陳曉晨,黃藝佳,2,趙 桐,張福祥,趙 琦,陳禹西,張劍宇,張旭釧,肖艷春,楊桂芳
水化氯鋁酸鈣與傳統(tǒng)鈍化劑降低土壤鎘生態(tài)及健康風(fēng)險的對比研究
陳曉晨1,黃藝佳1,2,趙 桐1,張福祥1,趙 琦1,陳禹西1,張劍宇3,張旭釧4,肖艷春5,楊桂芳6※
(1.福州大學(xué)環(huán)境與安全工程學(xué)院,福建省農(nóng)村廢棄物綠色循環(huán)技術(shù)工程研究中心,福州 350108;2. 閩南師范大學(xué)數(shù)學(xué)與統(tǒng)計學(xué)院,漳州 363000;3. 江蘇隆昌化工有限公司,如皋 226532;4. 茂友木材(江蘇)有限公司,如皋 226532;5. 福建省農(nóng)業(yè)科學(xué)院農(nóng)業(yè)工程技術(shù)研究所,福州 350003;6. 閩江學(xué)院福州海洋研究院,福建省海洋生物多樣性保護(hù)與永續(xù)利用重點(diǎn)實驗室,福州 350108)
針對紅壤、棕壤、褐土、黑土4種中國典型的Cd污染土壤,應(yīng)用Ca(OH)2、Ca(H2PO4)2以及層狀雙金屬氫氧化物(Layered Double Hydroxides,LDHs)、水化氯鋁酸鈣(CaAl-Cl LDH)開展鈍化修復(fù),并從土壤Cd的生態(tài)風(fēng)險和健康風(fēng)險角度進(jìn)行修復(fù)效果對比研究。分析鈍化劑對土壤pH值、土壤Cd的賦存形態(tài)以及土壤Cd直接經(jīng)口攝入的生物可給性的影響,并對修復(fù)機(jī)理進(jìn)行深入探究。結(jié)果表明,在Ca(OH)2、Ca(H2PO4)2和CaAl-Cl LDH各自相對最優(yōu)施用量下,3種鈍化劑均可顯著降低土壤Cd的活性系數(shù)(<0.05),平均降幅分別為16.1%、56.9%和29.2%,可降低土壤Cd的作物吸收量及Cd對周邊生態(tài)環(huán)境的風(fēng)險。此外,施用CaAl-Cl LDH能顯著且更為有效地降低土壤Cd的生物可給性(<0.05)及Cd對人體的健康風(fēng)險,在胃和小腸階段的平均降幅為19.2%和33.0%,其中胃階段分別達(dá)到施用Ca(OH)2和Ca(H2PO4)2的3.11和1.99倍,小腸階段為5.99和2.72倍。該研究為Cd污染土壤鈍化修復(fù)劑的開發(fā)、改進(jìn)和選擇提供了科學(xué)依據(jù)和參考。
土壤;污染;修復(fù);鎘;層狀雙金屬氫氧化物;賦存形態(tài);生物可給性
中國是鎘(Cd)污染狀況較為嚴(yán)重的國家之一,約有34%的農(nóng)田土壤和45%的城市土壤受到Cd污染[1],其點(diǎn)位超標(biāo)率位于八大無機(jī)污染物之首,含量分布呈現(xiàn)從北往南逐漸升高的趨勢[2]。Cd是一種毒性較強(qiáng)的重金屬元素,對包括土壤動植物在內(nèi)的生態(tài)環(huán)境構(gòu)成了極大威脅[3]。此外,Cd還可通過多種途徑進(jìn)入人體,毒害組織器官[4-5]。Cd進(jìn)入人體的途徑除了傳統(tǒng)的食物鏈暴露外,對于長期進(jìn)行各類勞作且缺乏防護(hù)的農(nóng)民和工人,以及常在戶外玩耍卻衛(wèi)生意識較差的兒童等而言,污染土壤的直接口部暴露已成為其機(jī)體Cd攝入的最主要途徑[6]。隨著中國土壤污染防治工作的不斷深入,Cd污染土壤的高效修復(fù)治理已成為保障土壤環(huán)境質(zhì)量與相關(guān)生態(tài)安全、人民健康的研究熱點(diǎn)。
在重金屬污染土壤的修復(fù)領(lǐng)域,鈍化技術(shù)是目前最廣泛使用的手段之一。鈍化技術(shù)是指往土壤中加入鈍化劑,使之與土壤重金屬形成難溶、移動性差、毒性低的物質(zhì),從而降低重金屬在土壤中的活躍性、抑制其生物有效性的一種污染土壤修復(fù)技術(shù)。選用適宜的鈍化劑是該項技術(shù)成功的關(guān)鍵[7]。在眾多鈍化土壤Cd的材料中,熟石灰(Ca(OH)2)[8]和磷酸鹽(Ca(H2PO4)2)[9]因來源廣泛、成本低廉、效果尚可,而被廣泛應(yīng)用。前者主要通過沉淀作用,后者則主要通過離子交換-吸附作用鈍化Cd。然而,由于這些傳統(tǒng)鈍化劑與Cd之間的相互作用機(jī)制較單一,結(jié)合力較弱,在不同類型和性質(zhì)的土壤修復(fù)實踐中常出現(xiàn)效率低下、穩(wěn)定性差的情況,且頻繁施用會導(dǎo)致次生危害等問題出現(xiàn)[10]。此外,在降低土壤Cd活躍性及Cd的作物吸收量之余,這2種傳統(tǒng)鈍化劑的施用能否有效降低直接經(jīng)口攝入土壤Cd所導(dǎo)致的人體健康風(fēng)險也從未見報道。研發(fā)適用面廣、與Cd結(jié)合力強(qiáng)、性價比高的新型Cd污染土壤鈍化修復(fù)劑的需求仍十分迫切。
