劉 俊,張世文,2※,宋桂芳,王 陽(yáng),祝亞飛,魯勝軍,蘭 淼,夏沙沙
復(fù)墾土壤細(xì)菌群落結(jié)構(gòu)及其與土壤肥力的關(guān)系
劉 俊1,張世文1,2※,宋桂芳1,王 陽(yáng)1,祝亞飛1,魯勝軍1,蘭 淼1,夏沙沙1
(1. 安徽理工大學(xué)地球與環(huán)境學(xué)院,淮南 232001;2. 安徽省高潛水位礦區(qū)水土資源綜合利用與生態(tài)保護(hù)工程實(shí)驗(yàn)室,淮南 232001)
為了解兩淮煤礦區(qū)復(fù)墾狀況及其對(duì)土壤微生物的影響機(jī)制,合理人工干預(yù),快速有效提高復(fù)墾土壤生產(chǎn)力,本研究以煤矸石充填復(fù)墾土壤為研究對(duì)象,通過(guò)野外調(diào)查與采樣分析,采用Illumina MiSeq 高通量測(cè)序分析土壤細(xì)菌特定基因片段V4 區(qū)域,基于非度量多維尺度分析、冗余分析、方差分析、肥力指數(shù)、回歸模型方法,對(duì)矸石充填土壤不同復(fù)墾方向的土壤細(xì)菌優(yōu)勢(shì)群落和生物多樣性進(jìn)行了探索,明晰土壤細(xì)菌群落及其與土壤肥力的響應(yīng)作用。研究結(jié)果表明:細(xì)菌群落組成上,不同復(fù)墾方向?qū)?xì)菌優(yōu)勢(shì)群落分布并無(wú)顯著性影響,變形菌門、酸桿菌門和放線菌門菌群為主要優(yōu)勢(shì)菌群。土壤微生物多樣性層面上,表層土壤微生物有較高的豐富度和多樣性,均勻度并無(wú)顯著性差異。微生物多樣性在不同復(fù)墾方向不存在顯著性差異,Shannon_Wiener指數(shù)介于6.19~6.85之間,Chao1指數(shù)為3131.97~4938.37,Pielou指數(shù)介于0.79~0.84之間,表中層同深層土壤的細(xì)菌群落結(jié)構(gòu)具有差異性。TN、SOM、AP和AK是影響土壤細(xì)菌群落的主要肥力因子,土壤肥力質(zhì)量指數(shù)與奇古菌門相對(duì)豐度呈顯著正相關(guān)(<0.01),同鏈霉菌屬呈顯著負(fù)相關(guān)(<0.05),在一定程度上可將二者的相對(duì)豐度作為評(píng)價(jià)復(fù)墾土壤肥力狀況的重要生物指標(biāo)。研究成果可為兩淮礦區(qū)矸石充填復(fù)墾土壤在微生物層面提高肥力質(zhì)量提供理論支持。
復(fù)墾;細(xì)菌;高通量測(cè)序;群落結(jié)構(gòu);土壤肥力
兩淮礦區(qū)作為中東部重要的能源基地,礦產(chǎn)資源開(kāi)采導(dǎo)致了一系列的礦區(qū)土地生態(tài)環(huán)境問(wèn)題,對(duì)此需要采取人工和生態(tài)措施等合理有效措施對(duì)礦區(qū)采煤塌陷破壞耕地進(jìn)行修復(fù),優(yōu)化礦區(qū)生態(tài)環(huán)境。煤矸石充填復(fù)墾不僅能恢復(fù)采煤沉陷區(qū)的土地資源,而且能處理消化煤矸石,經(jīng)濟(jì)環(huán)境效益顯著[1]。然而由于充填導(dǎo)致的復(fù)墾土壤與原始土壤的理化性質(zhì)差別較大,使得土壤微生物的生長(zhǎng)環(huán)境發(fā)生巨大的變化,導(dǎo)致土壤肥力發(fā)生明顯變化。土壤微生物作為土壤環(huán)境中最重要的組成部分,容易受環(huán)境影響[2],當(dāng)土壤環(huán)境發(fā)生變化時(shí),土壤微生物能迅速做出反應(yīng),其群落結(jié)構(gòu)發(fā)生變化,對(duì)土壤肥力變化具有重要指示作用。土壤細(xì)菌參與土壤養(yǎng)分的轉(zhuǎn)化[3],在土壤微生物中占絕對(duì)優(yōu)勢(shì),對(duì)礦區(qū)生態(tài)復(fù)墾起到重要的作 用[4]。因此,土壤微生物可以用來(lái)衡量復(fù)墾土壤肥力質(zhì)量,監(jiān)測(cè)礦區(qū)土壤環(huán)境變化[5-6]。
