• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Bright 547-dimensional Hilbert-space entangled resource in 28-pair modes biphoton frequency comb from a reconfigurable silicon microring resonator

    2022-02-24 09:38:00QilinZheng鄭騎林JiachengLiu劉嘉成ChaoWu吳超ShichuanXue薛詩川PingyuZhu朱枰諭YangWang王洋XinyaoYu于馨瑤MiaomiaoYu余苗苗MingtangDeng鄧明堂JunjieWu吳俊杰andPingXu徐平
    Chinese Physics B 2022年2期
    關鍵詞:徐平明堂王洋

    Qilin Zheng(鄭騎林), Jiacheng Liu(劉嘉成), Chao Wu(吳超), Shichuan Xue(薛詩川),Pingyu Zhu(朱枰諭), Yang Wang(王洋), Xinyao Yu(于馨瑤), Miaomiao Yu(余苗苗),Mingtang Deng(鄧明堂), Junjie Wu(吳俊杰), and Ping Xu(徐平),3,?

    1Institute for Quantum Information and State Key Laboratory of High Performance Computing,College of Computer,National University of Defense Technology,Changsha 410073,China

    2College of Advanced Interdisciplinary Studies,National University of Defense Technology,Changsha 410073,China

    3National Laboratory of Solid State Microstructures and School of Physics,Nanjing University,Nanjing 210093,China

    High-dimensional entanglement provides valuable resources for quantum technologies, including quantum communication, quantum optical coherence tomography, and quantum computing.Obtaining a high brightness and dimensional entanglement source has significant value.Here we utilize a tunable asymmetric Mach–Zehnder interferometer coupled silicon microring resonator with 100 GHz free spectral range to achieve this goal.With the strategy of the tunable coupler, the dynamical and extensive tuning range of quality factors of the microring can be obtained, and then the biphoton pair generation rate can be optimized.By selecting and characterizing 28 pairs from a more than 30-pair modes biphoton frequency comb, we obtain a Schmidt number of at least 23.4 and on-chip pair generation rate of 19.9 MHz/mW2 under a low on-chip pump power,which corresponds to 547 dimensions Hilbert space in frequency freedom.These results will prompt the wide applications of quantum frequency comb and boost the further large density and scalable on-chip quantum information processing.

    Keywords: silicon microring resonator,quantum entanglement,biphoton frequency comb

    1.Introduction

    With the prosperity of the photonic quantum industry,numerous applications with the practical value from quantum computing to quantum communication[1,2]have emerged.Lying at the heart of these quantum technologies, quantum light sources[3]provide available resources and endue them with quantum advantages.High-dimensional entanglement is one of the valuable resources for supporting high capacity quantum communication,[4]quantum optical coherence tomography (QOCT),[5]high-dimensional one-way quantum processing,[6]and error-tolerant quantum computation.[7]However, it is still a challenge to further expand the scale of quantum applications because of the limited quantum resources.One of the solutions can be increasing the physical qudits or the entanglement dimensionality.[8]As a feasible approach to improve entanglement,the biphoton frequency comb (BFC)[9]has been widely studied.As one of the most promising architectures,the quantum photonic chips have the merits of miniaturization, reconfigurability, high integration,high stability,mass production,and so on.[10]For on-chip applications,frequency should be a prominent degree of freedom for scaling the Hilbert space in a single waveguide mode without occupying a large physical space of the chip.Quantum interference and logic gates in frequency space have been successfully demonstrated.[11,12]

    The higher dimensionality usually implies the higher ability achieved in quantum tasks; hence a high-dimensional frequency entanglement is a long-time goal in this field.How to further increase the dimensionality is of significant value.Usually, in order to evaluate the entanglement dimension of BFCs,we can measure their joint spectral intensity(JSI),and then calculate the Schmidt number[13]through singular value decomposition to give the entangled dimensionality.To our knowledge, BFCs have been generated from different photonic chip platforms[14]like the third-order nonlinear platform including silicon-on-insulator(SOI)[15–17]and silicon nitride (SiN),[18,19]the second-order nonlinear material,[20,21]and high refractive index glass.[22]The Schmidt numberKin the frequency freedom obtained from the measured JSI is at most 22.0[15]by measuring both the JSI and unheralded second-order correlationg(2).[23]For the BFCs from silicon nitride microring resonator, the gained maximum Schmidt number is 20.[18]In Ref.[19], the authors observed 37 mode correlated pairs from a 42-pair BFC with a pump power larger than 20 mW,while there was no detailed calculation about the Schmidt number.Chang realized a BFC from a second-order nonlinear PPKTP waveguide with a fiber Fabry–Prot cavity as the post-selection,and the Schmidt number was calculated to be 18.3.[20]An earlier version of this BFC source was characterized with no more than 9 frequency modes.[21]Kumar obtainedK=10.6 from a periodic sequence of coupled silicon microresonators chain.[16]In Ref.[22],the authors achieved a quantum system through two entangled qudits of high refractive index glass BFC,and they characterized the limited modes and obtained a Schmidt number of 10.

