• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Bright 547-dimensional Hilbert-space entangled resource in 28-pair modes biphoton frequency comb from a reconfigurable silicon microring resonator

    2022-02-24 09:38:00QilinZheng鄭騎林JiachengLiu劉嘉成ChaoWu吳超ShichuanXue薛詩川PingyuZhu朱枰諭YangWang王洋XinyaoYu于馨瑤MiaomiaoYu余苗苗MingtangDeng鄧明堂JunjieWu吳俊杰andPingXu徐平
    Chinese Physics B 2022年2期
    關鍵詞:徐平明堂王洋

    Qilin Zheng(鄭騎林), Jiacheng Liu(劉嘉成), Chao Wu(吳超), Shichuan Xue(薛詩川),Pingyu Zhu(朱枰諭), Yang Wang(王洋), Xinyao Yu(于馨瑤), Miaomiao Yu(余苗苗),Mingtang Deng(鄧明堂), Junjie Wu(吳俊杰), and Ping Xu(徐平),3,?

    1Institute for Quantum Information and State Key Laboratory of High Performance Computing,College of Computer,National University of Defense Technology,Changsha 410073,China

    2College of Advanced Interdisciplinary Studies,National University of Defense Technology,Changsha 410073,China

    3National Laboratory of Solid State Microstructures and School of Physics,Nanjing University,Nanjing 210093,China

    High-dimensional entanglement provides valuable resources for quantum technologies, including quantum communication, quantum optical coherence tomography, and quantum computing.Obtaining a high brightness and dimensional entanglement source has significant value.Here we utilize a tunable asymmetric Mach–Zehnder interferometer coupled silicon microring resonator with 100 GHz free spectral range to achieve this goal.With the strategy of the tunable coupler, the dynamical and extensive tuning range of quality factors of the microring can be obtained, and then the biphoton pair generation rate can be optimized.By selecting and characterizing 28 pairs from a more than 30-pair modes biphoton frequency comb, we obtain a Schmidt number of at least 23.4 and on-chip pair generation rate of 19.9 MHz/mW2 under a low on-chip pump power,which corresponds to 547 dimensions Hilbert space in frequency freedom.These results will prompt the wide applications of quantum frequency comb and boost the further large density and scalable on-chip quantum information processing.

    Keywords: silicon microring resonator,quantum entanglement,biphoton frequency comb

    1.Introduction

    With the prosperity of the photonic quantum industry,numerous applications with the practical value from quantum computing to quantum communication[1,2]have emerged.Lying at the heart of these quantum technologies, quantum light sources[3]provide available resources and endue them with quantum advantages.High-dimensional entanglement is one of the valuable resources for supporting high capacity quantum communication,[4]quantum optical coherence tomography (QOCT),[5]high-dimensional one-way quantum processing,[6]and error-tolerant quantum computation.[7]However, it is still a challenge to further expand the scale of quantum applications because of the limited quantum resources.One of the solutions can be increasing the physical qudits or the entanglement dimensionality.[8]As a feasible approach to improve entanglement,the biphoton frequency comb (BFC)[9]has been widely studied.As one of the most promising architectures,the quantum photonic chips have the merits of miniaturization, reconfigurability, high integration,high stability,mass production,and so on.[10]For on-chip applications,frequency should be a prominent degree of freedom for scaling the Hilbert space in a single waveguide mode without occupying a large physical space of the chip.Quantum interference and logic gates in frequency space have been successfully demonstrated.[11,12]

    The higher dimensionality usually implies the higher ability achieved in quantum tasks; hence a high-dimensional frequency entanglement is a long-time goal in this field.How to further increase the dimensionality is of significant value.Usually, in order to evaluate the entanglement dimension of BFCs,we can measure their joint spectral intensity(JSI),and then calculate the Schmidt number[13]through singular value decomposition to give the entangled dimensionality.To our knowledge, BFCs have been generated from different photonic chip platforms[14]like the third-order nonlinear platform including silicon-on-insulator(SOI)[15–17]and silicon nitride (SiN),[18,19]the second-order nonlinear material,[20,21]and high refractive index glass.[22]The Schmidt numberKin the frequency freedom obtained from the measured JSI is at most 22.0[15]by measuring both the JSI and unheralded second-order correlationg(2).[23]For the BFCs from silicon nitride microring resonator, the gained maximum Schmidt number is 20.[18]In Ref.[19], the authors observed 37 mode correlated pairs from a 42-pair BFC with a pump power larger than 20 mW,while there was no detailed calculation about the Schmidt number.Chang realized a BFC from a second-order nonlinear PPKTP waveguide with a fiber Fabry–Prot cavity as the post-selection,and the Schmidt number was calculated to be 18.3.[20]An earlier version of this BFC source was characterized with no more than 9 frequency modes.[21]Kumar obtainedK=10.6 from a periodic sequence of coupled silicon microresonators chain.[16]In Ref.[22],the authors achieved a quantum system through two entangled qudits of high refractive index glass BFC,and they characterized the limited modes and obtained a Schmidt number of 10.