目前,高通量測(cè)序技術(shù)因其能夠充分揭示微生物群落優(yōu)勢(shì)菌群的分布情況,同時(shí)還能發(fā)現(xiàn)土壤微生物的群落結(jié)構(gòu)特征及多樣性變化[7],而在土壤微生物的研究領(lǐng)域中應(yīng)用廣泛。王繼玥等[8]利用宏基因組學(xué)測(cè)序技術(shù),測(cè)定了不同Pb濃度梯度下三葉草根際土壤中的細(xì)菌群落結(jié)構(gòu),發(fā)現(xiàn)1菌群是具有Pb污染抗性的優(yōu)勢(shì)菌群。侯湖平等[9]采用 Illumina PE250 測(cè)序方法測(cè)定微生物群落組分,對(duì)比分析發(fā)現(xiàn)復(fù)墾土壤在各個(gè)分類水平的細(xì)菌種類數(shù)量減少,群落多樣性降低。王瑾等[10]利用454高通量測(cè)序技術(shù),發(fā)現(xiàn)土壤細(xì)菌群落對(duì)不同復(fù)墾區(qū)域的采煤沉陷復(fù)墾土壤響應(yīng)大同小異。Li等[11]研究了黃土高原西北部露天煤礦復(fù)墾土壤微生物相對(duì)豐度和多樣性,揭示了細(xì)菌等微生物群落演替對(duì)于不同復(fù)墾方案的響應(yīng)敏感程度存在顯著差異。由此可見(jiàn),土壤細(xì)菌群落在衡量土壤質(zhì)量方面發(fā)揮著重要作用。
綜上,當(dāng)前研究主要集中于土壤細(xì)菌及其群落結(jié)構(gòu)等方面,土壤肥力指數(shù)作為各項(xiàng)土壤理化性質(zhì)的綜合反映,與土壤微生物的響應(yīng)關(guān)系研究較少。因此,本文以兩淮礦區(qū)采煤沉陷復(fù)墾土壤為研究對(duì)象,結(jié)合Illumina Nova 6000 平臺(tái)對(duì)構(gòu)建的擴(kuò)增子文庫(kù)進(jìn)行PE250測(cè)序,分析土壤細(xì)菌特定基因片段V4區(qū)域,研究矸石充填復(fù)墾土壤在不同復(fù)墾方向的細(xì)菌群落結(jié)構(gòu)及生物多樣性,并基于土壤肥力評(píng)價(jià)結(jié)果,探討土壤細(xì)菌群落同土壤肥力指數(shù)之間的關(guān)系,旨在探尋細(xì)菌群落對(duì)土壤肥力的響應(yīng)作用。研究成果可為兩淮礦區(qū)在微生物層面提高復(fù)墾土壤生產(chǎn)力提供理論依據(jù)。
研究區(qū)域位于安徽省兩淮采煤塌陷區(qū),屬暖溫帶半濕潤(rùn)季風(fēng)氣候,是中國(guó)重要的煤炭生產(chǎn)基地之一。煤炭開(kāi)采帶來(lái)的地面沉降、地表裂縫及熔巖塌陷等現(xiàn)象,對(duì)土壤造成了嚴(yán)重?fù)p傷?;趦苫吹V區(qū)實(shí)際情況,采取了煤矸石充填復(fù)墾模式,以此緩解塌陷帶來(lái)的各種影響。復(fù)墾工藝為:首先用推土機(jī)將原地表土推至工作面,然后填充矸石,用振動(dòng)碾壓機(jī)進(jìn)行振動(dòng)碾壓,再用推土機(jī)將堆放的地表土覆蓋矸石[12]。煤矸石充填至標(biāo)高 +13.40 m,再覆土60 cm左右,農(nóng)田平均標(biāo)高為+14.00 m,復(fù)墾年限為15a、復(fù)墾面積 23 hm2,土壤pH整體呈弱堿性。覆土層土壤質(zhì)地為砂質(zhì)黏壤土,煤矸石質(zhì)地為砂壤土,顆粒間差異較大,化學(xué)成分以SiO2為主,土壤孔隙較小。在分層回填過(guò)程中,為保證回填土地的保水性能,將粒徑大的矸石回填到塌陷區(qū)的底部,然后依次回填小粒徑矸石,在將矸石倒入塌陷坑的同時(shí),人工將黃土鏟入矸石中混合。復(fù)墾區(qū)主要分為三種復(fù)墾方向:一是復(fù)墾為草地,主要種植大濱菊草本植物;二是復(fù)墾為耕地,常年采取小麥-玉米輪作模式;三是復(fù)墾為林地,主要種植池杉等杉科、落羽杉屬植物。本研究在復(fù)墾區(qū) 內(nèi)主要選取草地、耕地和林地3種不同復(fù)墾方向土壤 進(jìn)行分析,分別記為C、G和L,具體情況和布置見(jiàn) 圖1。
圖1 研究區(qū)試驗(yàn)布置與樣點(diǎn)圖