近年來,由二價(M2+)、三價(M3+)金屬陽離子、水分子及陰離子所組成的層狀雙金屬氫氧化物(Layered Double Hydroxides,LDHs)因其獨(dú)特結(jié)構(gòu)產(chǎn)生的優(yōu)異吸附性能而備受關(guān)注。水化氯鋁酸鈣(CaAl-Cl LDH)則是一種典型的LDHs,可以工業(yè)廢棄物或天然礦物為原料簡便制得[11],是一類以環(huán)境友好、性價比高為特色的新型環(huán)保材料,能高效修復(fù)Cd污染水體[12]。CaAl-Cl LDH可通過以下機(jī)制有效降低環(huán)境中Cd的活躍性:1)表面羥基等官能團(tuán)與Cd2+形成配合物;2)環(huán)境中其他陰離子與LDH的層間陰離子進(jìn)行交換,吸附固定Cd2+于層間;3)表面部分溶解釋放Al(OH)4-、OH-和層間陰離子,與Cd2+形成沉淀物;4)Cd2+以同晶置換方式取代層板中的Ca2+而被超級穩(wěn)定地固定。在Cd污染土壤修復(fù)方面關(guān)于CaAl-Cl LDH的研究才剛剛起步,僅見關(guān)于其有效降低特定農(nóng)田土壤中Cd的有效態(tài)含量以及小麥Cd吸收量的應(yīng)用案例報道[13-14]。針對不同類型的Cd污染土壤,CaAl-Cl LDH對Cd的鈍化成效如何,能否有效降低土壤Cd直接經(jīng)口攝入所導(dǎo)致的健康風(fēng)險,與這些問題相關(guān)的機(jī)理性研究仍缺乏。
在土壤鈍化修復(fù)技術(shù)研發(fā)領(lǐng)域,效果評估是非常重要的一環(huán)[15]。中國現(xiàn)行的土壤環(huán)境質(zhì)量污染風(fēng)險管控標(biāo)準(zhǔn)均以土壤中污染物的“總量”為評判依據(jù)。但由于鈍化劑并不具備從土壤中去除污染物的能力,此評估方法并不適用于鈍化修復(fù)的場景。經(jīng)典的Tessier、F?rsiner連續(xù)提取法等土壤化學(xué)分析手段可獲得Cd等重金屬在土壤中的賦存形態(tài)信息,以各賦存形態(tài)含量及其占總Cd比例的變化為依據(jù)可對鈍化修復(fù)在降低Cd的作物吸收、生態(tài)風(fēng)險等方面的效果進(jìn)行科學(xué)預(yù)測與評估。在土壤Cd直接經(jīng)口攝入所導(dǎo)致的健康風(fēng)險方面,以Cd的生物可給性為評判依據(jù)的方式近年來得到廣泛的認(rèn)可和應(yīng)用[16]。土壤Cd的生物可給性是指土壤經(jīng)口部攝入人體后在胃腸道消化作用下,其中的Cd被溶解釋放進(jìn)入消化液中所成為的生物可給態(tài)的濃度占土壤Cd總濃度的比例,該部分代表了土壤Cd可能被人體所吸收的最大量,可作為評估鈍化修復(fù)能否有效降低土壤Cd攝入所導(dǎo)致的人體健康風(fēng)險的科學(xué)依據(jù)[16-17]。先進(jìn)的試驗是通過構(gòu)建模擬人體胃腸道消化系統(tǒng)以試驗性獲取土壤Cd的生物可給性的一種有效方法,其中PBET(Physiologically Based Extraction Test)模型[17]和IVG(Gastrointestinal)模型[18]是最為廣泛采用的主流模型。
本研究應(yīng)用傳統(tǒng)的Ca(OH)2、Ca(H2PO4)2以及新型的CaAl-Cl LDH共3種鈍化劑對紅壤、棕壤、褐土、黑土4種中國典型的Cd污染土壤進(jìn)行修復(fù),分析鈍化劑對土壤pH值、Cd的賦存形態(tài)以及Cd的生物可給性的影響,從土壤Cd的生態(tài)風(fēng)險和健康風(fēng)險角度對修復(fù)效果進(jìn)行綜合對比,并對修復(fù)機(jī)理進(jìn)行深入探究,以期為Cd污染土壤鈍化修復(fù)劑的開發(fā)、改進(jìn)和選擇提供科學(xué)依據(jù)和有價值的參考。
依據(jù)土壤分布規(guī)模、相對重要性以及Cd污染相關(guān)報道[19-22],分別于福州市鼓樓區(qū)山地、北京市懷柔區(qū)山地、南京市棲霞區(qū)山地、公主嶺市范家屯農(nóng)地采集無污染土壤樣品,類型涵蓋紅壤、棕壤、褐土、黑土。對土壤樣品進(jìn)行風(fēng)干、研磨、過10目篩的預(yù)處理,保存待用。參考相關(guān)土壤污染風(fēng)險管控標(biāo)準(zhǔn)中對于Cd的管制值(172 mg/kg)[23],采用添加Cd(NO3)2·4H2O的方式[24],將土壤樣品制備成Cd含量為180 mg/kg的污染土壤,以“極限”情形探索各修復(fù)劑鈍化Cd的潛力。保持土壤含水率為50%,在室溫環(huán)境下培養(yǎng)30 d以實現(xiàn)Cd與土壤的穩(wěn)定結(jié)合,之后再次風(fēng)干,分別過10目和100目篩。過10目篩的樣品用于土壤基本理化性質(zhì)分析以及后續(xù)鈍化修復(fù)試驗;過100目篩的樣品則用于土壤Cd含量的驗證測定、土壤Cd的賦存形態(tài)分析的Tessier連續(xù)提取試驗以及Cd的生物可給性分析的試驗。每項試驗均重復(fù)3次。
