• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    基于二氧化釩的吸收帶寬可調(diào)諧超材料吸收器

    2022-02-22 00:52:14江孝偉王勝武華
    光子學報 2022年1期
    關鍵詞:二氧化吸收器北京工業(yè)大學

    江孝偉,王勝,武華

    (1 衢州職業(yè)技術學院信息工程學院,浙江衢州324000)

    (2 贛南師范大學物理與電子信息學院,江西贛州341000)

    (3 北京工業(yè)大學光電子技術教育部重點實驗室,北京100124)

    0 Introduction

    Adjusting the Metamaterial(MM) cell resonance structure may show many exotic electromagnetic properties, such as negative refraction[1-2], perfect absorption[3-4], electromagnetic stealth[5-6], and electromagnetic induction transparency[7].Because MM has the above-mentioned abnormal electromagnetic properties,it has gradually become a research hotspot,and has been widely used in national defense,communications,and biomedical sensing.[8-10].

    The Metamaterial Perfect Absorber(MPA)has attracted widespread attention due to unprecedented characteristics compared to taper-like structure absorbers[11]or ordinary absorbers,such as high absorption efficiency,ultrathin thickness,and a scalable working wavelength[12].Since Landy et al.first proposed an MPA with perfect absorption characteristics[3],different types of MPAs have been proposed,and the absorption wavelengths over microwave[13],terahertz[14],infrared,[15]and visible bands have been identified[16].However,once the structural parameters of MPAs are fixed,their absorption characteristics are difficult to be tuned.On the other hand,demand on tunable MPA is increasing in many applications,such as modulators,optical switches,and smart reflectors.[17].

    To realize the dynamic tunability of the absorption characteristics of MPA,many research groups choose to incorporate varactor diodes or graphene into the design of MPA.In the low-frequency band,diodes with changeable capacitance are generally used to change the equivalent capacitance of MPA to achieve dynamic tuning of MPA absorption wavelength and absorption efficiency[18-19].In the high-frequency band,graphene is used in MPA.By changing the chemical potential of graphene,one can achieve dynamic control of absorption wavelength,absorption efficiency,and even absorption bandwidth of MPAs[20-21].

    In recent years,phase-changing material vanadium dioxide(VO2)demonstrated outstanding optical and electrical properties,and can realize the transition between metallic state and dielectric state through external excitations,such as light,electricity,and heat[22-23].Because VO2has reversible phase-changing characteristics,it is an ideal material for preparing a tunable MPA,and many research work has been done on tunable MPAs based on VO2.LEI L et al from Shenzhen University designed an absorption-bandwidth-tunable MPA based on VO2and metallic chromium materials[24].DAO Rina et al from Nanjing University of Posts and Telecommunications used VO2as a resonance unit material,and the absorption efficiency of MPA could be tuned by changing the temperature of the resonance unit[25].Our research group also demonstrated tunable absorption wavelength and absorption efficiency of MPA by using VO2and graphene in MPA[26].

    To the best of our knowledge,current VO2-based MPA can realize tunable absorption efficiency,but the tuning of absorption bandwidth is rarely involved.Moreover,the tunable MPA bandwidth in visible and nearinfrared bands is even less involved.However,at present,for the application of intelligent windows,intelligent reflectors,intelligent temperature control systems,and heat emitters,MPA absorption bandwidth is required to be tunable in the visible and near-infrared bands[27-28].Therefore,in this paper,a bandwidth-tunable VO2-based MPA in visible and near-infrared bands is proposed and studied using Finite Difference Time Domain(FDTD)method.The simulation results showed that the bandwidth,Wa,of the tunable MPA proposed in this paper could reach 1.03 μm and 0.652 μm with absorption efficiency higher than 90% in the VO2dielectric and metallic state.By analyzing the electromagnetic field distribution of MPA,it was observed that as VO2was in the dielectric state,MPA achieved a wide bandwidth and high absorption owing to the Propagating Surface Plasmon(PSP),Localized Surface Plasmon(LSP),and the resonance of Fabry-Perot(FP)cavity.

    1 Device structure and theory

    The structure of the absorption-bandwidth-tunable MPA is shown in Fig.1.Fig.1(a)is overall view of the MPA structure,and Fig.1(b)is zoom-in view of one MPA unit cell.The MPA unit cell is composed of an Au substrate and four cylindrical resonance units with different radii.The cylindrical resonance units are of twolayered structure,with VO2as bottom layer and Au as top layer.The structural parameters are as follows:Pis the period of the MPA unit cell;r1,r2,r3,andr4are the radii of the four cylindrical resonance units respectively;hm=0.03 μm andhv=0.11 μm are the thickness of Au and VO2in the cylindrical resonance unit respectively;w1,w2,w3andw4are spacing between different cylinder resonant elements.In this work,the thickness of the Au substrate is 0.2 μm,which is thick enough to block the incident light effectively,and the transmission of the structure is nearly zero.