土樣采集時(shí)間為 2019 年6月,采取五點(diǎn)采樣法,進(jìn)行3次重復(fù)采樣,按照S型選取5個(gè)采樣點(diǎn)。用土鉆按照表層(0~20 cm)、中層(20~40 cm)、深層(40~60 cm)進(jìn)行土壤分層取樣(分別標(biāo)為1、2、3),取5點(diǎn)混合由此形成1個(gè)樣品。去除石頭、植物殘留物、動(dòng)物和其他雜物后將其分為兩份,一部分土壤樣品在-80℃的環(huán)境中冷凍保存,用于高通量測(cè)序;另一部分則置于陰涼、通風(fēng)且無(wú)陽(yáng)光直射的房間內(nèi),將樣品倒在鋪墊有牛皮紙的風(fēng)干盤中,攤成2~3 cm的薄層,并將樣品標(biāo)簽粘貼在牛皮紙上。當(dāng)土壤樣品半干時(shí),用磨土棍將大土塊碾碎,以免完全風(fēng)干后結(jié)成硬塊,難以磨細(xì)。樣品風(fēng)干后,按四分法棄去多余部分,保留300 g左右。依據(jù)肥力指標(biāo)測(cè)定需求,分別過(guò)2、0.85、0.15 mm篩子,將過(guò)完篩子的土樣分別裝袋保存,貼標(biāo)簽、編號(hào)并盡快進(jìn)行測(cè)定。
參照《土壤農(nóng)化分析》[13],土壤有機(jī)質(zhì)(Soil Organic Matter,SOM)含量采用重鉻酸鉀容量法-外加熱法測(cè)定;對(duì)于全氮(Tonal Nitrogen,TN)含量,將土壤經(jīng)過(guò)濃硫酸-高氯酸消解后,采用凱氏定氮法測(cè)定;對(duì)于速效磷(Available Phosphorus,AP)含量,采用0.5 mol/L NaHCO3浸提-鉬銻抗比色法測(cè)定;對(duì)于速效鉀(Available Kalium,AK)含量,采用1 mol/L NH4OAc浸提-火焰光度法測(cè)定;土壤pH值用BPH-252pH計(jì)測(cè)得,土壤提取液采用 1:2.5土水比浸提。
1.4.1 DNA提取及PCR 擴(kuò)增
采用E.Z.N.ATM Mag-Bind Soil DNA Kit試劑盒提取、純化種子總DNA,利用Thermo NanoDrop One 檢測(cè)DNA的純度和濃度,試驗(yàn)從DNA提取到測(cè)序分析均設(shè)置3個(gè)重復(fù)[14]。PCR擴(kuò)增及產(chǎn)物電泳檢測(cè)以基因組DNA為模板,根據(jù)測(cè)序區(qū)域的選擇,使用帶barcod的特異引物及TaKaRa Premix Taq?Version 2.0(TaKaRa Biotechnology Co., Dalian, China)進(jìn)行PCR 擴(kuò)增。PCR反應(yīng)體系為2x Premix Taq 25L、Primer-F(10 μM)1L、Primer-R(10 μM)1L、模板DNA50ng,總體積50L[15]。PCR產(chǎn)物檢測(cè)合格后,采用引物序列為5’-GTGCCAGCMGCCGCGGTAA-3’和5’- GGACTACHVGGGTWTCTAAT-3’,擴(kuò)增樣品中原核生物V4 可變區(qū)構(gòu)建高通量測(cè)序文庫(kù),使用Illumina Nova 6000平臺(tái)對(duì)構(gòu)建的擴(kuò)增子文庫(kù)進(jìn)行PE250測(cè)序(16S rRNA測(cè)序委托廣州美格基因科技有限公司完成)。
1.4.2 OTU聚類與物種注釋
在序列相似性97%的參數(shù)水平上對(duì)每個(gè)質(zhì)量閾下序列參數(shù)進(jìn)行一個(gè)相似性參數(shù)聚類,以用于測(cè)序所有一個(gè)質(zhì)量閾下序列的參數(shù)的均值并過(guò)濾OTU(Operational Taxonomic Units),同時(shí)去除嵌合體[16]。選取OTU的代表性序列,利用usearch-sintax對(duì)每個(gè)OTU的代表序列進(jìn)行物種分類,設(shè)定置信度閾值為0.8,與SILVA(16S)數(shù)據(jù)庫(kù)進(jìn)行比對(duì)獲得物種注釋信息,獲得分類學(xué)信息并分別在界、門、綱、目、科、屬、種水平統(tǒng)計(jì)群落組成。