    The dimensionality and brightness of the BFCs are one of the main concerned parameters that guarantee a high-quality BFC generation.[24]In this work, we demonstrate a reconfigurable silicon microring resonator, aiming to generate a high brightness and dimension biphoton frequency comb at a low-power consumption that can be widely adopted for further large density on-chip quantum information processing.For increasing the dimensionality, we design a relatively large circumference to obtain a small free spectral range(FSR), i.e., a 100 GHz frequency spacing between adjacent frequency modes.With recently developed high-speed lithium niobate on insulator (LNOI) electro-optic modulators,[25,26]the 100 GHz spacing frequency comb can be manipulated for quantum information processing.[12]For the brightness, we propose to adopt the asymmetric Mach–Zehnder interferometer (AMZI) as the tunable coupler for the microring to offer a tuning range of quality factors to optimize the brightness or pair generation rate (PGR) of the biphoton frequency comb.Experimentally, we fabricate a CMOS-compatible silicon chip that is an efficient nonlinear platform for lowering the required pump power.An at least 23.4-dimensional frequency entanglement spanning 547 dimensional Hilbert space resource with on-chip pair generation rate of 19.9 MHz/mW2is obtained at a low on-chip power.

    2.Theory and experiments

    The AMZI-coupled microring resonator was firstly proposed by Barbarossa in Ref.[27], then has been widely used for tunable filtering,[28]sensing,[29]and improving the PGR[30]of photons.Here,we dynamically modulate the quality factorQof the microring with this AMZI as the coupler,then optimize the PGR and characterize the dimensionality of quantum entanglements around this high PGR working point.The AMZI-coupled microring is shown in Fig.1(a).The silicon waveguide covered with SiO2has a width of 500 nm and a height of 220 nm.The two gaps between AMZI and the microring are both 200 nm which guarantee that the microring can be in different coupling status, and the length difference between the two arms of AMZI is 2πR,whereRis the radius of the microring with 112μm that corresponds to the 100 GHz free spectral range (FSR) which is compatible with commercial dense wavelength division multiplexing(DWDM).TheQfactors of the AMZI-coupled microring can be expressed as

    whereQt,QintandQextare the total, intrinsic and extrinsic quality factors, respectively, the subscriptvrepresent pump(p), idler (i) or signal (s).Besides,Qint=ω/(Vgα) is determined by the round-trip loss coefficient α inside the ring.TheQext=2πRω/(Vg|Ke|2) is related to the equivalent coupling coefficientKebetween the microring and waveguide.HereVgis the group velocity of the ring,Ris the microring radius,and ω is the center angular frequency.Combine all-pass microring theory and the AMZI theory,[27]Ke= itk(e?i(βΔL+Ψ)+1),wheretandkare the electric field amplitude coupling coefficient and transmission coefficient of the coupler satisfyingt2+k2=1,β is the propagation constant related to the wavelength, ΔLis the arm length difference, and Ψ is the modulation phase controlled by the voltage applied on the resistive heater of the thermal-optic phase shifter.Figure 1(b) shows the theoretical transmission efficiency and|Ke|2changing with wavelength under two different Ψ.The phase Ψ can modulateKeand then the extrinsic quality factorQextandQint/Qextcan be modulated.According to the different values ofQint/Qext,we can divide the working status of the microring into three regions.Specifically,whenQint/Qext=1,the amplitude in the microring can be maximized, and the transmission efficiency at this point is near 0.We call this state critical-coupling and define the|Ke|2in this point as|Kc|2.WhenQint/Qext>1,that means|Ke|2>|Kc|2,the state turns into over-coupling,and the most over-coupling point refers to the coupling state when the maximum value ofQint/Qextis achieved on the structure we use.While whenQint/Qext<1,that means|Ke|2<|Kc|2,the state becomes under-coupling.Under different coupling situations, we can get different spontaneous four-wave mixing(SFWM)efficiencies.

    From the references,[3,31]the PGR of them-th pair spectral modes is closely related to the value ofQint/Qext.Specifically,

    Among them, γ is the nonlinear parameter of χ(3),Ppis the pump power, and Ωpis the resonance frequency of the pump light.Qextis the extrinsic quality factor of them-th entangled frequency photon pair that varies with Ψ,which can be given by the following formula:

    where Ωs,mis the resonate frequency and βsis the propagation constant of them-th mode signal photon.Since ΔL=2πRwill lead to the extrinsic quality factors of all resonance modes including pump,signal,and idler being the same,and therefore the total PGR of all frequency modes can be finally expressed as a function ofQint/Qextwhich is in the same form of them-th frequency pair’s PGR.In fact,when the microring is manufactured with a fixed ΔLand coupling gap, we can change the voltage applied to AMZI, thereby equivalently changing the coefficientKe, and then determiningQand further affecting PGR.