    The dimensionality and brightness of the BFCs are one of the main concerned parameters that guarantee a high-quality BFC generation.[24]In this work, we demonstrate a reconfigurable silicon microring resonator, aiming to generate a high brightness and dimension biphoton frequency comb at a low-power consumption that can be widely adopted for further large density on-chip quantum information processing.For increasing the dimensionality, we design a relatively large circumference to obtain a small free spectral range(FSR), i.e., a 100 GHz frequency spacing between adjacent frequency modes.With recently developed high-speed lithium niobate on insulator (LNOI) electro-optic modulators,[25,26]the 100 GHz spacing frequency comb can be manipulated for quantum information processing.[12]For the brightness, we propose to adopt the asymmetric Mach–Zehnder interferometer (AMZI) as the tunable coupler for the microring to offer a tuning range of quality factors to optimize the brightness or pair generation rate (PGR) of the biphoton frequency comb.Experimentally, we fabricate a CMOS-compatible silicon chip that is an efficient nonlinear platform for lowering the required pump power.An at least 23.4-dimensional frequency entanglement spanning 547 dimensional Hilbert space resource with on-chip pair generation rate of 19.9 MHz/mW2is obtained at a low on-chip power.

    2.Theory and experiments

    The AMZI-coupled microring resonator was firstly proposed by Barbarossa in Ref.[27], then has been widely used for tunable filtering,[28]sensing,[29]and improving the PGR[30]of photons.Here,we dynamically modulate the quality factorQof the microring with this AMZI as the coupler,then optimize the PGR and characterize the dimensionality of quantum entanglements around this high PGR working point.The AMZI-coupled microring is shown in Fig.1(a).The silicon waveguide covered with SiO2has a width of 500 nm and a height of 220 nm.The two gaps between AMZI and the microring are both 200 nm which guarantee that the microring can be in different coupling status, and the length difference between the two arms of AMZI is 2πR,whereRis the radius of the microring with 112μm that corresponds to the 100 GHz free spectral range (FSR) which is compatible with commercial dense wavelength division multiplexing(DWDM).TheQfactors of the AMZI-coupled microring can be expressed as

    whereQt,QintandQextare the total, intrinsic and extrinsic quality factors, respectively, the subscriptvrepresent pump(p), idler (i) or signal (s).Besides,Qint=ω/(Vgα) is determined by the round-trip loss coefficient α inside the ring.TheQext=2πRω/(Vg|Ke|2) is related to the equivalent coupling coefficientKebetween the microring and waveguide.HereVgis the group velocity of the ring,Ris the microring radius,and ω is the center angular frequency.Combine all-pass microring theory and the AMZI theory,[27]Ke= itk(e?i(βΔL+Ψ)+1),wheretandkare the electric field amplitude coupling coefficient and transmission coefficient of the coupler satisfyingt2+k2=1,β is the propagation constant related to the wavelength, ΔLis the arm length difference, and Ψ is the modulation phase controlled by the voltage applied on the resistive heater of the thermal-optic phase shifter.Figure 1(b) shows the theoretical transmission efficiency and|Ke|2changing with wavelength under two different Ψ.The phase Ψ can modulateKeand then the extrinsic quality factorQextandQint/Qextcan be modulated.According to the different values ofQint/Qext,we can divide the working status of the microring into three regions.Specifically,whenQint/Qext=1,the amplitude in the microring can be maximized, and the transmission efficiency at this point is near 0.We call this state critical-coupling and define the|Ke|2in this point as|Kc|2.WhenQint/Qext>1,that means|Ke|2>|Kc|2,the state turns into over-coupling,and the most over-coupling point refers to the coupling state when the maximum value ofQint/Qextis achieved on the structure we use.While whenQint/Qext<1,that means|Ke|2<|Kc|2,the state becomes under-coupling.Under different coupling situations, we can get different spontaneous four-wave mixing(SFWM)efficiencies.

    From the references,[3,31]the PGR of them-th pair spectral modes is closely related to the value ofQint/Qext.Specifically,

    Among them, γ is the nonlinear parameter of χ(3),Ppis the pump power, and Ωpis the resonance frequency of the pump light.Qextis the extrinsic quality factor of them-th entangled frequency photon pair that varies with Ψ,which can be given by the following formula:

    where Ωs,mis the resonate frequency and βsis the propagation constant of them-th mode signal photon.Since ΔL=2πRwill lead to the extrinsic quality factors of all resonance modes including pump,signal,and idler being the same,and therefore the total PGR of all frequency modes can be finally expressed as a function ofQint/Qextwhich is in the same form of them-th frequency pair’s PGR.In fact,when the microring is manufactured with a fixed ΔLand coupling gap, we can change the voltage applied to AMZI, thereby equivalently changing the coefficientKe, and then determiningQand further affecting PGR.