所得數(shù)據(jù)采用Excel 2019進(jìn)行記錄。基于門、綱分類水平的物種注釋和豐度信息,繪制物種豐度堆疊圖。使用R vegan 軟件包計(jì)算Alpha多樣性指數(shù),包括Shannon_Wiener指數(shù)、Chao1指數(shù)、Pielou指數(shù)及Coverage指數(shù)。Alpha多樣性、土壤肥力指標(biāo)差異采用單因素方差分析(ANOVA),在<0.05時(shí)觀察到顯著性,多重比較采用Dunnett’s-t檢驗(yàn)。利用Beta多樣性分析細(xì)菌群落組成的差異,采用R vegan 軟件包做基于bray-curtis差異矩陣的非度量多維尺度分析(Non-metric Multidimensional scaling,NMDS)以比較和可視化土壤樣本之間的相似性?;谌哂喾治觯≧edunDancy Analysis, RDA)探討細(xì)菌群落與土壤肥力因子之間的關(guān)系。利用皮爾森相關(guān)分析(Pearson correlation)和線性回歸模型(Linear Regression Model,LRM)揭示土壤細(xì)菌群落同土壤肥力指數(shù)之間的響應(yīng)作用。本文統(tǒng)計(jì)學(xué)檢驗(yàn)使用SPSS 24.0軟件,繪圖使用軟件Origin Pro2021、R×64 3.6.3。
2.1.1 細(xì)菌群落組成
為明確矸石充填復(fù)墾土壤的細(xì)菌優(yōu)勢(shì)群落信息,對(duì)不同復(fù)墾方向的土壤細(xì)菌群落在門、綱分類水平獲得的OTU 序列進(jìn)行劃分,相對(duì)豐度>0.01%的主要細(xì)菌種類有10種,相對(duì)豐度<0.01%的細(xì)菌種類合并為其他(others),結(jié)果如圖2所示。門分類水平上,不同復(fù)墾方向土壤細(xì)菌相對(duì)豐度前5的優(yōu)勢(shì)群落為變形菌()(37.72%)、酸桿菌()(12.66%)、放線菌()(12.63%)、綠彎菌()(8.26%)、擬桿菌()(7.41%),共占細(xì)菌總數(shù)的78.68%。C2相比C1、G2,變形菌的相對(duì)豐度分別增加5.32%、3.67%(<0.05);L3較G3變形菌相對(duì)豐度增加8.06%(<0.05);與L2相比,L1酸桿菌相對(duì)豐度增加2.49%(<0.05);G2較G1放線菌相對(duì)豐度增加0.31%(<0.05);L3相比L1綠彎菌相對(duì)豐度增加61.10%(<0.05)。
綱分類水平上(圖2 b)相對(duì)豐度前5的細(xì)菌優(yōu)勢(shì)群落自高向低依次為-變形桿菌()(29.30%)、-變形桿菌()(13.07%)、擬桿菌()(9.76%)、放線菌()(9.23%)、-變形桿菌()(8.51%)。G1較L1-變形桿菌的相對(duì)豐度增加27.90%(<0.05);與C3相比,C2擬桿菌的相對(duì)豐度增加71.77%(<0.05);C2較C1放線菌的相對(duì)豐度增加10.95%(<0.05)。
注:C1,草地0~20 cm;C2,草地20~40 cm;C3,草地40~60 cm;G1,耕地0~20 cm;G2,耕地20~40 cm;G3,耕地40~60 cm;L1,林地0~20 cm;L2,林地20~40 cm;L3,林地40~60 cm。下同。
2.1.2 細(xì)菌Alpha多樣性
為明晰矸石充填復(fù)墾土壤細(xì)菌群落豐富度、均勻度的差異性,本文基于單因素方差分析,以Chao1指數(shù)、Shannon_Wiener指數(shù)、Pielou指數(shù)及Coverage指數(shù)衡量煤矸石充填土壤細(xì)菌Alpha多樣性的變化(表1)。