    The experimental schematic is shown as Fig.2.A tunable laser is coupled into the silicon chip through the on-chip grating, and the BFC from SFWM inside the microring is generated and coupled out again through an on-chip grating then passes through a filtering system to reach superconductor nanowire single-photon detectors(SNSPD)finally.When the pump laser at 1549.315 nm was coupled to and decoupled from the chip by coupling fiber arrays and the waveguide grating array, the total insertion loss was about 7.68 dB and each facet insertion loss was about 3.84 dB.We define the onchip pump power as the power that is coupled into the chip through one facet coupling for fiber arrays to the waveguide grating array with an insertion loss of 3.84 dB.Before this,the pump power has suffered a transmission loss of 0.47 dB,then passes through the polarization controller and filter with a loss of 1.14 dB.The tunable CW laser has a line width of 0.4 MHz and a wavelength tuning range of 1500 nm to 1630 nm.The adjustment accuracy of the temperature controller (TEC) for the silicon chip is 0.01°C; it is an automatic temperature adjustment system combining a Peltier with a negative feedback module.The tunable filter supports independently tunable center wavelength and bandwidth.It has a 1525 nm to 1610 nm tuning range and 0.08 nm minimum filter bandwidth;when the bandwidth is set to 0.2 nm,the insertion loss is about 6 dB.The digital-to-analog voltage converter(DAC)is an adjustable voltage controller with 8 channels, and each channel has an accuracy of 0.01 V.The timing analyzer (TA) has a 78 ps time bin width.Besides, the dark counts of the two SNSPDs are 150 Hz and 200 Hz,with efficiencies of 74% and 75%,respectively.

    Fig.1.(a)The structure of the experimental AMZI-coupled microring,the resistive heater can be powered through the metal pads.The k refers to the electric field amplitude coupling coefficient,and t refers to the electric field amplitude transmission coefficient that satisfies t2+k2=1.(b)The theoretical transmission efficiency and|Ke|2 changing with the wavelength under two different phases.When the phase changes from Ψ =0 to Ψ =0.66π,the transmission efficiency becomes smaller because of the equivalent change of Ke.

    Fig.2.The schematic diagram of our experiments.Here, PC, polarization controller; PM, power meter; BS, beam splitter; D, superconducting nanowire single-photon detector(SNSPD);TEC,temperature controller,it is an automatic temperature adjustment system combining a Peltier with a negative feedback module; DAC,digital-to-analog voltage converter,it is an adjustable voltage controller with 8 channels,and each channel has an accuracy of 0.01 V;DF,DWDM filter;TF,tunable filter;TA,timing analyzer.

    Experimentally first we make linear optical tests on the AMZI-coupled microring.We fix the laser wavelength at one of the resonance wavelengths of 1549.315 nm and then change the voltage applied on the AMZI to observe the transmission power.The critical-coupling is experienced twice at 3.0 V and 5.5 V respectively, during the voltage scanning from 0 to 8.5 V.We fix the test range from 4.3 V to 5.7 V, the coupling state changes from over-coupling to critical-coupling to under-coupling.Detailedly when the voltage is in (4.3, 5.7),we measure the transmission dips and calculate to find the coupling state’s different attributes.An extinction ratio (ER)of ?32.2 dB is obtained at the critically coupled voltage of 5.5 V.Table 1 shows the relationship between the voltage,Q,Qint/Qext,ER,full width at half maximum(FWHM),and resonance wavelength center (RWC).The third row isQint/Qextunder different voltages, they change from 4.2 to 0.7 when the voltages vary from 4.3 V to 5.7 V, that means we can get different operating status of microring being over-coupling(Qint/Qext∈(1.0,4.2]),critical-coupling(Qint/Qext=1.0)and under-coupling (Qint/Qext∈[0.7,1.0)).Another thing that should be noted is that during the changing of AMZI’s voltage, the resonance wavelength center is shifted a little due to the thermal crosstalk,and we characterized this shift and measured the transmission both at the optimal wavelength.

    Table 1.The relationship between the voltage, Q, Qint/Qext, ER,FWHM,and RWC(‘#’indicates the results minus 1549).

    Then we focus on how to gain large PGR from the microring at a fixed relative low pump power.Figure 3(a)shows the theoretical relationship between the PGR,Qint,p/Qext,pandQint,s(i)/Qs(i)according to Eq.(2).When theQvalue between the pump and the signal(idler)is independent,the maximum conversion efficiency point appears atQint,s(i)/Qext,s(i)=2 andQint,p/Qext,p=1.When theQvalue between the pump and the signal(idler)is the same and correlated,as shown by the black dotted line,the maximum conversion efficiency point appears atQint,s(i)/Qext,s(i)=Qint,p/Qext,p=4/3.TheQvalue between the pump and the signal (idler) of our working point is the same,that meansQint,s(i)/Qext,s(i)=Qint,p/Qext,p.To facilitate comparison with theoretical values,we define the normalized PGR as the measured value divided by the maximum value of all measured values.Fix the on-chip power at a suitable value,we explore the dependence of the normalized PGR of modes 5(1545.299 nm)and ?5(1553.363 nm)with an on-chip pump power of 143μW.Figure 3(b)shows the results.It is clear to see that we gain the maximum PGR in the slight over-coupling region whenQint/Qext∈(1.4,1.8).The measured maximum coincidence count of pair(5,?5)is 56 Hz,and the pair generation rate(loss subtracted)is calculated to be 1.50 MHz/mW2.Besides, the black dashed line is the theoretical value whenQint/Qextof the signal, idler and pump are identical, and the maximum point appears whenQint/Qext≈4/3, which indicates that the experimental result is consistent with the theory basically.Therefore the PGR can be improved through the tunable extrinsic quality factor of the AMZI-coupled microring.This improved PGR value reaches a high level when compared to other published works.[32,33]It should be noted that this AMZI-coupled microring can ensure the high PGR by only one-run fabrication.It is of practical use since usually precise coupling efficiency of the microring requires precise control on the coupling gap between the waveguide and microring which needs multiple-run fabrication tests.