    The experimental schematic is shown as Fig.2.A tunable laser is coupled into the silicon chip through the on-chip grating, and the BFC from SFWM inside the microring is generated and coupled out again through an on-chip grating then passes through a filtering system to reach superconductor nanowire single-photon detectors(SNSPD)finally.When the pump laser at 1549.315 nm was coupled to and decoupled from the chip by coupling fiber arrays and the waveguide grating array, the total insertion loss was about 7.68 dB and each facet insertion loss was about 3.84 dB.We define the onchip pump power as the power that is coupled into the chip through one facet coupling for fiber arrays to the waveguide grating array with an insertion loss of 3.84 dB.Before this,the pump power has suffered a transmission loss of 0.47 dB,then passes through the polarization controller and filter with a loss of 1.14 dB.The tunable CW laser has a line width of 0.4 MHz and a wavelength tuning range of 1500 nm to 1630 nm.The adjustment accuracy of the temperature controller (TEC) for the silicon chip is 0.01°C; it is an automatic temperature adjustment system combining a Peltier with a negative feedback module.The tunable filter supports independently tunable center wavelength and bandwidth.It has a 1525 nm to 1610 nm tuning range and 0.08 nm minimum filter bandwidth;when the bandwidth is set to 0.2 nm,the insertion loss is about 6 dB.The digital-to-analog voltage converter(DAC)is an adjustable voltage controller with 8 channels, and each channel has an accuracy of 0.01 V.The timing analyzer (TA) has a 78 ps time bin width.Besides, the dark counts of the two SNSPDs are 150 Hz and 200 Hz,with efficiencies of 74% and 75%,respectively.

    Fig.1.(a)The structure of the experimental AMZI-coupled microring,the resistive heater can be powered through the metal pads.The k refers to the electric field amplitude coupling coefficient,and t refers to the electric field amplitude transmission coefficient that satisfies t2+k2=1.(b)The theoretical transmission efficiency and|Ke|2 changing with the wavelength under two different phases.When the phase changes from Ψ =0 to Ψ =0.66π,the transmission efficiency becomes smaller because of the equivalent change of Ke.

    Fig.2.The schematic diagram of our experiments.Here, PC, polarization controller; PM, power meter; BS, beam splitter; D, superconducting nanowire single-photon detector(SNSPD);TEC,temperature controller,it is an automatic temperature adjustment system combining a Peltier with a negative feedback module; DAC,digital-to-analog voltage converter,it is an adjustable voltage controller with 8 channels,and each channel has an accuracy of 0.01 V;DF,DWDM filter;TF,tunable filter;TA,timing analyzer.

    Experimentally first we make linear optical tests on the AMZI-coupled microring.We fix the laser wavelength at one of the resonance wavelengths of 1549.315 nm and then change the voltage applied on the AMZI to observe the transmission power.The critical-coupling is experienced twice at 3.0 V and 5.5 V respectively, during the voltage scanning from 0 to 8.5 V.We fix the test range from 4.3 V to 5.7 V, the coupling state changes from over-coupling to critical-coupling to under-coupling.Detailedly when the voltage is in (4.3, 5.7),we measure the transmission dips and calculate to find the coupling state’s different attributes.An extinction ratio (ER)of ?32.2 dB is obtained at the critically coupled voltage of 5.5 V.Table 1 shows the relationship between the voltage,Q,Qint/Qext,ER,full width at half maximum(FWHM),and resonance wavelength center (RWC).The third row isQint/Qextunder different voltages, they change from 4.2 to 0.7 when the voltages vary from 4.3 V to 5.7 V, that means we can get different operating status of microring being over-coupling(Qint/Qext∈(1.0,4.2]),critical-coupling(Qint/Qext=1.0)and under-coupling (Qint/Qext∈[0.7,1.0)).Another thing that should be noted is that during the changing of AMZI’s voltage, the resonance wavelength center is shifted a little due to the thermal crosstalk,and we characterized this shift and measured the transmission both at the optimal wavelength.

    Table 1.The relationship between the voltage, Q, Qint/Qext, ER,FWHM,and RWC(‘#’indicates the results minus 1549).

    Then we focus on how to gain large PGR from the microring at a fixed relative low pump power.Figure 3(a)shows the theoretical relationship between the PGR,Qint,p/Qext,pandQint,s(i)/Qs(i)according to Eq.(2).When theQvalue between the pump and the signal(idler)is independent,the maximum conversion efficiency point appears atQint,s(i)/Qext,s(i)=2 andQint,p/Qext,p=1.When theQvalue between the pump and the signal(idler)is the same and correlated,as shown by the black dotted line,the maximum conversion efficiency point appears atQint,s(i)/Qext,s(i)=Qint,p/Qext,p=4/3.TheQvalue between the pump and the signal (idler) of our working point is the same,that meansQint,s(i)/Qext,s(i)=Qint,p/Qext,p.To facilitate comparison with theoretical values,we define the normalized PGR as the measured value divided by the maximum value of all measured values.Fix the on-chip power at a suitable value,we explore the dependence of the normalized PGR of modes 5(1545.299 nm)and ?5(1553.363 nm)with an on-chip pump power of 143μW.Figure 3(b)shows the results.It is clear to see that we gain the maximum PGR in the slight over-coupling region whenQint/Qext∈(1.4,1.8).The measured maximum coincidence count of pair(5,?5)is 56 Hz,and the pair generation rate(loss subtracted)is calculated to be 1.50 MHz/mW2.Besides, the black dashed line is the theoretical value whenQint/Qextof the signal, idler and pump are identical, and the maximum point appears whenQint/Qext≈4/3, which indicates that the experimental result is consistent with the theory basically.Therefore the PGR can be improved through the tunable extrinsic quality factor of the AMZI-coupled microring.This improved PGR value reaches a high level when compared to other published works.[32,33]It should be noted that this AMZI-coupled microring can ensure the high PGR by only one-run fabrication.It is of practical use since usually precise coupling efficiency of the microring requires precise control on the coupling gap between the waveguide and microring which needs multiple-run fabrication tests.

