人97超碰香蕉20202|