    Fig.3.(a) The theoretical normalized PGR (color bar) changing with Qint,p/Qext,p and Qint,s(i)/Qext,s(i).The black dashed line is the result when assuming Qint,v/Qext,v are dependent,where v is signal,idler or pump.The maximum value appears when Qint,v/Qext,v =4/3.(b)The experimental PGR changing with Qint/Qext.The black dashed line is the theoretical curve of the PGR when Qint,v/Qext,v of the pump,signal and idler are identical.

    We scan the input frequency from 1517 nm to 1582 nm and gain about 80 modes of the transmission spectrum.The on-chip coupling efficiency η refers to the ratio of the pump power before coupling to the chip through the waveguide grating array and coupling out of the chip.Figure 4(a)shows the normalized grating coupling efficiency when the wavelength changes from 1517 nm to 1582 nm(normalization means that all coupling efficiencies are divided by the maximum of them).The FSR is deduced to be 100 GHz which consists well with the theoretical design.The envelope of this transmission spectrum is mainly determined by the grating coupler which couples the pump laser into the chip.We set the on-chip power at 143μW and measure all the photon pairs of the combined frequency with the mode number varying from 1 to 30.Totally,there are 30×30=900 measurements.Moreover, for each measurement, we utilize 30 seconds to perform coincidences counting(CC),and we need 27000 seconds to measure the JSI.AtQint/Qext=1.8 which corresponds to a high PGR as illustrated in Fig.3(b),the JSI is measured and shown in Fig.4(b).Since the first two pairs of entangled photons close to the pump have a poor signal-to-noise ratio (CAR) which is shown by Fig.4(c),we choose 3(?3)to 30(?30)pairs for the Schmidt number calculation, and the JSI after removing the first two pairs is shown in Fig.4(d).It is clear to see that the diagonal elements dominate the complete coincidences, and this illustrates the good properties of the optical frequency comb we generated.The Schmidt number calculated from this raw data is 22.1.To restore the generation of on-chip photon pairs truly,we need to deduct the facet grating’s coupling efficiency with, where CC is the measuring coincidences counts,ηsand ηiare the coupling efficiencies of the signal photon and idler photon, respectively.The revised Schmidt number is 23.4 which corresponds to 547 dimensions Hilbert space in frequency freedom.The total coincidence count for all frequency pairs is 742 Hz and the pair generation rate(loss subtracted)is 19.9 MHz/mW2by summing up all the frequency pairs.

    Fig.4.(a)The experimental results of the normalized coupling efficiency when the wavelength varies from 1517 nm to 1582 nm,and the red line is the fitting result of a Gaussian function.(b)The coincidence for 30 pairs of a total of 900 measurements.(c)The CAR of 30 photon pairs.(d)The measured JSI from mode 3(?3)to 30(?30)at the coupling point of Qint/Qext=1.8.The color bar is CC in logarithmic coordinates.

    3.Discussion and conclusion

    In conclusion, we demonstrated a 100 GHz spacing biphoton frequency comb that matched the ITU frequency grid and obtained at least 23.4-dimension frequency entanglement,which corresponds to 547 dimension available frequency resources in Hilbert space.This high-dimensional frequency entanglement is achieved with a high pair generation rate of 19.9 MHz/mW2at a relatively low on-chip pump power of 143μW,which is ensured through the accurate coupling condition of microring by using AMZI as the coupler.This structure design can also be extended to other materials such as SiN,[18]lithium niobate(LN),[34]etc.Actually, if we replace the grating coupler with an end coupler,move the pump light to a more suitable wavelength range, or design the dispersion of the waveguide,[35]we can measure higher dimension BFC.This type of low-power consumption and high-quality quantum frequency comb can be high-density designed on the quantum photonic chip for further applications of large-scale quantum computation and quantum communications.

    Acknowledgements

    Project supported by the National Basic Research Program of China (Grant Nos.2019YFA0308700 and 2017YFA0303700),the National Natural Science Foundation of China(Grant Nos.61632021 and 11690031),and the Open Funds from the State Key Laboratory of High Performance Computing of China (HPCL, National University of Defense Technology).