    Fig.3.(a) The theoretical normalized PGR (color bar) changing with Qint,p/Qext,p and Qint,s(i)/Qext,s(i).The black dashed line is the result when assuming Qint,v/Qext,v are dependent,where v is signal,idler or pump.The maximum value appears when Qint,v/Qext,v =4/3.(b)The experimental PGR changing with Qint/Qext.The black dashed line is the theoretical curve of the PGR when Qint,v/Qext,v of the pump,signal and idler are identical.

    We scan the input frequency from 1517 nm to 1582 nm and gain about 80 modes of the transmission spectrum.The on-chip coupling efficiency η refers to the ratio of the pump power before coupling to the chip through the waveguide grating array and coupling out of the chip.Figure 4(a)shows the normalized grating coupling efficiency when the wavelength changes from 1517 nm to 1582 nm(normalization means that all coupling efficiencies are divided by the maximum of them).The FSR is deduced to be 100 GHz which consists well with the theoretical design.The envelope of this transmission spectrum is mainly determined by the grating coupler which couples the pump laser into the chip.We set the on-chip power at 143μW and measure all the photon pairs of the combined frequency with the mode number varying from 1 to 30.Totally,there are 30×30=900 measurements.Moreover, for each measurement, we utilize 30 seconds to perform coincidences counting(CC),and we need 27000 seconds to measure the JSI.AtQint/Qext=1.8 which corresponds to a high PGR as illustrated in Fig.3(b),the JSI is measured and shown in Fig.4(b).Since the first two pairs of entangled photons close to the pump have a poor signal-to-noise ratio (CAR) which is shown by Fig.4(c),we choose 3(?3)to 30(?30)pairs for the Schmidt number calculation, and the JSI after removing the first two pairs is shown in Fig.4(d).It is clear to see that the diagonal elements dominate the complete coincidences, and this illustrates the good properties of the optical frequency comb we generated.The Schmidt number calculated from this raw data is 22.1.To restore the generation of on-chip photon pairs truly,we need to deduct the facet grating’s coupling efficiency with, where CC is the measuring coincidences counts,ηsand ηiare the coupling efficiencies of the signal photon and idler photon, respectively.The revised Schmidt number is 23.4 which corresponds to 547 dimensions Hilbert space in frequency freedom.The total coincidence count for all frequency pairs is 742 Hz and the pair generation rate(loss subtracted)is 19.9 MHz/mW2by summing up all the frequency pairs.

    Fig.4.(a)The experimental results of the normalized coupling efficiency when the wavelength varies from 1517 nm to 1582 nm,and the red line is the fitting result of a Gaussian function.(b)The coincidence for 30 pairs of a total of 900 measurements.(c)The CAR of 30 photon pairs.(d)The measured JSI from mode 3(?3)to 30(?30)at the coupling point of Qint/Qext=1.8.The color bar is CC in logarithmic coordinates.

    3.Discussion and conclusion

    In conclusion, we demonstrated a 100 GHz spacing biphoton frequency comb that matched the ITU frequency grid and obtained at least 23.4-dimension frequency entanglement,which corresponds to 547 dimension available frequency resources in Hilbert space.This high-dimensional frequency entanglement is achieved with a high pair generation rate of 19.9 MHz/mW2at a relatively low on-chip pump power of 143μW,which is ensured through the accurate coupling condition of microring by using AMZI as the coupler.This structure design can also be extended to other materials such as SiN,[18]lithium niobate(LN),[34]etc.Actually, if we replace the grating coupler with an end coupler,move the pump light to a more suitable wavelength range, or design the dispersion of the waveguide,[35]we can measure higher dimension BFC.This type of low-power consumption and high-quality quantum frequency comb can be high-density designed on the quantum photonic chip for further applications of large-scale quantum computation and quantum communications.

    Acknowledgements

    Project supported by the National Basic Research Program of China (Grant Nos.2019YFA0308700 and 2017YFA0303700),the National Natural Science Foundation of China(Grant Nos.61632021 and 11690031),and the Open Funds from the State Key Laboratory of High Performance Computing of China (HPCL, National University of Defense Technology).