    Fig.1 schematic of the structure of absorption-bandwidth-tunable MPA

    With the development of material preparation technology and nanofabrication technology,the current micro-nano machining technology can fully meet the requirements of MPA processing as shown in Fig.1.Therefore,the MPA structure proposed in this paper is easier to realize in an actual experiment.The proposed structure in Fig.1 can easily be realized by current nano-fabrication technology.Firstly,a continuous VO2layer is prepared on the Au substrate by the lower-cost sol-gel method[29],then a thin Au layer was sputtered on the VO2layer by magnetron sputtering,finally the required cylindrical resonance units are patterned by electron beam lithography and ion beam etching.

    The refractive indexn,and coefficientkof Au for different light wavelengths could be obtained from Ref.[30],as shown in Fig.2.According to the Bruggeman′s effective medium theory[31],The dielectric constant of VO2could be calculated by Eq.(1).In Eq.(1),εi≈9 is the dielectric constant of VO2in the dielectric state,εmis the dielectric constant of VO2in the metallic state,andfrepresents the volume ratio of VO2in the metallic state in the entire VO2.Moreover,εmcould be obtained by Eq.(2).In Eq.(2),ωpis the plasma frequency,ωis the incident light angular frequency,τ=2 μme/e is the relaxation time,meis the mass of free electrons,u≈2 cm2/V.sis carrier mobility,andeis the amount of free electron charge.Furthermore,fcould be obtained by Eq.(3),whereTrepresents the environment temperature,T0=68° C represents the VO2phase transition temperature,and ΔT=6°C is the transition width.Eqs.(1)~(3)could be combined to obtain the refractive index,nVO2,and the extinction coefficient,kVO2,of VO2for different wavelengths at different temperatures,as shown in Fig.3.

    Fig.2 Refractive index and extinction coefficient of Au

    Fig.3 Refractive index and extinction coefficient of VO2 at different temperatures

    2 Results and discussions

    The characteristics of proposed MPA is studied by FDTD simulation.Since the MPA is of periodic structure,by carefully setting boundary conditions,it is feasible to only simulate the unit structure as shown in Fig.1(b)in FDTD software.A periodic boundary condition was added in thex- andy-directions.A perfect match layer was added in thez-direction as the boundary condition.The polarization of the incident light was set to be TM polarization(Along thexaxis).Incident light was perpendicular to the surface of the structure,which indicated the incident angleθis 0.To ensure that the simulation results were closer to reality,the grid type was auto non-uniform during simulation,and the grid accuracy was set to the maximum value of 8.The details are shown in Fig.4.

    Fig.4 Detailed settings of the FDTD simulation

    Fig.5 shows FDTD simulation results of absorption spectra of MPA at different temperatures.As Fig.5 shows,atT=80°C,the MPA could maintain more than 90% absorption efficiency between 0.505 μm and 1.157 μm,and the absorption bandwidthWacould reach 0.652 μm.When the temperatureTdropped from 80°C to 25°C,the MPA could maintain more than 90% absorption efficiency between 0.505 μm and 1.535 μm,and the absorption bandwidth,Wareached 1.03 μm.These findings indicate that the MPA proposed in this paper can realize the tuning of absorption bandwidth by changing the VO2temperature,and the tuning range of absorption bandwidth can reach 0.378 μm.In addition,the results show that the absorption spectrum of MPA covers both the visible and near-infrared bands.

    Fig.5 Absorption as a function of wavelength of MPA at different temperature

    To explore the internal physical mechanism of the MPA with tunable absorption bandwidth,the electromagnetic field distribution of MPA at different resonance wavelengths is simulated and calculated at low temperature.Fig.6 shows the electric field distribution of MPA in thex-zplane(y=?0.125 μm,e.g.the center plane of cylinders with radiir3andr4)under different resonance wavelength conditions(T=25°C).As shown in Fig.6,under different resonance wavelength conditions,the electric field is basically concentrated between the gaps of the cylindrical resonance units and the corners of the Au cylinder,which indicates the incident light excites the surface plasmon polaritons(SPPs)in the MPA.Therefore,from the electric field distribution,it can be concluded that the high absorption of the MPA at each resonance wavelength is due to SPP resonance[24].

    Fig.6 Electric field distribution of MPA at the different resonance wavelength(T=25°C)

    Unlike the electric field distribution,the magnetic field distribution(T=25°C)of the MPA under different resonance wavelength conditions is very different.As shown in Fig.7(a)and 7(b),LSP resonance is the mainreason for the high absorption efficiency of MPA at long wavelengths(1.4 μm and 1.2 μm).Moreover,most of the magnetic field is confined to the VO2layer,which is between the Au cylinder and the Au substrate[23].Fig.7(e)shows that the high absorption efficiency of MPA at a short wavelength(0.505 μm)is mainly due to PSP resonance,because only a small part of the magnetic field is restricted to the VO2layer,and most of magnetic field is located between adjacent cylindrical resonance units,which is a significant PSP resonance feature[32-33].The specific proof can also be seen in Fig.9(a).As for the resonance absorption of MPA at wavelengths of 0.8 μm and 1 μm,F(xiàn)ig.7(c)and 7(d)show that it is not only caused by LSP resonance and PSP resonance,but is also mixed with FP cavity resonance,that is,the light wave oscillated back and forth between the Au cylindrical layer and the Au substrate.In this case,the Au cylindrical layer and Au substrate act as mirrors to form a FP resonator.