    猜你喜歡
    徐平明堂王洋
    “搞名堂”有來由
    CO2資源化回收技術分析
    科學家(2022年5期)2022-05-13 21:42:18
    1,4-丁二醇加氫進料泵管線改造
    科學家(2022年3期)2022-04-11 23:55:49
    Improving the spectral purity of single photons by a single-interferometer-coupled microring
    Bandwidth-tunable silicon nitride microring resonators
    探訪明堂天堂
    小讀者(2021年4期)2021-06-11 05:42:36
    屹立
    悅行(2019年7期)2019-09-10 07:22:44
    王洋空間設計作品
    藝術評論(2017年8期)2017-10-16 08:37:07
    張明堂救“仇敵”戰(zhàn)日軍
    文史春秋(2016年6期)2016-12-01 05:43:18
    徐平 肩負重任的北上
    中國汽車界(2016年1期)2016-07-18 11:13:34
    久久亚洲真实| 男人舔女人下体高潮全视频| 少妇裸体淫交视频免费看高清| 波多野结衣巨乳人妻| 国产在视频线在精品| 十八禁网站免费在线| 国产欧美日韩精品一区二区| 中文字幕精品亚洲无线码一区| 成人无遮挡网站| 老汉色av国产亚洲站长工具| 久久这里只有精品中国| 变态另类成人亚洲欧美熟女| 久久久久免费精品人妻一区二区| 亚洲欧美精品综合久久99| 18美女黄网站色大片免费观看| 国产三级黄色录像| 草草在线视频免费看| 99国产极品粉嫩在线观看| 岛国在线观看网站| 在线播放国产精品三级| x7x7x7水蜜桃| 欧美黑人巨大hd| 欧美在线黄色| 国产高清视频在线播放一区| 国产午夜精品论理片| 久久人妻av系列| 午夜精品久久久久久毛片777| 天天躁日日操中文字幕| 国产黄色小视频在线观看| 国产视频一区二区在线看| 亚洲av中文字字幕乱码综合| 亚洲人成伊人成综合网2020| АⅤ资源中文在线天堂| 国产黄片美女视频| 制服人妻中文乱码| 一级黄片播放器| 欧美另类亚洲清纯唯美| 成人鲁丝片一二三区免费| 国产91精品成人一区二区三区| 日韩人妻高清精品专区| h日本视频在线播放| 亚洲中文日韩欧美视频| 法律面前人人平等表现在哪些方面| 在线免费观看不下载黄p国产 | 99在线视频只有这里精品首页| 国产成人影院久久av| 久久精品综合一区二区三区| 日本精品一区二区三区蜜桃| 在线观看一区二区三区| 午夜福利在线在线| 757午夜福利合集在线观看| 亚洲av成人精品一区久久| 成年女人毛片免费观看观看9| 亚洲精品久久国产高清桃花| 亚洲av第一区精品v没综合| 十八禁网站免费在线| 久久久成人免费电影| 男人舔奶头视频| 国产一级毛片七仙女欲春2| 成人av一区二区三区在线看| 午夜免费成人在线视频| 成人国产一区最新在线观看| 欧美日本亚洲视频在线播放| 亚洲真实伦在线观看| 午夜福利高清视频| 97人妻精品一区二区三区麻豆| 搡老岳熟女国产| eeuss影院久久| 精品久久久久久,| 此物有八面人人有两片| 国产99白浆流出| 精品一区二区三区视频在线观看免费| 成年版毛片免费区| 午夜两性在线视频| 久久国产精品影院| 我的老师免费观看完整版| 国产99白浆流出| 青草久久国产| 99riav亚洲国产免费| 俺也久久电影网| 久久久久国内视频| 18禁裸乳无遮挡免费网站照片| 午夜免费激情av| 好男人在线观看高清免费视频| 熟女人妻精品中文字幕| 国产亚洲欧美98| 亚洲精品456在线播放app | 午夜福利高清视频| 亚洲美女黄片视频| 草草在线视频免费看| eeuss影院久久| 深夜精品福利| 亚洲片人在线观看| 九九久久精品国产亚洲av麻豆| 欧美午夜高清在线| 午夜a级毛片| 一区福利在线观看| 国产一区二区在线观看日韩 | 宅男免费午夜| 美女黄网站色视频| 黄片小视频在线播放| 十八禁网站免费在线| 亚洲av成人av| 成人特级av手机在线观看| 亚洲成av人片免费观看| 毛片女人毛片| 一级作爱视频免费观看| 国产单亲对白刺激| 两人在一起打扑克的视频| bbb黄色大片| bbb黄色大片| 国内精品久久久久久久电影| 成人av在线播放网站| 亚洲欧美日韩高清专用| 午夜免费激情av| 国产欧美日韩一区二区精品| 男女视频在线观看网站免费| 久久亚洲真实| 久久久久九九精品影院| 99在线视频只有这里精品首页| 色视频www国产| 在线播放国产精品三级| 国产精品 欧美亚洲| 蜜桃亚洲精品一区二区三区| 