    猜你喜歡
    徐平明堂王洋
    “搞名堂”有來由
    CO2資源化回收技術分析
    科學家(2022年5期)2022-05-13 21:42:18
    1,4-丁二醇加氫進料泵管線改造
    科學家(2022年3期)2022-04-11 23:55:49
    Improving the spectral purity of single photons by a single-interferometer-coupled microring
    Bandwidth-tunable silicon nitride microring resonators
    探訪明堂天堂
    小讀者(2021年4期)2021-06-11 05:42:36
    屹立
    悅行(2019年7期)2019-09-10 07:22:44
    王洋空間設計作品
    藝術評論(2017年8期)2017-10-16 08:37:07
    張明堂救“仇敵”戰(zhàn)日軍
    文史春秋(2016年6期)2016-12-01 05:43:18
    徐平 肩負重任的北上
    中國汽車界(2016年1期)2016-07-18 11:13:34
    麻豆一二三区av精品| 国产伦人伦偷精品视频| 丰满的人妻完整版| 久久久精品欧美日韩精品| 亚洲精品美女久久av网站| 亚洲精品中文字幕一二三四区| 精品人妻在线不人妻| 韩国精品一区二区三区| 无遮挡黄片免费观看| 午夜福利欧美成人| 搡老岳熟女国产| 啦啦啦免费观看视频1| 亚洲 欧美 日韩 在线 免费| 午夜成年电影在线免费观看| 亚洲人成电影观看| 美女高潮喷水抽搐中文字幕| 成在线人永久免费视频| 18美女黄网站色大片免费观看| 一夜夜www| 午夜福利一区二区在线看| 国产精品久久久人人做人人爽| 少妇被粗大的猛进出69影院| 两个人免费观看高清视频| 日韩欧美三级三区| 极品教师在线免费播放| 亚洲精华国产精华精| 久久久久国内视频| aaaaa片日本免费| 午夜久久久在线观看| 一区二区三区国产精品乱码| 欧美精品亚洲一区二区| 亚洲成人久久性| av在线播放免费不卡| 19禁男女啪啪无遮挡网站| 视频区欧美日本亚洲| 欧美黑人欧美精品刺激| 亚洲中文av在线| or卡值多少钱| 亚洲av成人av| 国产av精品麻豆| av网站免费在线观看视频| 在线观看日韩欧美| 免费久久久久久久精品成人欧美视频| 国产激情欧美一区二区| 欧美不卡视频在线免费观看 | 老鸭窝网址在线观看| 99香蕉大伊视频| 欧美另类亚洲清纯唯美| 日日爽夜夜爽网站| 成年版毛片免费区| 97碰自拍视频| 国产精品,欧美在线| 欧美日韩亚洲综合一区二区三区_| 亚洲精品久久国产高清桃花| 老汉色∧v一级毛片| 神马国产精品三级电影在线观看 | 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲五月婷婷丁香| 国产区一区二久久| 最新在线观看一区二区三区| 亚洲avbb在线观看| 欧美中文综合在线视频| 一区二区三区国产精品乱码| 一级a爱视频在线免费观看| 亚洲少妇的诱惑av| 亚洲精品美女久久久久99蜜臀| 国产精品久久久久久人妻精品电影| 国产极品粉嫩免费观看在线| 国产麻豆69| 99香蕉大伊视频| 欧美日韩福利视频一区二区| 99久久国产精品久久久| 高清在线国产一区| 老司机靠b影院| 美女高潮到喷水免费观看| 国产欧美日韩综合在线一区二区| 搞女人的毛片| av视频免费观看在线观看| 午夜福利在线观看吧| 亚洲欧洲精品一区二区精品久久久| 国产精品亚洲一级av第二区| 国产一区二区三区综合在线观看| 日本vs欧美在线观看视频| 在线观看舔阴道视频| 村上凉子中文字幕在线| av网站免费在线观看视频| 黄色丝袜av网址大全| 黑人巨大精品欧美一区二区mp4| 宅男免费午夜| x7x7x7水蜜桃| 一边摸一边抽搐一进一出视频| 国产精品香港三级国产av潘金莲| 国产亚洲av嫩草精品影院| 怎么达到女性高潮| 亚洲美女黄片视频| 欧美成人一区二区免费高清观看 | 中文字幕最新亚洲高清| bbb黄色大片| 国产单亲对白刺激| 亚洲色图综合在线观看| 欧美绝顶高潮抽搐喷水| 亚洲国产欧美日韩在线播放| 搡老岳熟女国产| 满18在线观看网站| 亚洲精品国产色婷婷电影| 亚洲国产高清在线一区二区三 | 嫩草影院精品99| 两人在一起打扑克的视频| 女人爽到高潮嗷嗷叫在线视频| 村上凉子中文字幕在线| 午夜免费激情av| 高潮久久久久久久久久久不卡| 少妇粗大呻吟视频| 最近最新中文字幕大全免费视频| 久久伊人香网站| 亚洲 欧美 日韩 在线 免费| 国产精品av久久久久免费| 