    Fig.7 The magnetic field distribution of MPA at the different resonance wavelength(T=25°C)

    To understand the intrinsic physical mechanism of the high absorptivity of MPA in the VO2metallic state,the electromagnetic field distribution of MPA at the wavelength of 0.505 μm and 1 μm atT=80°C is calculated,as shown in Fig.8.Fig.8(a)shows the magnetic field distribution of the MPA at a wavelength of 0.505 μm.Compared with Fig.7(e),the magnetic field distribution of VO2at the short wavelength is basically the same regardless of whether VO2is in the dielectric state or metallic state.That is,the physical mechanism leading to the high absorption efficiency of MPA at the short wavelength is the same,which is because of the PSP resonance.

    Fig.8 The electromagnetic field distribution of MPA at resonance wavelength(T=80°C)

    Comparing Fig.8(b)with Fig.7(c),it can be seen that when VO2is in the metallic state,the high absorption efficiency of MPA at long wavelengths(1 μm)is not only caused by LSP or PSP resonance,but also mainly because of FP cavity resonance.The FP cavity resonance here is mainly composed of an adjacent cylinder resonance units and air gap[24].The FP cavity length is the thickness of cylinder resonance unit(hm+hv).The width of FP cavity isw1.Owing to the formation of the FP cavity,more magnetic fields are concentrated between the air gaps of the adjacent cylinder resonance units.Figs.8(c)and 8(d)show the electric field distribution of MPA at a wavelength of 0.505 μm and 1 μm when VO2is in a metallic state,respectively.It can be seen the high absorption efficiency of MPA at high temperature is also due to the SPP resonance.

    To explore the influence of MPA structural parameters on its absorption characteristics at low temperature(VO2is in dielectric state,T=25℃),the MPA absorption spectra(T=25°C)under the conditions of different periodsPand cylindrical resonance unit radius were simulated and calculated.Fig.9(a)shows the influence ofPon the absorption spectrum of MPA.AsPincreased,the absorption bandwidth of MPA gradually narrowed,and the absorption wavelength of MPA at the short-wavelength gradually showed redshift.WhenPincreased from 0.5 μm to 0.6 μm,the initial wavelength of the MPA absorption spectrum shifted from 0.505 μm to 0.599 μm.It can be found that the absorption wavelength of MPA at short wavelengths is very close toP.This phenomenon is due to the fact that high absorption efficiency of MPA at short wavelengths is caused by PSP resonance.The PSP resonance wavelength,λPSP,is related to the MPA period,P,which can be seen in Eq.(4)[32].In Eq.(4),mis an integer,λ0is the free-space wavelength.Because the incident light is perpendicular to the surface of the MPA,θis 0,thereforeλPSPequals toP.

    Fig.9 The influence of MPA structural parameters on the absorption spectrum of MPA(T=25°C)

    As Fig.9(a)shows,although thePof MPA gradually increased,there is no obvious redshift or blueshift at the MPA wavelength of 1.4 μm.This is because,as can be seen from Fig.7(a),the high absorption efficiency of MPA at 1.4 μm is caused by LSP resonance,and periodPhas almost no effect on the LSP resonance wavelength.

    Fig.9(b)shows the MPA absorption spectra versus the radii of different cylindrical resonance units.As can be seen from Fig.9(b),with an increase in the radius of the resonance unit,the MPA absorption bandwidth,Wa,increased firstly and then decreased.In the short wavelength range between 0.5 μm and 1 μm,in all the 4 simulated conditions,the MPA could maintain a relatively high absorption efficiency(>75%).The reason for this is that the high absorption efficiency of MPA at short wavelength is caused by the PSP resonance,as shown in Fig.7(e).From Eq.(4),we know the resonance wavelength of PSP is mainly determined by the periodP,so as long asPdid not change,the MPA could maintain the PSP resonance at the short wavelength.However,the absorption efficiency varied greatly at long wavelengths(>1 μm).The reason for this is that the high absorption efficiency of MPA at long wavelength is caused by LSP resonance,as shown in Fig.7(a)and 7(b).According to Ref.[32],LSP resonance is mainly affected by the shape and size of the MPA resonance unit.Therefore,when the radius of the resonance unit is small,the absorption efficiency of MPA is extremely low because it cannot meet the conditions to excite LSP resonance;when the radius of the resonance element increases,it gradually meets the excitation conditions of LSP resonance,and increases the absorption efficiency of MPA at the long-wavelength range.