色视频www国产| 人妻久久中文字幕网| 日韩有码中文字幕| 禁无遮挡网站| 久9热在线精品视频| 99riav亚洲国产免费| 免费看美女性在线毛片视频| 床上黄色一级片| 久久精品人妻少妇| 老汉色∧v一级毛片| 亚洲av二区三区四区| 变态另类成人亚洲欧美熟女| 国产一区二区三区视频了| 欧美区成人在线视频| 精品国产亚洲在线| 国产免费一级a男人的天堂| 成人特级黄色片久久久久久久| 日本成人三级电影网站| 国产高清视频在线播放一区| 熟妇人妻久久中文字幕3abv| 一级毛片高清免费大全| 亚洲国产日韩欧美精品在线观看 | 亚洲成人精品中文字幕电影| 小说图片视频综合网站| 国产精品99久久99久久久不卡| 又紧又爽又黄一区二区| 麻豆久久精品国产亚洲av| 欧美日韩综合久久久久久 | 日韩欧美国产一区二区入口| 久久欧美精品欧美久久欧美| 亚洲成人精品中文字幕电影| 久久亚洲精品不卡| 丰满人妻一区二区三区视频av | 欧美三级亚洲精品| 又紧又爽又黄一区二区| 身体一侧抽搐| 亚洲成人久久性| 国产精品影院久久| 免费看a级黄色片| 久久国产乱子伦精品免费另类| 国产av在哪里看| 色在线成人网| 一a级毛片在线观看| 午夜福利欧美成人| 搡女人真爽免费视频火全软件 | 国产乱人伦免费视频| 国产精品98久久久久久宅男小说| 在线十欧美十亚洲十日本专区| 欧美+日韩+精品| av在线蜜桃| 免费无遮挡裸体视频| 成人精品一区二区免费| 成人永久免费在线观看视频| 又黄又爽又免费观看的视频| 精品福利观看| 女同久久另类99精品国产91| 中文亚洲av片在线观看爽| 午夜福利高清视频| 伊人久久大香线蕉亚洲五| 中文字幕av成人在线电影| 色综合亚洲欧美另类图片| 成人特级av手机在线观看| 欧美在线一区亚洲| 51国产日韩欧美| 亚洲第一电影网av| 国产欧美日韩精品一区二区| 亚洲国产精品合色在线| 亚洲精品一卡2卡三卡4卡5卡| 神马国产精品三级电影在线观看| 五月伊人婷婷丁香| 国产成年人精品一区二区| 日本免费a在线| 99久久无色码亚洲精品果冻| 日韩高清综合在线| 一级黄片播放器| 91麻豆av在线| svipshipincom国产片| 国产探花在线观看一区二区| 伊人久久精品亚洲午夜| 夜夜看夜夜爽夜夜摸| 大型黄色视频在线免费观看| 欧美+亚洲+日韩+国产| 午夜免费成人在线视频| 欧美在线黄色| 国产黄a三级三级三级人| 亚洲国产欧美人成| 在线观看美女被高潮喷水网站 | 12—13女人毛片做爰片一| 国产一区二区在线观看日韩 | 日日干狠狠操夜夜爽| 18禁裸乳无遮挡免费网站照片| 老司机午夜福利在线观看视频| 精品久久久久久久久久久久久| av专区在线播放| 内射极品少妇av片p| 欧美最新免费一区二区三区 | 日韩欧美一区二区三区在线观看| 国产亚洲精品久久久久久毛片| av天堂在线播放| 美女黄网站色视频| 欧美日韩乱码在线| 精品无人区乱码1区二区| 中出人妻视频一区二区| 两个人看的免费小视频| av专区在线播放| 欧美日韩国产亚洲二区| 亚洲中文字幕日韩| 久久国产乱子伦精品免费另类| 噜噜噜噜噜久久久久久91| 51国产日韩欧美| 在线观看免费午夜福利视频| 无人区码免费观看不卡| 国内久久婷婷六月综合欲色啪| 国产av麻豆久久久久久久| 婷婷精品国产亚洲av| 国产精品影院久久| 欧美黄色片欧美黄色片| 91在线精品国自产拍蜜月 | 在线播放国产精品三级| 亚洲精品456在线播放app | 神马国产精品三级电影在线观看| 久久精品国产清高在天天线| 免费看美女性在线毛片视频| 好男人在线观看高清免费视频| 日韩欧美在线二视频| 亚洲国产日韩欧美精品在线观看 | 床上黄色一级片| 丰满人妻一区二区三区视频av | 亚洲七黄色美女视频| 亚洲精品久久国产高清桃花| 美女 人体艺术 gogo| 欧美另类亚洲清纯唯美| 真人做人爱边吃奶动态| 在线十欧美十亚洲十日本专区| 欧美三级亚洲精品| 亚洲自拍偷在线| 一二三四社区在线视频社区8| 一夜夜www| 老司机午夜十八禁免费视频| 日本一本二区三区精品| 成年版毛片免费区| 久久人人精品亚洲av| 国产高清视频在线观看网站| 亚洲五月天丁香| 亚洲第一电影网av| 九九在线视频观看精品| 午夜福利在线在线| 天堂动漫精品| 啪啪无遮挡十八禁网站| 熟女人妻精品中文字幕| 内地一区二区视频在线| 变态另类成人亚洲欧美熟女| av中文乱码字幕在线| АⅤ资源中文在线天堂| 免费人成视频x8x8入口观看| 亚洲一区高清亚洲精品| 国产免费男女视频| 99久久久亚洲精品蜜臀av| 国产高清激情床上av| 丰满乱子伦码专区| 欧美乱妇无乱码| 熟女少妇亚洲综合色aaa.