久久精品国产99精品国产亚洲性色 | 国产成人av激情在线播放| 亚洲 欧美 日韩 在线 免费| 国产主播在线观看一区二区| 在线av久久热| 十八禁人妻一区二区| 久久天躁狠狠躁夜夜2o2o| 99在线视频只有这里精品首页| 大码成人一级视频| 亚洲色图综合在线观看| 中文亚洲av片在线观看爽| 免费少妇av软件| 日韩av在线大香蕉| 成人三级做爰电影| 欧美日韩亚洲国产一区二区在线观看| 村上凉子中文字幕在线| 怎么达到女性高潮| 精品高清国产在线一区| 色老头精品视频在线观看| 亚洲av片天天在线观看| 亚洲电影在线观看av| 亚洲精品国产区一区二| 色综合亚洲欧美另类图片| 90打野战视频偷拍视频| 香蕉国产在线看| 欧美日韩一级在线毛片| 国产精品一区二区在线不卡| 激情在线观看视频在线高清| 国产精品国产高清国产av| 一本综合久久免费| 日日爽夜夜爽网站| 伊人久久大香线蕉亚洲五| 美女高潮到喷水免费观看| 又大又爽又粗| 丰满人妻熟妇乱又伦精品不卡| 欧美乱色亚洲激情| 亚洲一区二区三区色噜噜| 日本免费一区二区三区高清不卡 | 露出奶头的视频| 欧美在线一区亚洲| 美女扒开内裤让男人捅视频| 啦啦啦韩国在线观看视频| 久久久久国产精品人妻aⅴ院| 纯流量卡能插随身wifi吗| 婷婷丁香在线五月| 成人国产综合亚洲| 精品一品国产午夜福利视频| 18美女黄网站色大片免费观看| 首页视频小说图片口味搜索| 精品午夜福利视频在线观看一区| 777久久人妻少妇嫩草av网站| 涩涩av久久男人的天堂| 女生性感内裤真人,穿戴方法视频| 久久久久久久久久久久大奶| 给我免费播放毛片高清在线观看| 精品国产乱子伦一区二区三区| 变态另类成人亚洲欧美熟女 | 欧美另类亚洲清纯唯美| 777久久人妻少妇嫩草av网站| 国产欧美日韩一区二区三| 午夜亚洲福利在线播放| av视频在线观看入口| 亚洲国产精品久久男人天堂| 曰老女人黄片| 亚洲国产欧美日韩在线播放| 久久精品影院6| 欧美日韩福利视频一区二区| 丝袜美足系列| 久久精品亚洲精品国产色婷小说| 校园春色视频在线观看| 国产精品乱码一区二三区的特点 | 日韩有码中文字幕| 50天的宝宝边吃奶边哭怎么回事| 亚洲 欧美 日韩 在线 免费| 午夜免费成人在线视频| 真人做人爱边吃奶动态| 久久国产乱子伦精品免费另类| 日韩精品免费视频一区二区三区| 免费高清在线观看日韩| a级毛片在线看网站| 校园春色视频在线观看| 成人国产综合亚洲| 久久亚洲精品不卡| 满18在线观看网站| 国产成人欧美在线观看| 香蕉久久夜色| 亚洲专区国产一区二区| 亚洲五月色婷婷综合| 欧美成人午夜精品| 国产欧美日韩一区二区三区在线| 精品人妻在线不人妻| 两个人视频免费观看高清| 亚洲免费av在线视频| 色播在线永久视频| 亚洲精品在线观看二区| АⅤ资源中文在线天堂| 国产av又大| 国产人伦9x9x在线观看| 久热爱精品视频在线9| 天天躁狠狠躁夜夜躁狠狠躁| 两个人免费观看高清视频| 亚洲熟妇中文字幕五十中出| www.www免费av| 18禁黄网站禁片午夜丰满| 成人亚洲精品av一区二区| 人妻丰满熟妇av一区二区三区| 欧美激情久久久久久爽电影 | 搡老岳熟女国产| 午夜福利一区二区在线看| 亚洲av日韩精品久久久久久密| 欧美在线一区亚洲| 亚洲欧美激情综合另类| 淫妇啪啪啪对白视频| 一边摸一边抽搐一进一出视频| 亚洲国产看品久久| 久久天躁狠狠躁夜夜2o2o| 法律面前人人平等表现在哪些方面| 精品久久久久久久人妻蜜臀av| 99视频精品全部免费 在线| 一a级毛片在线观看| 国产亚洲91精品色在线| 我要搜黄色片| 久久久久久国产a免费观看| 免费看美女性在线毛片视频| 嫩草影院精品99| 久久九九热精品免费| 无人区码免费观看不卡| 男人狂女人下面高潮的视频| 国产成人一区二区在线| 人人妻,人人澡人人爽秒播| 欧美精品国产亚洲| 两人在一起打扑克的视频| 女同久久另类99精品国产91| 免费人成视频x8x8入口观看| 在线国产一区二区在线| 久久久久久久久大av| 国产麻豆成人av免费视频| 中文字幕高清在线视频| 午夜福利18| 丰满人妻一区二区三区视频av| 88av欧美| 国内毛片毛片毛片毛片毛片| 一边摸一边抽搐一进一小说| 精品午夜福利视频在线观看一区| 在线观看舔阴道视频| 精品人妻1区二区| 欧美性猛交黑人性爽| 性色avwww在线观看| 三级毛片av免费| 亚洲在线自拍视频| 欧美日韩国产亚洲二区| 国产女主播在线喷水免费视频网站 | 亚洲综合色惰| 色av中文字幕| 最好的美女福利视频网| 乱系列少妇在线播放| 在线a可以看的网站| 丰满乱子伦码专区| 免费看a级黄色片| 亚洲专区中文字幕在线| 国产主播在线观看一区二区| 色精品久久人妻99蜜桃| 