土壤基本理化性質(zhì)分析方法如下。土壤pH值采用CaCl2(土液比1:2.5)提取法[25],pH計(PHS-3C,雷磁,中國)測定。土壤有機(jī)質(zhì)質(zhì)量分?jǐn)?shù)采用水合熱K2Cr2O7-比色法[25],紫外分光光度計(UV 2006,天美,中國)測定。土壤質(zhì)地(黏粒含量)采用比重計法[25]測定。土壤陽離子交換量(CEC)采用BaCl2提取法[26],ICP-OES(Optima, 美國)測定。此外,土壤Cd含量測定時首先采用微波消解法[27],使用微波消解儀(MARS6,CEM,美國)制得土壤消解液,再使用ICP-OES(Optima, 美國)測定消解液中Cd含量。
表1為土壤基本理化性質(zhì)。
表1 土壤基本理化性質(zhì)
Ca(OH)2及Ca(H2PO4)2均購自中國醫(yī)藥集團(tuán)有限公司。CaAl-Cl LDH(化學(xué)式:Ca4Al2Cl2(OH)12)由江蘇隆昌化工有限公司生產(chǎn)合成,為二維納米狀,穩(wěn)定性良好,相對分子質(zhì)量561.33,相對密度1.89,呈堿性(20 g/L下的懸浮液pH值10.5~12.5),其中各類重金屬的含量均符合NY1110-2010的限值要求。
綜合考慮不同類型土壤間的差異,并參考相關(guān)文獻(xiàn)中修復(fù)劑的施用量[28-29]或?qū)d的最大吸附量[12],分別設(shè)置不同施用量梯度的鈍化預(yù)試驗,并輔以Tessier連續(xù)提取法分析土壤Cd的賦存形態(tài)。當(dāng)施用量更大的處理不再能夠顯著增加Cd的活性系數(shù)之時,以該施用量作為此鈍化劑的相對最優(yōu)施用量,以未添加鈍化劑為空白對照(CK),最終確定的各處理鈍化劑施用量見表2。將鈍化劑加入人工制備的4種典型Cd污染土壤中,室溫下培養(yǎng)3個月,期間用去離子水保持50%含水率,之后風(fēng)干、研磨,分別過10目及100目篩。由于土壤pH值是土壤中Cd的賦存形態(tài)及其吸附—解吸過程的重要影響因素之一[30],故將過10目篩的樣品用于土壤pH值的分析;過100目篩的樣品則用于修復(fù)效果評估的Tessier連續(xù)提取試驗以及試驗。
表2 鈍化修復(fù)處理試驗設(shè)計
1.3.1 土壤Cd的賦存形態(tài)
采用Tessier連續(xù)提取法探究土壤Cd的賦存形態(tài),包括可交換態(tài)(F1)、碳酸鹽結(jié)合態(tài)(NaOAc-HOAc提取態(tài))(F2)、鐵錳氧化物結(jié)合態(tài)(F3)、有機(jī)結(jié)合態(tài)(F4)、殘渣態(tài)(F5)。每種形態(tài)的提取液經(jīng)離心和過濾后,用ICP-OES(Optima, 美國)測定Cd含量。其中,F(xiàn)1和F2形態(tài)的Cd最為活躍,對生態(tài)環(huán)境可能造成的風(fēng)險較大,其含量之和占土壤總Cd含量的比例定義為土壤Cd的活性系數(shù)(mobility factor)[31]。通過對比施用鈍化劑處理與CK間土壤Cd的活性系數(shù)值上的差異,對各鈍化劑在降低土壤Cd的作物吸收、生態(tài)風(fēng)險方面的成效進(jìn)行評估。
1.3.2土壤Cd的生物可給性
1)試驗方法
以PBET模型[17]為基礎(chǔ),借鑒IVG模型[18]對其加以改進(jìn),可以簡便而準(zhǔn)確地模擬土壤Cd在人體最主要的消化與吸收器官——胃和小腸中的消化過程,以獲取土壤Cd在胃和小腸階段的生物可給性信息。具體試驗步驟參照文獻(xiàn)[32]。
2)Cd的生物可給性計算
在胃或小腸階段,土壤Cd的生物可給態(tài)濃度計算公式如下:
式中D為土壤Cd的生物可給態(tài)濃度,mg/kg;IV為胃或小腸階段消化液中Cd的生物可給態(tài)濃度(mg/L),即ICP-OES(Optima,美國)的測值;IV為胃或小腸階段中消化液體積(L),本試驗中用量為0.03 L;m為土壤質(zhì)量,本試驗中用量為0.000 3 kg,以保持固液比1: 100[32]。
土壤Cd的生物可給性計算公式如下:
式中BA為土壤Cd的生物可給性,%;D為土壤Cd的生物可給態(tài)濃度,mg/kg;T為土壤樣品中的Cd濃度180 mg/kg。
通過對比施用鈍化劑處理與CK間土壤Cd的生物可給性值上的差異,對各鈍化劑在降低土壤Cd的人體健康風(fēng)險方面的成效進(jìn)行評估。
采用SPSS 20.0對試驗數(shù)據(jù)進(jìn)行統(tǒng)計分析。采用Origin 9.1和Excel 2010進(jìn)行圖表制作。
鈍化修復(fù)各處理的土壤pH值如表3所示。
表3 鈍化修復(fù)各處理的土壤pH值
注:對同一類型土壤而言,不同英文字母表示鈍化修復(fù)處理間存在顯著差異(<0.05)。下同。
Note: For the same type of soil, different letters indicate significant difference between immobilization remediation treatments (<0.05). The same below.