| 成人欧美大片| 国产老妇女一区| 少妇人妻一区二区三区视频| 亚洲精品美女久久久久99蜜臀| 亚洲黑人精品在线| 亚洲成a人片在线一区二区| 精品久久久久久久久久免费视频| 国内精品一区二区在线观看| 好男人电影高清在线观看| 亚洲激情在线av| 91在线精品国自产拍蜜月 | www日本在线高清视频| 人妻夜夜爽99麻豆av| 热99re8久久精品国产| 欧美中文日本在线观看视频| 亚洲av成人精品一区久久| 亚洲av二区三区四区| 欧美av亚洲av综合av国产av| 亚洲av日韩精品久久久久久密| 成人无遮挡网站| 又爽又黄无遮挡网站| 精品久久久久久久人妻蜜臀av| 小说图片视频综合网站| 啦啦啦免费观看视频1| 欧美一区二区亚洲| 熟女人妻精品中文字幕| 国产在视频线在精品| 久久久久国产精品人妻aⅴ院| 中文字幕av成人在线电影| 国产成年人精品一区二区| 中国美女看黄片| 欧美另类亚洲清纯唯美| 久久精品国产综合久久久| 国产一区二区三区视频了| 亚洲av免费在线观看| 中国美女看黄片| 色av中文字幕| 国产探花极品一区二区| 久久久久亚洲av毛片大全| 九色成人免费人妻av| 桃红色精品国产亚洲av| 色综合欧美亚洲国产小说| 久久久久免费精品人妻一区二区| 亚洲精品一区av在线观看| 亚洲av日韩精品久久久久久密| 一本一本综合久久| 国产黄a三级三级三级人| 国产日本99.免费观看| 国产亚洲精品综合一区在线观看| 丁香欧美五月| 亚洲精品久久国产高清桃花| 黑人欧美特级aaaaaa片| 日韩免费av在线播放| 噜噜噜噜噜久久久久久91| 校园春色视频在线观看| 精品一区二区三区人妻视频| 久久久久久久午夜电影| 操出白浆在线播放| 免费av观看视频| 久久国产乱子伦精品免费另类| 最近最新中文字幕大全免费视频| 女人被狂操c到高潮| 欧美不卡视频在线免费观看| 国产精品一及| 毛片女人毛片| 色综合婷婷激情| 亚洲精品日韩av片在线观看 | 狠狠狠狠99中文字幕| 亚洲人成伊人成综合网2020| 一区二区三区国产精品乱码| 国产蜜桃级精品一区二区三区| 午夜免费激情av| 午夜久久久久精精品| 亚洲精品在线美女| 国产精品一及| 久久性视频一级片| av专区在线播放| 精品电影一区二区在线| 中文字幕熟女人妻在线| 精品日产1卡2卡| 免费无遮挡裸体视频| 中文字幕人妻丝袜一区二区| 亚洲五月婷婷丁香| 亚洲av成人精品一区久久| 国产爱豆传媒在线观看| 免费看美女性在线毛片视频| 国产精品亚洲av一区麻豆| 欧美精品啪啪一区二区三区| 亚洲精品成人久久久久久| 最近最新中文字幕大全免费视频| 亚洲第一电影网av| 国产极品精品免费视频能看的| 久久久久久大精品| 蜜桃亚洲精品一区二区三区| 小说图片视频综合网站| 成人特级av手机在线观看| 99久久精品国产亚洲精品| 一区二区三区激情视频| 国产精品自产拍在线观看55亚洲| 国产v大片淫在线免费观看| 亚洲专区国产一区二区| 搡女人真爽免费视频火全软件 | 搡女人真爽免费视频火全软件 | 国产精品,欧美在线| 很黄的视频免费| 在线观看66精品国产| 亚洲熟妇熟女久久| 欧美黄色淫秽网站| 亚洲av五月六月丁香网| 99精品欧美一区二区三区四区| 精品无人区乱码1区二区| 亚洲无线观看免费| 国产真实伦视频高清在线观看 | 亚洲午夜理论影院| 在线视频色国产色| 欧美黑人巨大hd| 高潮久久久久久久久久久不卡| 精品久久久久久,| 免费搜索国产男女视频| 精品人妻一区二区三区麻豆 | 亚洲精品456在线播放app | 国产真实乱freesex| 韩国av一区二区三区四区| 午夜福利欧美成人| 久久久久九九精品影院| 成人精品一区二区免费| 搡老岳熟女国产| 亚洲精品久久国产高清桃花| 可以在线观看毛片的网站| 成人三级黄色视频| 给我免费播放毛片高清在线观看| 亚洲一区二区三区不卡视频| 99久久精品热视频| 麻豆国产av国片精品| 亚洲中文日韩欧美视频| 亚洲精品亚洲一区二区| 最近视频中文字幕2019在线8| 日韩有码中文字幕| 国产毛片a区久久久久| 男女下面进入的视频免费午夜| 欧美成狂野欧美在线观看| 国产熟女xx| 高清日韩中文字幕在线| 亚洲成a人片在线一区二区| 亚洲最大成人中文| 亚洲内射少妇av| 校园春色视频在线观看| av在线蜜桃| 国产高清有码在线观看视频| 国产成人av激情在线播放| 国产三级在线视频| 国产成人影院久久av| 内射极品少妇av片p| 精品乱码久久久久久99久播| 一级黄片播放器| 在线a可以看的网站| 国产一区二区三区在线臀色熟女| 日韩欧美在线二视频| 91久久精品电影网| 免费看美女性在线毛片视频| 日本在线视频免费播放| 此物有八面人人有两片| www.www免费av| 在线观看舔阴道视频| www.