    In order to understand the influence of structural parameters on the absorption characteristics of MPA at high temperature(VO2is in metallic state,T=80℃),we changed the thickness of top Au layerhmand the radius of the resonance units.Fig.10(a)shows the influence ofhmon the absorption characteristics of MPA as VO2is in metallic state(T=80℃).As can be seen from Fig.10(a),whenhmincreases,the absorption wavelength of MPA at short wavelength almost unchanged,but the absorption efficiency gradually declines.Refer to Fig.8(a),when VO2is in metallic state,the high absorption efficiency of MPA at the short wavelength is caused by the PSP resonance.On the contrary,the absorption wavelength of MPA in the long wavelength is red-shifted.This is because when VO2is the metallic state(T=80℃),the high absorption efficiency of MPA at the long wavelength is due to the FP cavity resonance rather than LSP resonance.The relationship between the FP cavity resonance wavelengthλFPandhmis shown in Eq.(5)[34],whereneffis the FP cavity effective refractive index.According to Eq.(5),with the increase ofhm,the resonant wavelength of FP cavityλFPwill increase,resulting in the red shift of MPA at the long wavelength.

    Fig.10 The influence of MPA structural parameters on the absorption spectrum of MPA(T=80°C)

    Fig.10(b)shows the influence of the MPA resonance unit radius on the absorption characteristics of the MPA.Different from VO2in dielectric state,when VO2is in metallic state,the absorption efficiency of MPA at long wavelength gradually increases with the increase of the resonance unit radius.As comparison,when VO2is in dielectric state,as shown in Fig.9(b),with the increase of the resonance unit radius,the absorption efficiency of MPA at long wavelength first increases and then decreases.This is mainly because when VO2is metallic state,the high absorption efficiency of MPA at long wavelength is due to the FP cavity resonance.With the increase of resonance unit radius,the FP equivalent refractive index gradually meets the resonance condition of long wavelength(see Fig.11),so that the absorption efficiency of MPA at long wavelength is gradually improved.

    The relationship between the width of FP cavitywand the equivalent refractive index of FP cavityneffcan be obtained by Eqs.(6)~(8).εmandεd=1 are the dielectric constants of Au and air respectively.k0=2π/λ,whereλis the incident light wavelength.Fig.11 shows the relationship betweenwandneffwhen the wavelength of incident light is 1 μm(εm=?47.84+3.11i).It can be seen from Fig.11 that aswdecreases,that is,as the radius of the cylinder resonance unit increases,neffwill gradually increase.Because the length of the FP cavity unchanged,the resonance wavelengthλFPof the FP cavity will increase when theneffincreases.Therefore,as shown in Fig.10(b),when the radius of the cylindrical resonance unit increases,the absorption efficiency of MPA at the long wavelength increases.

    Fig.11 The influence of FP cavity wdith w on the FP cavity equivalent refractive index neff

    3 Conclusions

    We designed a MPA with high absorption efficiency and tunable absorption bandwidth in visible and nearinfrared light bands.The simulation results indicate that by changing temperature,the absorption bandwidthWaof the MPA can be tuned,and the tuning range can reach 0.375 μm.We also studied the effects of structural parameters on absorption bandwidth.By analyzing the electromagnetic field of the MPA at absorption wavelength,it can be found that when VO2is at a low temperature(T=25°C),the high absorption efficiency of the MPA in the near-infrared band is due to LSP resonance,and the high absorption efficiency of the MPA in the visible band is due to the PSP resonance.However,when VO2is at high temperature,the high absorption efficiency of the MPA in the near-infrared band is caused by FP resonance.The research in this paper can provide a theoretical basis for design and fabrication of a high-performance,dynamic,adjustable MPA in the future.