国产69精品久久久久777片| 内射极品少妇av片p| 免费av毛片视频| 最新在线观看一区二区三区| 久久欧美精品欧美久久欧美| 1024手机看黄色片| 国产极品精品免费视频能看的| 亚洲欧美日韩卡通动漫| 国产探花极品一区二区| 欧美性猛交╳xxx乱大交人| 久久久久久久亚洲中文字幕| 99久久精品热视频| 成人亚洲精品av一区二区| 亚洲真实伦在线观看| 久久久色成人| 日本-黄色视频高清免费观看| 制服丝袜大香蕉在线| av专区在线播放| 国产私拍福利视频在线观看| 高清在线国产一区| 久久这里只有精品中国| 色av中文字幕| 国产不卡一卡二| xxxwww97欧美| 神马国产精品三级电影在线观看| 熟女人妻精品中文字幕| 悠悠久久av| 午夜福利在线观看吧| 国产精品乱码一区二三区的特点| 听说在线观看完整版免费高清| 国产av麻豆久久久久久久| 97超视频在线观看视频| 亚洲天堂国产精品一区在线| 亚洲综合色惰| 国产v大片淫在线免费观看| 免费观看在线日韩| 国产成人福利小说| 亚洲最大成人手机在线| 男女那种视频在线观看| 内射极品少妇av片p| 国产 一区精品| 嫩草影院精品99| 麻豆精品久久久久久蜜桃| 午夜免费男女啪啪视频观看 | 国产精品98久久久久久宅男小说| 美女xxoo啪啪120秒动态图| 中文字幕高清在线视频| 亚洲无线在线观看| 99久久精品一区二区三区| 亚洲av.av天堂| 亚洲人成网站在线播| 少妇人妻一区二区三区视频| 亚洲人成伊人成综合网2020| 在线观看av片永久免费下载| 简卡轻食公司| 麻豆久久精品国产亚洲av| 高清毛片免费观看视频网站| 欧美最新免费一区二区三区| 国产精品日韩av在线免费观看| 极品教师在线视频| 美女免费视频网站| 精品一区二区三区视频在线| 国内精品一区二区在线观看| 日日干狠狠操夜夜爽| 伦精品一区二区三区| 久久久久久久午夜电影| 国产激情偷乱视频一区二区| 长腿黑丝高跟| 亚洲在线自拍视频| 99在线人妻在线中文字幕| 又黄又爽又刺激的免费视频.| 亚洲美女视频黄频| 亚洲不卡免费看| 久久精品久久久久久噜噜老黄 | 高清日韩中文字幕在线| 国产综合懂色| 丰满人妻一区二区三区视频av| 欧美国产日韩亚洲一区| 亚洲综合色惰| 九色国产91popny在线| 高清日韩中文字幕在线| 男女那种视频在线观看| 波多野结衣高清作品| 淫妇啪啪啪对白视频| 午夜福利高清视频| 夜夜爽天天搞| 久久久久国产精品人妻aⅴ院| 深爱激情五月婷婷| 亚洲最大成人中文| 少妇猛男粗大的猛烈进出视频 | 在线观看av片永久免费下载| 亚洲狠狠婷婷综合久久图片| 91麻豆av在线| 日本成人三级电影网站| 露出奶头的视频| 国产av一区在线观看免费| 日韩欧美国产一区二区入口| 夜夜爽天天搞| 看黄色毛片网站| 五月玫瑰六月丁香| 免费在线观看日本一区| 欧美性猛交黑人性爽| 天堂av国产一区二区熟女人妻| 天堂动漫精品| 波多野结衣巨乳人妻| 天堂√8在线中文| 国产 一区 欧美 日韩| avwww免费| 婷婷丁香在线五月| 国产蜜桃级精品一区二区三区| 成人亚洲精品av一区二区| 搡老岳熟女国产| 久久久国产成人精品二区| 亚洲欧美日韩无卡精品| 91麻豆av在线| 在线观看一区二区三区| 亚洲图色成人| 国产精品一及| 人妻丰满熟妇av一区二区三区| 亚洲av美国av| 看片在线看免费视频| 天堂√8在线中文| 美女被艹到高潮喷水动态| 男女边吃奶边做爰视频| 人人妻人人看人人澡| 九九热线精品视视频播放| 日韩在线高清观看一区二区三区 | 十八禁国产超污无遮挡网站| 色综合亚洲欧美另类图片| 亚洲男人的天堂狠狠| avwww免费| 级片在线观看| 国产精品人妻久久久影院| 精品久久久久久久久久久久久| 91麻豆精品激情在线观看国产| 精品久久久久久久久久免费视频| 欧美精品国产亚洲| 麻豆一二三区av精品| 久久久久久大精品| 天天一区二区日本电影三级| 日韩av在线大香蕉| h日本视频在线播放| 国产成人影院久久av| 亚洲色图av天堂| 国产精品久久久久久av不卡| 亚洲电影在线观看av| 国产精品嫩草影院av在线观看 | 国产精品久久久久久av不卡| 夜夜看夜夜爽夜夜摸| 欧美色视频一区免费| 国产精品亚洲一级av第二区| 亚洲熟妇熟女久久| 国内毛片毛片毛片毛片毛片| 真人一进一出gif抽搐免费| 伊人久久精品亚洲午夜| 欧美黑人欧美精品刺激| 一级av片app| 在线观看舔阴道视频| 国产主播在线观看一区二区| 给我免费播放毛片高清在线观看| 亚洲欧美日韩东京热| 淫秽高清视频在线观看| 国产大屁股一区二区在线视频| 国产av在哪里看| 成年人黄色毛片网站| 日韩欧美在线乱码| 国产高清视频在线观看网站| 精品99又大又爽又粗少妇毛片 | 舔av片在线| 