色视频.com| 欧美色视频一区免费| 亚洲成av人片在线播放无| 国产精品久久久久久精品电影| bbb黄色大片| 免费av不卡在线播放| 国产一区二区激情短视频| 欧洲精品卡2卡3卡4卡5卡区| 国产精品综合久久久久久久免费| netflix在线观看网站| 亚洲av成人精品一区久久| 日本与韩国留学比较| 午夜老司机福利剧场| 成人永久免费在线观看视频| 香蕉av资源在线| 色视频www国产| 身体一侧抽搐| 欧美激情在线99| 国产高清三级在线| 嫩草影视91久久| 嫩草影院入口| 国产精品乱码一区二三区的特点| 色综合亚洲欧美另类图片| 无人区码免费观看不卡| 草草在线视频免费看| www.www免费av| 国产亚洲精品综合一区在线观看| 午夜a级毛片| 欧美成狂野欧美在线观看| 国产探花极品一区二区| 99精品欧美一区二区三区四区| 欧美成人免费av一区二区三区| 91字幕亚洲| 18禁裸乳无遮挡免费网站照片| 一本综合久久免费| 97超视频在线观看视频| 亚洲欧美精品综合久久99| 国产精品综合久久久久久久免费| 欧美成人一区二区免费高清观看| 99久久99久久久精品蜜桃| 88av欧美| 蜜桃久久精品国产亚洲av| 神马国产精品三级电影在线观看| 18禁裸乳无遮挡免费网站照片| 国内精品一区二区在线观看| 一个人免费在线观看电影| 国产av麻豆久久久久久久| 99精品欧美一区二区三区四区| 黄色丝袜av网址大全| 午夜福利在线在线| 给我免费播放毛片高清在线观看| 亚洲va日本ⅴa欧美va伊人久久| 亚洲av美国av| 色综合欧美亚洲国产小说| 97碰自拍视频| 午夜免费激情av| 久久久久国产精品人妻aⅴ院| 九九热线精品视视频播放| 国产aⅴ精品一区二区三区波| 国产真实伦视频高清在线观看 | 9191精品国产免费久久| 宅男免费午夜| 欧美一级毛片孕妇| 成人国产一区最新在线观看| 99riav亚洲国产免费| 欧美绝顶高潮抽搐喷水| 国产成人福利小说| 黄色丝袜av网址大全| 欧美av亚洲av综合av国产av| 成人性生交大片免费视频hd| 免费av不卡在线播放| 制服丝袜大香蕉在线| 精品久久久久久久人妻蜜臀av| 国产精品一及| 校园春色视频在线观看| 国产av在哪里看| 久久久国产成人免费| 久久国产精品影院| 18禁美女被吸乳视频| a级一级毛片免费在线观看| 精品乱码久久久久久99久播| 婷婷丁香在线五月| 亚洲精品一区av在线观看| 久9热在线精品视频| 日本成人三级电影网站| 18禁美女被吸乳视频| 在线国产一区二区在线| 久久久久久久久久黄片| 国产成人啪精品午夜网站| 亚洲自拍偷在线| 日韩有码中文字幕| 午夜福利在线观看免费完整高清在 | 一个人免费在线观看的高清视频| 九色国产91popny在线| 男女下面进入的视频免费午夜| av片东京热男人的天堂| 国产99白浆流出| 最近视频中文字幕2019在线8| 在线播放国产精品三级| 国产真人三级小视频在线观看| 少妇人妻精品综合一区二区 | 亚洲av免费在线观看| 国内久久婷婷六月综合欲色啪| 美女免费视频网站| 狂野欧美激情性xxxx| 亚洲精品一区av在线观看| 精品熟女少妇八av免费久了| 久久精品91蜜桃| 午夜老司机福利剧场| 亚洲色图av天堂| 欧美激情在线99| 婷婷亚洲欧美| 成人午夜高清在线视频| 老司机深夜福利视频在线观看| 丰满乱子伦码专区| 国产激情偷乱视频一区二区| АⅤ资源中文在线天堂| 久久国产精品人妻蜜桃| 国产精品,欧美在线| 日韩欧美在线二视频| 久久精品国产自在天天线| 国产97色在线日韩免费| 久久久久亚洲av毛片大全| 黄色片一级片一级黄色片| 日韩欧美 国产精品| 熟女人妻精品中文字幕| 99久久久亚洲精品蜜臀av| 亚洲av免费高清在线观看| 日本黄色视频三级网站网址| 亚洲五月婷婷丁香| 精品一区二区三区人妻视频| 狂野欧美白嫩少妇大欣赏| 久久久久久人人人人人| 久久午夜亚洲精品久久| 色哟哟哟哟哟哟| 黄色片一级片一级黄色片| 欧美+亚洲+日韩+国产| 成年免费大片在线观看| 亚洲国产精品999在线| 精品午夜福利视频在线观看一区| 男女下面进入的视频免费午夜| 亚洲国产中文字幕在线视频| 久久亚洲精品不卡| 日韩欧美在线二视频| 丰满的人妻完整版| 日韩欧美国产在线观看| 丰满人妻一区二区三区视频av | 搞女人的毛片| 18禁美女被吸乳视频| 婷婷亚洲欧美| 欧美成人a在线观看| 一级黄色大片毛片| 禁无遮挡网站| 精品电影一区二区在线| 在线免费观看不下载黄p国产 | 美女高潮的动态| 精华霜和精华液先用哪个| 亚洲精品乱码久久久v下载方式 | 国产精品美女特级片免费视频播放器| 国产精品综合久久久久久久免费| 别揉我奶头~嗯~啊~动态视频| 波多野结衣高清无吗| 女人被狂操c到高潮| 在线观看一区二区三区| 亚洲国产精品久久男人天堂|