    猜你喜歡
    二氧化吸收器北京工業(yè)大學
    腔式寬光譜高吸收比標準器研制及測試分析
    北京工業(yè)大學
    基于二氧化釩相變實現(xiàn)動態(tài)可調(diào)的亞波長光學材料和器件(特邀)
    光子學報(2022年5期)2022-06-28 09:24:42
    北京工業(yè)大學
    北京工業(yè)大學
    納米二氧化鈰改性水性氟碳涂料的研究
    波浪能點吸收器結構設計與數(shù)值優(yōu)化
    北京工業(yè)大學
    能源吸收器
    基于CST的紅外吸收器特性分析
    午夜精品久久久久久毛片777| 18禁黄网站禁片免费观看直播| 级片在线观看| 99在线人妻在线中文字幕| 中文资源天堂在线| 午夜老司机福利剧场| 免费看a级黄色片| 九色国产91popny在线| 偷拍熟女少妇极品色| 亚洲电影在线观看av| 国产97色在线日韩免费| 亚洲,欧美精品.| 看黄色毛片网站| а√天堂www在线а√下载| av天堂在线播放| 天堂av国产一区二区熟女人妻| 亚洲最大成人手机在线| 日韩欧美三级三区| 久久精品91蜜桃| 黄色丝袜av网址大全| 色视频www国产| 免费观看人在逋| 18禁黄网站禁片免费观看直播| 亚洲精品一区av在线观看| 欧美最黄视频在线播放免费| 男人和女人高潮做爰伦理| 97人妻精品一区二区三区麻豆| 9191精品国产免费久久| 99在线视频只有这里精品首页| 中文字幕人妻丝袜一区二区| 免费av不卡在线播放| 亚洲av不卡在线观看| 偷拍熟女少妇极品色| 国产精品影院久久| 亚洲无线观看免费| 三级毛片av免费| 国产黄色小视频在线观看| 久久这里只有精品中国| 久久久精品大字幕| 高清毛片免费观看视频网站| 一区福利在线观看| 国产免费男女视频| 亚洲国产色片| 国产蜜桃级精品一区二区三区| 国产黄片美女视频| 国产97色在线日韩免费| 极品教师在线免费播放| 最近在线观看免费完整版| 国产高清激情床上av| 国产探花极品一区二区| 久久久久性生活片| 久久精品影院6| av在线蜜桃| 欧美一级a爱片免费观看看| 免费观看的影片在线观看| 国产私拍福利视频在线观看| 在线a可以看的网站| 亚洲av电影不卡..在线观看| 免费大片18禁| 18禁黄网站禁片免费观看直播| 欧美激情久久久久久爽电影| 99久国产av精品| 日本 欧美在线| 国产欧美日韩一区二区三| 成人高潮视频无遮挡免费网站| 亚洲久久久久久中文字幕| 亚洲精品影视一区二区三区av| 亚洲精品一区av在线观看| 伊人久久精品亚洲午夜| 亚洲精品456在线播放app | 一夜夜www| 欧美日本亚洲视频在线播放| 欧美日韩中文字幕国产精品一区二区三区| 特大巨黑吊av在线直播| 性色av乱码一区二区三区2| 少妇丰满av| 久久久久久久久大av| 香蕉久久夜色| 91麻豆av在线| aaaaa片日本免费| 舔av片在线| 在线免费观看的www视频| 欧美日韩精品网址| 欧美中文综合在线视频| 日本免费a在线| 五月玫瑰六月丁香| 国产精品一及| 欧美区成人在线视频| 亚洲成a人片在线一区二区| 18禁在线播放成人免费| 国产一区二区在线观看日韩 | 免费看光身美女| 国产aⅴ精品一区二区三区波| 国内毛片毛片毛片毛片毛片| 2021天堂中文幕一二区在线观| 午夜福利高清视频| 国产亚洲精品久久久久久毛片| 精品一区二区三区av网在线观看| 精品日产1卡2卡| 日韩高清综合在线| 精品久久久久久久末码| 九色国产91popny在线| 在线观看日韩欧美| 最近最新中文字幕大全电影3| 99久国产av精品| 欧美bdsm另类| 亚洲18禁久久av| 亚洲色图av天堂| 欧美+日韩+精品| 欧美日韩亚洲国产一区二区在线观看| 黄片大片在线免费观看| 听说在线观看完整版免费高清| 999久久久精品免费观看国产| 欧美高清成人免费视频www| 九色国产91popny在线| 熟女少妇亚洲综合色aaa.| 国产v大片淫在线免费观看| 亚洲狠狠婷婷综合久久图片| www.