結(jié)果顯示,0~20 cm和20~40 cm土層,草地Chao1指數(shù)和Shannon_Wiener指數(shù)大于耕地和林地。隨著土層深度的逐漸增加,細(xì)菌豐富度逐漸降低,這可能是由于深層土壤缺乏通透性,其土壤溫度、氧氣、活性碳庫(kù)等狀況變差[17]。在不同土層深度下,多樣性指數(shù)波動(dòng)并不大,耕地深層土壤與表中層存在顯著性差異(<0.05)。表層土壤Pielou指數(shù)在不同復(fù)墾方向上存在差異性,耕地顯著大于林地(<0.05),林草地表層土壤均勻度低于深層,這可能是因?yàn)橹参锔捣置谖镏懈缓袡C(jī)酸、維生素、氨基酸等多種物質(zhì),影響著土壤細(xì)菌群落組成,而不同植物的根系分泌物不同,從而有選擇地影響著土壤細(xì)菌群落[18]。由反映測(cè)序深度的Coverage 指數(shù)知,本次測(cè)序各樣本均在97%以上,樣品檢測(cè)到的樣本覆蓋率高,說(shuō)明可以直接檢驗(yàn)到土壤環(huán)境細(xì)菌中的絕大多數(shù)土壤細(xì)菌物種,充分反映了樣品中各種細(xì)菌的真實(shí)情況。
表1 不同復(fù)墾方向土壤細(xì)菌Alpha多樣性比較
注:不同小寫字母表示同一土層中不同復(fù)墾方向之間差異顯著(<0.05),不同大寫字母表示同一復(fù)墾方向不同土層間差異顯著(<0.05)。
Note: Different lowercase letters indicate significant differences between different reclamation directions in the same soil layer at the<0.05 level, different capital letters indicate significant differences between different soil layers in the same reclamation direction at the<0.05 level.
2.1.3 細(xì)菌Beta多樣性
為了更加清晰地反映不同復(fù)墾方向細(xì)菌群落結(jié)構(gòu)存在的差異性,本研究基于bray_curis距離矩陣對(duì)OTU分類水平的細(xì)菌群落進(jìn)行非度量多維尺度分析(NMDS),通過(guò)二維排序圖描述細(xì)菌群落組成之間的差異性(圖3)。每個(gè)點(diǎn)代表1個(gè)土壤樣本,不同顏色的點(diǎn)屬于不同組,兩點(diǎn)之間的空間距離越接近,表明兩樣本之間的細(xì)菌群落組成相似度越高,差異越小。圖3顯示,NMDS分析圖的應(yīng)力函數(shù)值stress=0.10(<0.2),認(rèn)為NMDS二維空間的擬合結(jié)果可以準(zhǔn)確反映不同復(fù)墾方向細(xì)菌群落的真實(shí)情況。對(duì)比同一方向不同土壤樣本細(xì)菌群落組成之間差異性小,對(duì)比不同方向的土壤細(xì)菌樣本,細(xì)菌群落之間距離較近,相似性大。C1、C2之間差異性小,相似性大,都與C3 具有差異性。G1、G2和G3之間,細(xì)菌群落組成相似程度較近,各樣本間差異性小,相似性大,同G3 具有差異性。L1、L2 和L3 之間,L1與L2差異性小,相似性大,同L3具有差異性。由以上可知,各土壤樣本在空間上距離較近,表層和中層的土壤細(xì)菌群落相似性大,差異性小,表層、中層同深層土壤的細(xì)菌群落具有差異性,這是由于表中層土壤與深層土壤水分、通氣性、溫度、養(yǎng)分等土壤細(xì)菌生存狀況不同,導(dǎo)致土壤細(xì)菌組成產(chǎn)生差異[19]。
圖3 基于bray_curis距離的細(xì)菌群落非度量多維尺度(NMDS)分析圖
2.2.1 土壤肥力指標(biāo)差異性
綜合考慮土壤肥力的影響因素并結(jié)合試驗(yàn)條件,以方差分析為手段,選取全氮、速效磷、速效鉀、有機(jī)質(zhì)、pH對(duì)土壤肥力影響較大的肥力指標(biāo),明晰不同復(fù)墾方向土壤肥力特征,結(jié)果見(jiàn)表2。
表2 不同復(fù)墾方向土壤肥力指標(biāo)統(tǒng)計(jì)特征值
注:同列數(shù)據(jù)后不同小寫字母表示<0.05 水平存在顯著性差異。
Note: The different letters indicates significant differences at the level of<0.05.