CK處理4種土壤的pH值范圍為5.30~7.69,其中棕壤、褐土呈弱堿性,黑土呈弱酸性,紅壤呈酸性。T1處理4種土壤的pH值均因施用的Ca(OH)2呈堿性而顯著升高(<0.05)。T2處理4種土壤的pH值均因施用的Ca(H2PO4)2呈酸性而顯著降低(<0.05)。T3處理4種土壤的pH值均因施用的CaAl-Cl LDH呈堿性而顯著升高(<0.05)。由于T3處理的土壤pH值最高,而高土壤pH值有助于降低Cd的活躍性[25],所以CaAl-Cl LDH的施用更加利于Cd的鈍化固定。
鈍化修復(fù)各處理的土壤Cd賦存形態(tài)見圖1。CK處理的土壤Cd賦存形態(tài)以可交換態(tài)(F1)、碳酸鹽結(jié)合態(tài)(F2)及鐵錳氧化物結(jié)合態(tài)(F3)為主,在不同類型土壤中其含量分別占總Cd的47.47%~81.44%、7.71%~20.63%和8.25%~27.58%,且3種形態(tài)之和占總Cd的95.07%~97.41%;而有機(jī)結(jié)合態(tài)(F4)和殘渣態(tài)(F5)的含量較低,占總Cd的比例分別為0.60%~2.35%和1.99%~3.16%。
相對于對照處理,T1處理中Cd的可交換態(tài)(F1)極顯著降低(<0.01),降幅為52.2%~68.3%,平均降幅為62.3%;碳酸鹽結(jié)合態(tài)(F2)極顯著升高(<0.01),增加了1.14~4.50倍,平均增加了2.06倍;而其余3種賦存形態(tài)與CK無顯著差異(>0.05)。Ca(OH)2的部分OH-與土壤中的CO2發(fā)生反應(yīng)生成CO32-,致使Cd以碳酸鹽的形式沉淀[33],將土壤中可交換態(tài)Cd(F1)轉(zhuǎn)化為碳酸鹽結(jié)合態(tài)(F2)。
注:F1~F5分別表示可交換態(tài)Cd、碳酸鹽結(jié)合態(tài)Cd、鐵錳氧化物結(jié)合態(tài)Cd、有機(jī)結(jié)合態(tài)Cd以及殘渣態(tài)Cd。
相對于對照處理,T2處理的Cd的可交換態(tài)(F1)顯著降低(<0.05),降幅為43.6%~94.6%,平均降幅為64.4%;碳酸鹽結(jié)合態(tài)(F2)極顯著降低(<0.01),降幅為19.8%~48.4%,平均降幅為28.2%;鐵錳氧化物結(jié)合態(tài)(F3)與CK無顯著差異(>0.05);有機(jī)結(jié)合態(tài)(F4)極顯著升高(<0.01),增加了7.68~43.3倍,平均增加了17.5倍;殘渣態(tài)(F5)極顯著升高(<0.01),增加了0.84~1.15倍,平均增加了1.00倍。Ca(H2PO4)2可將土壤中可交換態(tài)(F1)和碳酸鹽結(jié)合態(tài)(F2)Cd轉(zhuǎn)化為有機(jī)結(jié)合態(tài)(F4)及殘渣態(tài)(F5),該現(xiàn)象與付煜恒等[9]的研究結(jié)果一致,原因是磷酸二氫根與土壤腐殖質(zhì)膠體中的羥基、酚羥基以及層狀鋁硅酸鹽粘土礦物邊緣暴露的鋁醇、硅烷醇等基團(tuán)發(fā)生交換,進(jìn)而誘導(dǎo)Cd的吸附[34];此外,還與磷酸鹽溶解后與Cd反應(yīng)形成難溶性Cd3(PO4)2沉淀等有關(guān)。
相對于對照處理,T3處理的Cd的可交換態(tài)(F1)極顯著降低(<0.01),降幅為77.9%~89.3%,平均降幅為83.9%;碳酸鹽結(jié)合態(tài)(F2)極顯著升高(<0.01),增加了1.20~4.66倍,平均增加了2.20倍;鐵錳氧化物結(jié)合態(tài)(F3)顯著升高(<0.05),增加了0.27~3.50倍,平均增加了1.38倍;其余2種賦存形態(tài)與CK無顯著差異(>0.05)。CaAl-Cl LDH可將土壤中可交換態(tài)Cd(F1)轉(zhuǎn)化為碳酸鹽結(jié)合態(tài)(F2)和鐵錳氧化物結(jié)合態(tài)(F3)。這是由于CaAl-Cl LDH添加后導(dǎo)致土壤pH值升高,一方面部分OH-與土壤中的CO2反應(yīng)生成CO32-,促進(jìn)Cd的碳酸鹽沉淀(F2)形成;另一方面土壤中H+濃度的下降減弱了Cd2+與H+之間的競爭吸附,從而促進(jìn)了鐵錳氧化物對Cd2+的吸附固定(F3)[13,35]。此外,CaAl-Cl LDH還可通過表面配位、層間陰離子交換-吸附、溶解-沉淀、同晶置換等[12-13]多種作用鈍化土壤Cd,該部分Cd均可能被Tessier連續(xù)提取試驗使用的特定提取試劑釋放溶出,進(jìn)而被識別為碳酸鹽結(jié)合態(tài)(F2)和鐵錳氧化物結(jié)合態(tài)(F3)。例如,CaAl-Cl LDH表面的去質(zhì)子化羥基可通過靜電吸附作用與Cd2+形成外軌配合物,其表面部分溶解釋放的OH-還可與Cd2+形成Cd(OH)2沉淀。這些通過“表面配位作用”及“溶解-沉淀作用”鈍化的Cd在酸性環(huán)境中可因為H+對Cd2+的競爭吸附以及對Cd(OH)2的溶解作用被釋放溶出。Tessier連續(xù)提取法提取碳酸鹽結(jié)合態(tài)(F2)和鐵錳氧化物結(jié)合態(tài)(F3)Cd時,使用的試劑分別為用HOAc調(diào)至pH=5的NaOAc溶液以及NH3OHCl的25%(V/V)的HOAc溶液,均為酸性。另外,土壤中的CO32-等陰離子也可通過與CaAl-Cl LDH層間的Cl-進(jìn)行交換[12],吸附土壤中的Cd2+,并將其固定在層間。由于CaAl-Cl LDH在酸性環(huán)境中會部分溶解[36],故通過“層間陰離子交換-吸附作用”而鈍化的Cd也可被F2和F3形態(tài)的提取試劑部分溶出,被識別為相應(yīng)的賦存形態(tài)。同理,通過“同晶置換作用”[14]鈍化的Cd亦可能被識別為碳酸鹽結(jié)合態(tài)(F2)和鐵錳氧化物結(jié)合態(tài)(F3)。