色视频.com| a在线观看视频网站| 长腿黑丝高跟| 日韩欧美精品v在线| 天堂影院成人在线观看| 欧美大码av| 免费搜索国产男女视频| 综合色av麻豆| 亚洲精品美女久久久久99蜜臀| 中文亚洲av片在线观看爽| 一区二区三区免费毛片| 欧美日韩乱码在线| 亚洲国产精品成人综合色| 色播亚洲综合网| 青草久久国产| 黄色片一级片一级黄色片| 超碰av人人做人人爽久久 | 亚洲性夜色夜夜综合| 香蕉丝袜av| 天天添夜夜摸| 一个人观看的视频www高清免费观看| 成人特级av手机在线观看| 亚洲狠狠婷婷综合久久图片| 12—13女人毛片做爰片一| 日韩欧美国产一区二区入口| 欧美日韩国产亚洲二区| 搞女人的毛片| 国内久久婷婷六月综合欲色啪| 国产v大片淫在线免费观看| 精品无人区乱码1区二区| 非洲黑人性xxxx精品又粗又长| 高清毛片免费观看视频网站| 日本 欧美在线| 51午夜福利影视在线观看| 男女视频在线观看网站免费| 毛片女人毛片| 国模一区二区三区四区视频| 一区二区三区免费毛片| 两个人视频免费观看高清| 99热6这里只有精品| 亚洲黑人精品在线| 欧美日韩乱码在线| 一个人免费在线观看电影| 欧美日韩一级在线毛片| 亚洲精品国产精品久久久不卡| 久久中文看片网| 午夜福利18| 十八禁网站免费在线| 久久精品亚洲精品国产色婷小说| 精品久久久久久久久久免费视频| 高清毛片免费观看视频网站| 成人性生交大片免费视频hd| 91久久精品国产一区二区成人 | 岛国视频午夜一区免费看| 精品久久久久久,| 久久香蕉精品热| 亚洲一区二区三区不卡视频| 亚洲色图av天堂| 欧美不卡视频在线免费观看| 免费观看精品视频网站| 脱女人内裤的视频| www日本在线高清视频| 亚洲国产精品久久男人天堂| 天堂影院成人在线观看| av专区在线播放| 亚洲精品影视一区二区三区av| 露出奶头的视频| 午夜免费激情av| 欧美成人一区二区免费高清观看| 中文字幕人妻熟人妻熟丝袜美 | 日韩人妻高清精品专区| 国产av在哪里看| 成人av一区二区三区在线看| 国内精品美女久久久久久| 精品国产超薄肉色丝袜足j| 国产视频一区二区在线看| 99国产精品一区二区三区| 免费无遮挡裸体视频| 一区二区三区激情视频| 女同久久另类99精品国产91| 小说图片视频综合网站| 亚洲中文字幕一区二区三区有码在线看| 白带黄色成豆腐渣| 无限看片的www在线观看| 日韩欧美国产在线观看| 中文字幕人妻熟人妻熟丝袜美 | 两个人的视频大全免费| 动漫黄色视频在线观看| 日韩中文字幕欧美一区二区| 亚洲中文字幕日韩| 国内精品美女久久久久久| 亚洲中文字幕日韩| 精品福利观看| 天堂影院成人在线观看| 欧美一级毛片孕妇| 欧美国产日韩亚洲一区| 久久伊人香网站| 亚洲av成人精品一区久久| 国产综合懂色| 国产高清videossex| 观看免费一级毛片| 午夜久久久久精精品| 国产 一区 欧美 日韩| 久久久精品大字幕| 国产伦精品一区二区三区四那| 中文字幕高清在线视频| 中文字幕高清在线视频| 99热这里只有是精品50| 国产91精品成人一区二区三区| 一夜夜www| 99热精品在线国产| 久久久久久久久久黄片| 一进一出抽搐gif免费好疼| 国产免费男女视频| 看片在线看免费视频| 午夜视频国产福利| 国产精品野战在线观看| 国产亚洲精品综合一区在线观看| 国产精品电影一区二区三区| 午夜两性在线视频| 91麻豆av在线| 国产中年淑女户外野战色| 美女 人体艺术 gogo| 欧美色视频一区免费| 可以在线观看的亚洲视频| 日韩亚洲欧美综合| 国产成人影院久久av| 十八禁人妻一区二区| 亚洲av免费高清在线观看| 欧美成狂野欧美在线观看| 真人一进一出gif抽搐免费| 国产精品嫩草影院av在线观看 | 国产真人三级小视频在线观看| 国产乱人视频| 免费看a级黄色片| 欧美在线黄色| 国产私拍福利视频在线观看| 国产精品,欧美在线| 国产成年人精品一区二区| 十八禁网站免费在线| 噜噜噜噜噜久久久久久91| а√天堂www在线а√下载| 性色avwww在线观看| 欧美乱妇无乱码| 亚洲人成电影免费在线| 免费在线观看亚洲国产| 18+在线观看网站| 欧美大码av| 级片在线观看| 日韩大尺度精品在线看网址| 久久久久久久久中文| 欧美一级a爱片免费观看看| 在线国产一区二区在线| 国产乱人伦免费视频| 亚洲成人免费电影在线观看| 国产精品影院久久| 3wmmmm亚洲av在线观看| 色综合亚洲欧美另类图片| www.999成人在线观看| 19禁男女啪啪无遮挡网站| 听说在线观看完整版免费高清| 成人无遮挡网站| 国产成人aa在线观看| 亚洲av不卡在线观看| 欧美日韩精品网址| 亚洲专区国产一区二区| 久久欧美精品欧美久久欧美| 日韩欧美一区二区三区在线观看| 色综合站精品国产| 精品久久久久久久末码| 久久久久性生活片| 亚洲欧美日韩高清在线视频| 岛国在线观看网站| 成人av一区二区三区在线看| 在线观看一区二区三区| 女生性感内裤真人,穿戴方法视频| 日日干狠狠操夜夜爽| 午夜福利视频1000在线观看| 97超级碰碰碰精品色视频在线观看| 