表層(0~20 cm)土壤,速效鉀在3種土壤復(fù)墾方向上變化波動(dòng)不大,在306.00~325.67 mg/kg之間,并不存在顯著性差異;耕地全氮、有機(jī)質(zhì)含量為1.48 g/kg、20.80 g/kg,分別是林地的1.35倍、1.53倍;草地速效磷含量最高,相比于林地,增加了1.94倍;草地顯著高于耕地、林地(<0.05);中層(20~40 cm)土壤,除速效磷外,不同復(fù)墾方向波動(dòng)不大,并無(wú)顯著性差異;耕地速效磷含量最高,為8.00 mg/kg,是草地(5.30 mg/kg)的1.51倍,各樣地之間存在顯著性差異(<0.05)。深層(40~60 cm)土壤,速效磷、有機(jī)質(zhì)在3種復(fù)墾方向上,均呈現(xiàn)出不同類型的差異性,草地含量最高,分別為8.07 mg /kg、10.41 g/kg,高于林地1.31倍,耕地0.39倍,各樣地之間存在顯著性差異(<0.05)。樣本pH值介于7.78~8.30之間,呈弱堿性,在不同復(fù)墾方向上并不存在顯著性差異。
對(duì)照全國(guó)土壤養(yǎng)分含量分級(jí)標(biāo)準(zhǔn)表[20],研究區(qū)內(nèi)土壤全氮含量介于0.78~1.47 g/kg之間,屬中等水平;速效磷含量介于3.50~14.40 mg/kg之間,大部分處于中等水平,林地深層土壤較為缺乏;速效鉀含量介于217~325.67 mg/kg之間,處于極高水平,含量較為豐富;有機(jī)質(zhì)含量介于7.49~20.80 g/kg之間,大部分處于中等水平,耕地深層土壤較為缺乏。
2.2.2 土壤肥力指數(shù)
依據(jù)全國(guó)土壤養(yǎng)分含量分級(jí)標(biāo)準(zhǔn)表,選取全氮、速效磷、速效鉀、有機(jī)質(zhì)作為肥力評(píng)價(jià)因子,進(jìn)行隸屬度計(jì)算,消除量綱影響。查閱相關(guān)文獻(xiàn)[21],選擇S 型隸屬度函數(shù),同時(shí)參照《全國(guó)第二次土壤普查技術(shù)規(guī)程》,確定各指標(biāo)隸屬度函數(shù)轉(zhuǎn)折點(diǎn)。采用變異系數(shù)法確定指標(biāo)權(quán)重,根據(jù)各指標(biāo)的隸屬度和權(quán)重,然后將兩者相乘并進(jìn)行累加,即可得到復(fù)墾土壤肥力指數(shù)(Integrated Fertility Index,IFI),指數(shù)越大,表明區(qū)域土壤肥力越好。圖4為不同復(fù)墾方向土壤肥力指數(shù)。
圖4 不同復(fù)墾方向土壤肥力指數(shù)比較分析
圖4顯示,土壤肥力指數(shù)在不同復(fù)墾方向間并不存在顯著性差異。耕地IFI值最高,為0.45,高于草地和林地,變異系數(shù)最低,為18.22%,說(shuō)明在三種復(fù)墾方向中,耕地不同土層深度的土壤肥力相差較小,接近于平均水平,表明該地區(qū)最佳復(fù)墾方向?yàn)楦?。草地局部區(qū)域IFI值最大,標(biāo)準(zhǔn)差最高,變異系數(shù)偏高,說(shuō)明草地不同土層深度土壤肥力存在差異性,偏差較大。林地IFI值最低,變異系數(shù)卻為最高,說(shuō)明林地土壤肥力最差,不同土層深度土壤肥力不均衡且偏低。