鈍化修復(fù)各處理的土壤Cd活性系數(shù)見表4。T1、T2、T3處理4種土壤中Cd的活性系數(shù)均顯著低于CK(<0.05),3個處理的降幅分別為2.81%~27.2%、38.9%~90.6%和12.7%~48.2%,平均降幅分別為16.1%、56.9%和29.2%。可見,Ca(OH)2、Ca(H2PO4)2和CaAl-Cl LDH均可有效降低土壤中最活躍的可交換態(tài)(F1)和碳酸鹽結(jié)合態(tài)(F2)Cd的含量,進(jìn)而降低土壤Cd的作物吸收量及Cd對周邊生態(tài)環(huán)境的風(fēng)險。
表4 鈍化修復(fù)各處理的土壤Cd活性系數(shù)
鈍化修復(fù)各處理的土壤Cd在胃、小腸階段的生物可給性見圖2。
圖2 鈍化修復(fù)各處理的土壤Cd在胃和小腸階段的生物可給性
施用Ca(OH)2的T1處理中,僅紅壤和黑土Cd在胃階段的生物可給性與CK相比顯著降低(<0.05)。其中,紅壤的降幅為19.4%,黑土為1.93%。此外,T1處理除棕壤外,其他土壤中的Cd在小腸階段的生物可給性與CK相比均顯著降低(<0.05)。其中,紅壤的降幅為11.4%,褐土為4.28%,黑土為6.30%。
施用Ca(H2PO4)2的T2處理僅紅壤中的Cd在胃階段的生物可給性與CK相比顯著降低(<0.05),降幅為38.6%。此外,T2處理僅紅壤和褐土中的Cd在小腸階段的生物可給性與CK相比顯著降低(<0.05),其中,紅壤的降幅為40.2%,褐土為8.30%。
施用CaAl-Cl LDH的T3處理4種土壤中的Cd在胃階段的生物可給性與CK相比均顯著降低(<0.05)。其中,紅壤的降幅為34.6%,棕壤為11.8%,褐土為16.6%,黑土為13.8%,平均降幅為19.2%。此外,T3處理4種土壤中的Cd在小腸階段的生物可給性與CK相比亦均顯著降低(<0.05)。其中,紅壤的降幅為35.9%,棕壤為27.9%,褐土為33.8%,黑土為34.4%,平均降幅為33.0%。
綜上所述,Ca(OH)2和Ca(H2PO4)2這2種傳統(tǒng)的鈍化劑僅對部分類型土壤中的Cd在胃腸道的生物可給性有降低作用,而CaAl-Cl LDH對4種土壤中的Cd在胃、小腸階段的生物可給性均有顯著降低作用。施用CaAl-Cl LDH后,土壤Cd在胃階段生物可給性的平均降幅分別是施用Ca(OH)2和Ca(H2PO4)2處理的3.11和1.99倍,小腸階段則分別是施用Ca(OH)2和Ca(H2PO4)2處理的5.99和2.72倍。CaAl-Cl LDH能夠更為有效地降低直接經(jīng)口攝入的土壤Cd在人體較劇烈的胃腸道消化環(huán)境中表現(xiàn)出的生物可給性以及Cd對人體的健康風(fēng)險。此外,由于CaAl-Cl LDH對Cd的鈍化機(jī)理多樣,尤其包括同晶置換等超級穩(wěn)定的礦化作用,在對抗自然環(huán)境的影響以實現(xiàn)修復(fù)長效穩(wěn)定方面亦是有保障的,具備實地應(yīng)用推廣的潛力[14]。
針對中國紅壤、棕壤、褐土、黑土等4種典型的Cd污染土壤進(jìn)行鈍化修復(fù)試驗,在Ca(OH)2、Ca(H2PO4)2和CaAl-Cl LDH各自相對最優(yōu)施用量下,3種鈍化劑均可顯著降低土壤Cd的活性系數(shù),平均降幅分別為16.1%、56.9%和29.2%,可降低土壤Cd的作物吸收量及Cd對周邊生態(tài)環(huán)境的風(fēng)險。而與Ca(OH)2和Ca(H2PO4)2相比,施用CaAl-Cl LDH能更為有效地降低土壤Cd在胃和小腸階段的生物可給性及Cd對人體的健康風(fēng)險,胃階段的平均降幅分別是施用Ca(OH)2和Ca(H2PO4)2的3.11和1.99倍,而小腸階段則是5.99和2.72倍,具有進(jìn)一步優(yōu)化完善以實踐推廣的潛力。相關(guān)結(jié)果為Cd污染土壤鈍化修復(fù)劑技術(shù)的開發(fā)、改進(jìn)和選擇提供了科學(xué)依據(jù)和重要參考。
[1] Yuan X, Xue N, Han Z. A meta-analysis of heavy metals pollution in farmland and urban soils in China over the past 20 years[J]. Journal of Environmental Sciences, 2021, 101(3): 217-226.