国产高清三级在线| 日韩精品中文字幕看吧| 国产av在哪里看| 五月玫瑰六月丁香| 51午夜福利影视在线观看| 午夜老司机福利剧场| 日本撒尿小便嘘嘘汇集6| 国产在线精品亚洲第一网站| 一个人看视频在线观看www免费 | 美女黄网站色视频| 少妇裸体淫交视频免费看高清| 青草久久国产| 特大巨黑吊av在线直播| 久久精品国产综合久久久| 亚洲电影在线观看av| 此物有八面人人有两片| 在线观看一区二区三区| 国产一区二区激情短视频| 日本 欧美在线| 日本撒尿小便嘘嘘汇集6| 中文在线观看免费www的网站| 国产亚洲精品综合一区在线观看| 欧美日韩综合久久久久久 | 国产精品,欧美在线| 国产成人福利小说| 久久久国产成人免费| 亚洲av电影不卡..在线观看| 午夜免费男女啪啪视频观看 | 国产成+人综合+亚洲专区| 国产一级毛片七仙女欲春2| 国产精品香港三级国产av潘金莲| 欧美一区二区国产精品久久精品| 午夜免费激情av| 午夜久久久久精精品| 亚洲最大成人中文| 欧美又色又爽又黄视频| 亚洲熟妇熟女久久| x7x7x7水蜜桃| 韩国av一区二区三区四区| 日韩中文字幕欧美一区二区| 美女免费视频网站| 国产欧美日韩精品亚洲av| 亚洲av第一区精品v没综合| 欧美日韩福利视频一区二区| 久久伊人香网站| 欧美日韩瑟瑟在线播放| 国产av在哪里看| 色综合站精品国产| 欧美日韩一级在线毛片| 天堂网av新在线| av福利片在线观看| 亚洲精品在线观看二区| 亚洲国产欧洲综合997久久,| 18美女黄网站色大片免费观看| 亚洲人与动物交配视频| 国内精品久久久久精免费| 亚洲 欧美 日韩 在线 免费| 午夜a级毛片| 日韩欧美免费精品| 午夜激情福利司机影院| 国内精品久久久久精免费| 夜夜看夜夜爽夜夜摸| 精品国产美女av久久久久小说| 99久久无色码亚洲精品果冻| 亚洲精品456在线播放app | 人人妻人人澡欧美一区二区| 日韩av在线大香蕉| x7x7x7水蜜桃| 成人一区二区视频在线观看| 亚洲精品在线美女| www国产在线视频色| 少妇的逼水好多| 久久久久久九九精品二区国产| 草草在线视频免费看| 欧美成人一区二区免费高清观看| 日本三级黄在线观看| 精品福利观看| 男女下面进入的视频免费午夜| 欧美性猛交╳xxx乱大交人| 很黄的视频免费| 亚洲中文日韩欧美视频| 午夜福利高清视频| 美女高潮喷水抽搐中文字幕| 日本一二三区视频观看| 最新美女视频免费是黄的| 熟女电影av网| 亚洲真实伦在线观看| 综合色av麻豆| www国产在线视频色| 9191精品国产免费久久| 国产av在哪里看| 舔av片在线| 午夜精品久久久久久毛片777| 成人欧美大片| 久久精品91蜜桃| 长腿黑丝高跟| 欧美日韩福利视频一区二区| 日日摸夜夜添夜夜添小说| 神马国产精品三级电影在线观看| 中文字幕熟女人妻在线| aaaaa片日本免费| 中文字幕高清在线视频| 身体一侧抽搐| 精品久久久久久久毛片微露脸| 在线看三级毛片| 国产成+人综合+亚洲专区| 2021天堂中文幕一二区在线观| 亚洲aⅴ乱码一区二区在线播放| 色尼玛亚洲综合影院| 成年女人看的毛片在线观看| 五月玫瑰六月丁香| 真人一进一出gif抽搐免费| 国产av麻豆久久久久久久| 大型黄色视频在线免费观看| 久久香蕉国产精品| 老司机午夜十八禁免费视频| 欧美+日韩+精品| 男女做爰动态图高潮gif福利片| 久久亚洲真实| 国产高清三级在线| 嫩草影视91久久| 在线观看美女被高潮喷水网站 | 成人特级av手机在线观看| 黄色片一级片一级黄色片| 成人永久免费在线观看视频| 在线观看一区二区三区| 嫁个100分男人电影在线观看| 亚洲在线自拍视频| 精品电影一区二区在线| 18禁在线播放成人免费| 亚洲国产中文字幕在线视频| 国产亚洲精品久久久久久毛片| 长腿黑丝高跟| 亚洲成人久久爱视频| 国产成+人综合+亚洲专区| 男女做爰动态图高潮gif福利片| 99riav亚洲国产免费| 中文字幕人妻熟人妻熟丝袜美 | 一区二区三区免费毛片| 两个人看的免费小视频| 一区二区三区高清视频在线| 90打野战视频偷拍视频| 欧美色欧美亚洲另类二区| 免费无遮挡裸体视频| 亚洲精品色激情综合| xxxwww97欧美| 网址你懂的国产日韩在线| 草草在线视频免费看| 麻豆成人午夜福利视频| 好看av亚洲va欧美ⅴa在| 国内揄拍国产精品人妻在线| 国产亚洲av嫩草精品影院| 国产激情欧美一区二区| 亚洲乱码一区二区免费版| 国产精品久久视频播放| 男女那种视频在线观看| 欧美又色又爽又黄视频| 18禁在线播放成人免费| 中出人妻视频一区二区| 久久精品91无色码中文字幕| 熟女少妇亚洲综合色aaa.