观看免费一级毛片| 亚洲成人中文字幕在线播放| 国产成人aa在线观看| 国产老妇女一区| 亚洲av第一区精品v没综合| 国产精品野战在线观看| 观看美女的网站| 黄色丝袜av网址大全| 色吧在线观看| 99久久精品一区二区三区| 我要搜黄色片| 在线a可以看的网站| 亚洲国产色片| 美女大奶头视频| 直男gayav资源| 亚洲精品色激情综合| 赤兔流量卡办理| 制服丝袜大香蕉在线| 亚洲专区国产一区二区| 麻豆成人午夜福利视频| 村上凉子中文字幕在线| 又爽又黄a免费视频| 变态另类丝袜制服| 免费看光身美女| 99riav亚洲国产免费| 国产乱人视频| 桃色一区二区三区在线观看| 男女啪啪激烈高潮av片| 成人av在线播放网站| 色5月婷婷丁香| av在线观看视频网站免费| 搡老岳熟女国产| 国产精品久久电影中文字幕| 国产蜜桃级精品一区二区三区| 亚洲天堂国产精品一区在线| 国产私拍福利视频在线观看| 九九爱精品视频在线观看| 日本色播在线视频| 性欧美人与动物交配| 成人av一区二区三区在线看| 性色avwww在线观看| 国产老妇女一区| 男人的好看免费观看在线视频| 99久久九九国产精品国产免费| 一级毛片久久久久久久久女| 赤兔流量卡办理| 免费不卡的大黄色大毛片视频在线观看 | 99久久成人亚洲精品观看| 日韩中字成人| 欧美3d第一页| 日韩欧美国产一区二区入口| 狂野欧美白嫩少妇大欣赏| 12—13女人毛片做爰片一| 久久午夜亚洲精品久久| av中文乱码字幕在线| 欧美极品一区二区三区四区| 亚洲精品色激情综合| 亚洲成av人片在线播放无| 欧美成人性av电影在线观看| 一区二区三区激情视频| 熟女人妻精品中文字幕| 少妇被粗大猛烈的视频| 久久人妻av系列| 久久久久久国产a免费观看| 搞女人的毛片| 男插女下体视频免费在线播放| 国产乱人视频| 人妻久久中文字幕网| 日韩欧美三级三区| 亚洲成av人片在线播放无| 丝袜美腿在线中文| 12—13女人毛片做爰片一| 啦啦啦啦在线视频资源| 草草在线视频免费看| 国产精品野战在线观看| 欧美成人性av电影在线观看| 成年女人看的毛片在线观看| 国产美女午夜福利| 国产精品av视频在线免费观看| 久久久精品大字幕| 观看美女的网站| 国产午夜福利久久久久久| 成年免费大片在线观看| 免费不卡的大黄色大毛片视频在线观看 | 久久久精品大字幕| 免费看美女性在线毛片视频| 亚洲国产高清在线一区二区三| 色视频www国产| 色吧在线观看| 成人永久免费在线观看视频| 99久久精品国产国产毛片| 国产午夜精品久久久久久一区二区三区 | 免费看av在线观看网站| 精品乱码久久久久久99久播| 久久久久免费精品人妻一区二区| 午夜老司机福利剧场| av在线观看视频网站免费| 日韩欧美国产在线观看| 免费高清视频大片| 小蜜桃在线观看免费完整版高清| 日韩强制内射视频| 国产av不卡久久| 又黄又爽又刺激的免费视频.| avwww免费| 久久精品国产鲁丝片午夜精品 | 夜夜爽天天搞| 精品福利观看| 啪啪无遮挡十八禁网站| 黄色一级大片看看| 91久久精品国产一区二区成人| 亚洲av二区三区四区| 色精品久久人妻99蜜桃| 成人高潮视频无遮挡免费网站| 最近最新免费中文字幕在线| 免费无遮挡裸体视频| 欧美成人a在线观看| 黄色一级大片看看| 色播亚洲综合网| 亚洲欧美日韩东京热| 亚洲av一区综合| 欧美绝顶高潮抽搐喷水| 日本a在线网址| 欧美精品啪啪一区二区三区| 精品免费久久久久久久清纯| 免费无遮挡裸体视频| 亚洲精品影视一区二区三区av| 国产高清不卡午夜福利| 中国美女看黄片| 日韩一本色道免费dvd| 别揉我奶头 嗯啊视频| 亚洲av日韩精品久久久久久密| 99久久九九国产精品国产免费| 成人av在线播放网站| 久久这里只有精品中国| 18+在线观看网站| 亚洲精华国产精华精| 国产av在哪里看| 中文在线观看免费www的网站| 淫秽高清视频在线观看| 在线天堂最新版资源| 干丝袜人妻中文字幕| 97超视频在线观看视频| 国产精品99久久久久久久久| 国产淫片久久久久久久久| 亚洲精品成人久久久久久| 淫妇啪啪啪对白视频| 丝袜美腿在线中文| 日韩人妻高清精品专区| 中文字幕人妻熟人妻熟丝袜美| 国产精品女同一区二区软件 | 51国产日韩欧美| 精品一区二区免费观看| 在线国产一区二区在线| 欧美xxxx黑人xx丫x性爽| 免费看a级黄色片| 真实男女啪啪啪动态图| 亚洲aⅴ乱码一区二区在线播放| 精品人妻偷拍中文字幕| 欧美成人免费av一区二区三区| 欧美一区二区国产精品久久精品| 国产亚洲精品久久久久久毛片| 麻豆av噜噜一区二区三区| 精品午夜福利在线看| 久久精品国产亚洲av涩爱 | 男女视频在线观看网站免费| 国产av在哪里看| 亚洲人成网站高清观看|