[2] 李武艷,朱從謀,和雪瀅,等. 經(jīng)濟(jì)發(fā)達(dá)地區(qū)耕地景觀格局對土壤重金屬污染風(fēng)險的影響分析[J]. 農(nóng)業(yè)工程學(xué)報,2021,37(16): 233-241.
Li Wuyan, Zhu Congmou, He Xueying, et al. Impacts of cultivated land landscape patterns on the risk of soil heavy metal pollution in economically developed areas[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE), 2021, 37(16): 233-241. (in Chinese with English abstract)
[3] 孫麗娟,秦秦,宋科,等. 鎘污染農(nóng)田土壤修復(fù)技術(shù)及安全利用方法研究進(jìn)展[J]. 生態(tài)環(huán)境學(xué)報,2018,27(7):1377-1386.
Sun Lijuan, Qin Qin, Song Ke, et al. The remediation and safety utilization techniques for Cd contaminated farmland soil: A review[J]. Ecology and Environmental Sciences, 2018, 27(7): 1377-1386. (in Chinese with English abstract)
[4] 尹仁文,陳正行,李娟,等. 米渣蛋白對鎘的吸附效果及其對土壤中鎘的鈍化作用研究[J]. 農(nóng)業(yè)工程學(xué)報,2019,35(2):221-228.
Yin Renwen, Chen Zhengxing, Li Juan, et al. Adsorption of cadmium in aqueous solution and passivation of cadmium in soil by rice dreg protein[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE), 2019, 35(2): 221-228. (in Chinese with English abstract)
[5] Alengebawy A, Abdelkhalek S T, Qureshi S R, et al. Heavy metals and pesticides toxicity in agricultural soil and plants: Ecological risks and human health implications[J]. Toxics, 2021, 9(3): 42.
[6] Ma J, Li Y, Liu Y, et al. Effects of soil particle size on metal bioaccessibility and health risk assessment[J]. Ecotoxicology and Environmental Safety, 2019, 186: 109748.
[7] Dhaliwal S S, Singh J, Taneja P K, et al. Remediation techniques for removal of heavy metals from the soil contaminated through different sources: A review[J]. Environmental Science and Pollution Research, 2020, 27(2): 1319-1333.
[8] Zeng T, Khaliq M A, Li H, et al. Assessment of Cd availability in rice cultivation (Oryza sativa): Effects of amendments and the spatiotemporal chemical changes in the rhizosphere and bulk soil[J]. Ecotoxicology and Environmental Safety, 2020, 196: 110490.
[9] 付煜恒,張惠靈,王宇,等. 磷酸鹽對鉛鎘復(fù)合污染土壤的鈍化修復(fù)研究[J]. 環(huán)境工程,2017,35(9):176-180.
Fu Yuheng, Zhang Huiling, Wang Yu, et al. Immobilization of soil contaminated by lead and cadmium using phosphate[J]. Environmental Engineering, 2017, 35(9): 176-180. (in Chinese with English abstract)
[10] 史磊,郭朝暉,彭馳,等. 石灰組配土壤改良劑抑制污染農(nóng)田水稻鎘吸收[J]. 農(nóng)業(yè)工程學(xué)報,2018,34(11): 209-216.
Shi Lei, Guo Zhaohui, Peng Chi, et al. Lime based amendments inhibiting uptake of cadmium in rice planted in contaminated soils[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE), 2018, 34(11): 209-216. (in Chinese with English abstract)
[11] 江蘇隆昌化工有限公司. 一種氯化銨資源化綜合利用方法:中國,201310355352.4[P]. 2013-12-11.
[12] Zhang J J, Hao H, Cao H B, et al. Removal of Cd2+from water by Friedel's salt (FS: 3CaO·A12O3·CaCl2·10H2O): Sorption characteristics and mechanisms[J]. Journal of Environmental Sciences, 2013, 25(9): 1719-1725.
[13] 吳秋梅,劉剛,王慧峰,等. 水鋁鈣石對不同鎘污染農(nóng)田重金屬的鈍化效果及機(jī)制[J]. 環(huán)境科學(xué),2019,40(12):352-361.
Wu Qiumei, Liu Gang, Wang Huifeng, et al. Hydrocalumite passivation effect and mechanism on heavy metals in different Cd-contaminated farmland soils[J]. Environmental Science, 2019, 40(12): 352-361. (in Chinese with English abstract)
[14] Kong X, Ge R, Liu T, et al. Super-stable mineralization of cadmium by calcium-aluminum layered double hydroxide and its large-scale application in agriculture soil remediation[J]. Chemical Engineering Journal, 2021, 407: 127178.
[15] 閆淑蘭,趙秀紅,羅啟仕. 基于文獻(xiàn)計量的重金屬固化穩(wěn)定化修復(fù)技術(shù)發(fā)展動態(tài)研究[J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報,2020,39(2):229-238.
Yan Shulan, Zhao Xiuhong, Luo Qishi. Bibliometrics-based development trends of solidification/stabilization technology for the remediation of sites contaminated by heavy metals[J]. Journal of Agro?Environment Science, 2020, 39(2): 229-238. (in Chinese with English abstract)
[16] Khan K Y, Ali B, Stoffella P J, et al. Bioavailability and bioaccessibility of Cd in low and high Cd uptake affinity cultivars ofssp.L. (pakchoi) using angastrointestinal and physiologically-based extraction test[J]. Communications in Soil Science and Plant Analysis, 2020, 51(1/4): 28-37.
[17] Ruby M V, Davis A, Kempton J H, et al. Lead bioavailability: Dissolution kinetics under simulated gastric conditions[J]. Environmental Science and Technology, 1992, 26(6): 1242-1248.
[18] Rodriguez R R, Basta N T, Casteel S W, et al. Angastrointestinal method To estimate bioavailable arsenic in contaminated soils and solid media[J].Environmental Science and Technology. 1999, 33: 642-649.