| 亚洲精品亚洲一区二区| 90打野战视频偷拍视频| 特大巨黑吊av在线直播| 午夜福利视频1000在线观看| 内地一区二区视频在线| 成人av一区二区三区在线看| 欧美性感艳星| 亚洲天堂国产精品一区在线| 国产精品影院久久| 国产精品 国内视频| 丁香六月欧美| 少妇丰满av| 在线观看日韩欧美| 国产亚洲精品一区二区www| 国产91精品成人一区二区三区| 操出白浆在线播放| 成人国产综合亚洲| 久久香蕉国产精品| 亚洲国产精品久久男人天堂| 嫩草影视91久久| 亚洲国产精品成人综合色| 啦啦啦观看免费观看视频高清| 特级一级黄色大片| 久久久久久人人人人人| 伊人久久大香线蕉亚洲五| 成人国产一区最新在线观看| 亚洲精华国产精华精| 久久久久久久精品吃奶| av女优亚洲男人天堂| 欧美日韩国产亚洲二区| 草草在线视频免费看| 亚洲国产色片| av福利片在线观看| 亚洲性夜色夜夜综合| 国产综合懂色| 欧美日本亚洲视频在线播放| 午夜老司机福利剧场| 熟妇人妻久久中文字幕3abv| 免费高清视频大片| 内地一区二区视频在线| 国产高清视频在线播放一区| 天天躁日日操中文字幕| 午夜免费男女啪啪视频观看 | 国产精品综合久久久久久久免费| 听说在线观看完整版免费高清| 九色国产91popny在线| av国产免费在线观看| 黄色片一级片一级黄色片| av天堂中文字幕网| 国内毛片毛片毛片毛片毛片| 99精品在免费线老司机午夜| 国内揄拍国产精品人妻在线| 久久久久性生活片| 欧美日韩综合久久久久久 | av片东京热男人的天堂| 三级国产精品欧美在线观看| 国产精品 国内视频| 国产精品99久久久久久久久| 少妇的逼好多水| 国产av一区在线观看免费| 亚洲乱码一区二区免费版| 亚洲av免费高清在线观看| 黄色日韩在线| 91在线精品国自产拍蜜月 | 亚洲18禁久久av| 欧美日韩亚洲国产一区二区在线观看| 精品一区二区三区视频在线 | 淫秽高清视频在线观看| 国产成人av激情在线播放| 午夜免费观看网址| 美女高潮的动态| 人妻夜夜爽99麻豆av| 欧美成人一区二区免费高清观看| 伊人久久精品亚洲午夜| 18禁在线播放成人免费| 国产激情偷乱视频一区二区| 亚洲,欧美精品.| 色综合欧美亚洲国产小说| 无遮挡黄片免费观看| 亚洲精华国产精华精| 淫妇啪啪啪对白视频| 一进一出好大好爽视频| 国产v大片淫在线免费观看| 女人高潮潮喷娇喘18禁视频| 51国产日韩欧美| 国产高潮美女av| 一本一本综合久久| h日本视频在线播放| 91久久精品国产一区二区成人 | 国产高清视频在线播放一区| 久久久色成人| 亚洲国产高清在线一区二区三| 最近最新免费中文字幕在线| 成人高潮视频无遮挡免费网站| 香蕉丝袜av| 国产成+人综合+亚洲专区| 天天添夜夜摸| 波多野结衣巨乳人妻| 19禁男女啪啪无遮挡网站| 欧美一级a爱片免费观看看| 久久中文看片网| av黄色大香蕉| 免费av毛片视频| 国产精品 欧美亚洲| av欧美777| 亚洲人成网站在线播| 色噜噜av男人的天堂激情| 亚洲av不卡在线观看| 国产一区在线观看成人免费| 精品午夜福利视频在线观看一区| 亚洲自拍偷在线| 女人被狂操c到高潮| 国产成人系列免费观看| www国产在线视频色| 国产成人系列免费观看| 99久国产av精品| 搡老岳熟女国产| 狂野欧美激情性xxxx| 啦啦啦免费观看视频1| 99久国产av精品| 欧美在线黄色| 色综合欧美亚洲国产小说| 亚洲美女黄片视频| 国产97色在线日韩免费| 99国产极品粉嫩在线观看| 一级黄片播放器| av天堂在线播放| 国产69精品久久久久777片| 日本与韩国留学比较| 成人鲁丝片一二三区免费| 亚洲国产精品999在线| 99久久综合精品五月天人人| 欧美av亚洲av综合av国产av| 国产69精品久久久久777片| 国产男靠女视频免费网站| 国产成人av教育| 少妇人妻一区二区三区视频| 中出人妻视频一区二区| 欧美av亚洲av综合av国产av| 国产69精品久久久久777片| 欧美av亚洲av综合av国产av| 欧美一级毛片孕妇| 最新中文字幕久久久久| www.熟女人妻精品国产| 国产精品久久久久久精品电影| 天堂影院成人在线观看| 欧美黄色片欧美黄色片| 国产成人av激情在线播放| 国产黄a三级三级三级人| 午夜视频国产福利| 黄色视频,在线免费观看| 日本熟妇午夜| 欧美成人性av电影在线观看| 白带黄色成豆腐渣| 亚洲五月天丁香| 欧美三级亚洲精品| 精品熟女少妇八av免费久了|