[19] 滕英,陳金鳳,張宇豪,等. 福建省東部代表性區(qū)域農(nóng)用地鎘污染狀況調(diào)查及風(fēng)險評價[J]. 福建農(nóng)業(yè)科技,2021,52(11): 80-86.
Teng Ying, Chen Jinfeng, Zhang Yuhao, et al. Investigation and risk assessment of cadmium pollution in agricultural lands in the representative regions of eastern Fujian[J]. Fujian Agricultural Science and Technology, 2021, 52(11): 80-86. (in Chinese with English abstract)
[20] Li S, Sun H, Li H, et al. Assessment of cadmium bioaccessibility to predict its bioavailability in contaminated soils[J]. Environment International, 2016, 94: 600-606.
[21] Liu X, Tian G, Jiang D, et al. Cadmium (Cd) distribution and contamination in Chinese paddy soils on national scale[J]. Environmental Science and Pollution Research, 2016, 23(18): 17941-17952.
[22] Xiao G, Hu Y, Li N, et al. Spatial autocorrelation analysis of monitoring data of heavy metals in rice in China[J]. Food Control, 2018, 89: 32-37.
[23] 生態(tài)環(huán)境部. 土壤環(huán)境質(zhì)量建設(shè)用地土壤污染風(fēng)險管控標(biāo)準(zhǔn):GB36600-2018[S]. 北京:中國環(huán)境出版集團(tuán),2019.
[24] 劉蕾,王淑晴,黃子玲,等. 生物炭聯(lián)合黑麥草修復(fù)鎘污染土壤研究[J]. 河南工程學(xué)院學(xué)報(自然科學(xué)版),2021,33(1):43-47,53.
Liu Lei, Wang Shuqing, Huang Ziling, et al. Remediation of cadmium contaminated soil based on biochar combined with ryegrass[J]. Journal of Henan University of Engineering (Natural Science Edition), 2021, 33(1): 43-47, 53. (in Chinese with English abstract)
[25] 魯如坤. 土壤農(nóng)業(yè)化學(xué)分析方法[M]. 北京:中國農(nóng)業(yè)科技出版社,2000.
[26] 陳曉晨,黃振佳,陳雨晴,等. 基于試驗的中國典型土壤中砷的健康風(fēng)險及影響因素[J]. 土壤學(xué)報,2022,59(1): 172-182.
Chen Xiaochen, Huang Zhenjia, Chen Yuqing, et al.test-based study on health risks of arsenic in typical soils of China and their influencing factors[J]. Acta Pedologica Sinica, 2022, 59(1): 172-182. (in Chinese with English abstract)
[27] 環(huán)境保護(hù)部. 土壤和沉積物12種金屬元素的測定王水提取-電感耦合等離子體質(zhì)譜法:HJ 803-2016[S]. 北京:中國環(huán)境科學(xué)出版社,2016.
[28] 閆家普,丁效東,崔良,等. 不同改良劑及其組合對土壤鎘形態(tài)和理化性質(zhì)的影響[J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報,2018,37(9):1842-1849.
Yan Jiapu, Ding Xiaodong, Cui Liang, et al. Effects of several modifiers and their combined application on cadmium forms and physicochemical proper-ties of soil[J]. Journal of Agro-Environment Science, 2018, 37(9): 1842-1849. (in Chinese with English abstract)
[29] 蘇金成,王小兵,汪曉麗,等. 不同鈍化劑對鎘污染黃壤和棕壤的鈍化效果[J]. 江蘇農(nóng)業(yè)科學(xué),2021,49(3):192-197.
Su Jincheng, Wang Xiaobing, Wang Xiaoli, et al. Passivation effects of different passivators on cadmium contaminated yellow soil and brown soil[J]. Jiangsu Agricultural Sciences, 2021, 49(3): 192-197. (in Chinese with English abstract)
[30] 陳曉晨,黃藝佳,趙桐,等. 中國典型土壤中鎘的生物可給性影響因素研究及其健康風(fēng)險評估[J]. 環(huán)境化學(xué),2021,40(10):3015-3023.
Chen Xiaochen, Huang Yijia, Zhao Tong, et al. Influencing factors of Cd bioaccessibility in China’s representative soils and the human health risk assessment[J]. Environmental Chemistry, 2021, 40(10): 3015-3023. (in Chinese with English abstract)
[31] Taghlidabad R H, Sepehr E. Heavy metals immobilization in contaminated soil by grape-pruning-residue biochar[J]. Archives of Agronomy and Soil Science, 2017: 1-12.
[32] 陳曉晨,堯聰聰,趙桐,等. 水化氯鋁酸鈣對土壤鉻的鈍化修復(fù)及風(fēng)險評估[J]. 中國環(huán)境科學(xué),2021,41(4):1790-1798.
Chen Xiaochen, Yao Congcong, Zhao Tong, et al. Immobilization remediation of Cr-contaminated soils by hydrocalumite and the relevant risk assessment[J]. China Environmental Science, 2021, 41(4): 1790-1798. (in Chinese with English abstract)
[33] He L, Huang D, Zhang Q, et al. Meta-analysis of the effects of liming on soil pH and cadmium accumulation in crops[J]. Ecotoxicology and Environmental Safety, 2021, 223: 112621.
[34] 李玉嬌,楊志敏,陳玉成,等. 納米磁性磷酸二氫鈣對Cd的吸附、回收與再生[J]. 環(huán)境科學(xué),2019,40(4): 1849-1856.
Li Yujiao, Yang Zhimin, Chen Yucheng, et al. Adsorption, reclaim, and regeneration of Cd by magnetic calcium dihydrogen phosphate nanoparticles[J]. Environmental Science, 2019, 40(4): 1849-1856. (in Chinese with English abstract)
[35] 朱德強(qiáng),梁成華,杜立宇,等. 含方解石物質(zhì)對土壤鎘賦存形態(tài)的影響[J]. 水土保持學(xué)報,2016,30(1):326-330.
Zhu Deqiang, Liang Chenghua, Du Liyu, et al. Effects of substances containing calcite on cadmium speciation in contaminated soil[J]. Journal of Soil and Water Conservation, 2016, 30(1): 326-330. (in Chinese with English abstract)
[36] He X, Qiu X, Hu C, et al. Treatment of heavy metal ions in wastewater using layered double hydroxides: A review[J]. Journal of Dispersion Science and Technology, 2017, 39(6): 792-801.
Comparative study between CaAl-Cl LDH and conventional immobilizing agents for reducing ecological and health risks of soil Cd
Chen Xiaochen1, Huang Yijia1,2, Zhao Tong1, Zhang Fuxiang1, Zhao Qi1, Chen Yuxi1, Zhang Jianyu3, Zhang Xuchuan4, Xiao Yanchun5, Yang Guifang6※
(1.,,,350108,; 2.,,363000,; 3..,.,226532,; 4.().,.,226532,; 5.,,350003,; 6.,,,350108,)
SoilCadmium (Cd) has posed a great threat to ecological security and human health in recent years. The exposure under the direct oral ingestion of contaminated soils has been the main contributor of Cd to the human body. The immobilization is an advisable technology to reduce the activity and bioavailability of Cd for the remediation of the Cd-contaminated soil. However, several challenges still remain for conventional immobilizing agents, such as the limited and weak immobilization mechanism, low efficiency and stability. Fortunately, layered double hydroxides (LDHs) can be a new promising type of functional material with great adsorption capability on heavy metals. But, only a few studies were focused on the application of soil remediation, regardless of the potential application to the health risk of soil Cd. In this comparative study, two conventional immobilizing agents (Ca(OH)2and Ca(H2PO4)2) and one promising LDH (hydrocalumite, CaAl-Cl LDH) were used to remediate the soils with Cd contamination. Four typical soils (red soil, brown soil, cinnamon soil, and black soil) were collected from the cities of Fuzhou, Beijing, Nanjing, and Gongzhuling in China, and then artificially contaminated to the Cd concentration of 180 mg/kg. Subsequently, the three immobilizing agents were applied on the land under the pre-determined optimal patterns. Specifically, the mass ratios of Cd to the immobilizing agent were 1:100, 1:500, and 1:1 000, respectively. A comprehensive analysis was also made to determine the effects on the specific soil physicochemical property (soil pH), Cd fractionation (ecological risk), and oral bioaccessibility of soil Cd (health risk) after three-month immobilization. The relevant mechanisms were further explored. Note that there was no evaluation of the health risk of soil Cd using the total concentration of Cd in the soil, due to the overestimation. Furthermore, the Cd bioaccessibility was utilized from the advancedtest, where a PBET model was modified referring to the IVG model. An accurate simulation was then achieved in the digestion processes in the human gastrointestinal tract. Results showed that the soil pH increased greatly after the CaAl-Cl LDH remediation, further facilitating the Cd immobilization. In terms of Cd fractionation in soil, the Ca(OH)2, Ca(H2PO4)2, and CaAl-Cl LDH all significantly reduced the mobility factor of soil Cd (i.e., the proportion of exchangeable and carbonates-bound Cd fractions to the total Cd), with an average decrease of 16.1%, 56.9%, and 29.2%, respectively. As such, better capabilities were obtained to reduce the crop uptake of soil Cd and the ecological risk to the ambient environment. More importantly, the CaAl-Cl LDH more effectively reduced the oral bioaccessibility and the health risk of soil Cd, compared with the rest. The average decrease was 19.2% in the gastric phase, which was 3.11 and 1.99 times those of Ca(OH)2and Ca(H2PO4)2, respectively. Besides, the decrease was 33.0% in the small intestinal phase, which was 5.99 and 2.72 times those of the conventional. A series of mechanisms were also proposed for the Cd immobilization, including surface complexation, interlayer anion exchange-adsorption, dissolution-precipitation, and isomorphous substitution. Therefore, the CaAl-Cl LDH demonstrated great potential to immobilize the soil Cd in a super-stable manner. It is also highly expected for wide application in real cases. Anyway, the finding can provide a scientific basis and valuable reference for the development, improvement, and selection of the immobilization agents/technologies, in order to better remediate the Cd-contaminated soils.
soils; pollution; remediation; Cd; layered double hydroxide; fractionation; bioaccessibility
10.11975/j.issn.1002-6819.2022.19.024
X53
A
1002-6819(2022)-19-0219-08
陳曉晨,黃藝佳,趙桐,等. 水化氯鋁酸鈣與傳統(tǒng)鈍化劑降低土壤鎘生態(tài)及健康風(fēng)險的對比研究[J]. 農(nóng)業(yè)工程學(xué)報,2022,38(19):219-226.doi:10.11975/j.issn.1002-6819.2022.19.024 http://www.tcsae.org
Chen Xiaochen, Huang Yijia, Zhao Tong, et al. Comparative study between CaAl-Cl LDH and conventional immobilizing agents for reducing ecological and health risks of soil Cd[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(19): 219-226. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2022.19.024 http://www.tcsae.org
2022-08-15
2022-09-30
國家自然科學(xué)基金項目(41807116);福建省自然科學(xué)基金項目(2019J05035);大學(xué)生創(chuàng)新創(chuàng)業(yè)訓(xùn)練計劃項目(28148;S202010386067);福建省農(nóng)科院對外合作項目(DWHZ-2022-17)
陳曉晨,博士,副教授,研究方向為土壤污染風(fēng)險評價與修復(fù)技術(shù)。Email:chenxiaochen@fzu.edu.cn
楊桂芳,博士,研究方向為新型環(huán)境修復(fù)材料。Email:396550322@qq.com