本研究將煤矸石充填復(fù)墾土壤細(xì)菌相對(duì)豐度視為衡量微生物多樣性的測(cè)度指標(biāo),土壤肥力指數(shù)作為土壤肥力的評(píng)價(jià)指標(biāo),以此探討微生物多樣性對(duì)土壤肥力的響應(yīng)作用。以土壤細(xì)菌相對(duì)豐度為響應(yīng)變量,肥力因子為解釋變量,基于RDA開(kāi)展復(fù)墾土壤細(xì)菌相對(duì)豐度與肥力因子的冗余分析。
圖5顯示,第一排序軸(RDA1)解釋了75.23%,第二排序軸(RDA2)解釋了12.66%。前2個(gè)軸土壤肥力因子解釋量達(dá)到了85%以上,說(shuō)明軸1和軸2能解釋絕大部分土壤細(xì)菌的分布情況。圖中肥力因子各自所在射線與各土壤細(xì)菌群落相對(duì)豐度所在射線之間的夾角大小及其射線長(zhǎng)度說(shuō)明了土壤肥力因子對(duì)煤矸石充填復(fù)墾土壤細(xì)菌的影響程度:全氮(TN)與酸桿菌門()、鞘脂單胞菌屬()、呈顯著正相關(guān)(<0.05),與綠彎菌門()、固氮弓菌屬()呈極顯著負(fù)相關(guān)(<0.01);速效磷(AP)與變形菌門()、固氮弓菌屬、呈顯著負(fù)相關(guān)(<0.05);速效鉀(AK)與酸桿菌門()、芽單胞菌門()、呈極顯著負(fù)相關(guān)(<0.01),與綠彎菌門、固氮弓菌屬極顯著負(fù)相關(guān)(<0.01),與假單胞菌屬()、、鏈霉菌屬()顯著負(fù)相關(guān)(<0.05);土壤有機(jī)質(zhì)(SOM)與酸桿菌門呈顯著正相關(guān)(<0.05),與擬桿菌門()、芽單胞菌門()呈極顯著正相關(guān)(<0.01),與綠彎菌門、固氮弓菌屬、鏈霉菌屬極顯著負(fù)相關(guān)(<0.01);土壤肥力指數(shù)(IFI)作為土壤肥力指標(biāo)的綜合反映,與奇古菌門()呈極顯著正相關(guān)(<0.01),與鏈霉菌屬呈顯著負(fù)相關(guān)(<0.05),說(shuō)明在土壤肥力的影響因子中,細(xì)菌相對(duì)豐度較低的菌群對(duì)土壤也有不可忽視的作用[22]。
圖5 細(xì)菌群落與肥力因子RDA分析
基于冗余分析結(jié)果,為進(jìn)一步優(yōu)選出對(duì)土壤肥力指數(shù)具有響應(yīng)作用的細(xì)菌,利用皮爾森相關(guān)分析和線性回歸模型探究主要細(xì)菌群落同土壤肥力指數(shù)之間的關(guān)系,結(jié)果見(jiàn)圖6。
圖6顯示,土壤肥力指數(shù)與奇古菌門相對(duì)豐度極顯著正相關(guān)(<0.001,2=0.55,圖6a),與鏈霉菌屬相對(duì)豐度顯著負(fù)相關(guān)(=0.009,2=0.24,圖6b),表明奇古菌、鏈霉菌可以在一定程度上影響研究區(qū)復(fù)墾土壤肥力。馬靜等[23]研究發(fā)現(xiàn),奇古菌可以參與硝化作用,氧化銨應(yīng)對(duì)采礦沉陷導(dǎo)致的土壤養(yǎng)分貧瘠環(huán)境,改善采煤沉陷區(qū)的土壤肥力。鏈霉菌屬在微生物學(xué)上從屬于放線菌門,何文[24]認(rèn)為放線菌抗逆性強(qiáng),產(chǎn)生的抗生素及次生代謝產(chǎn)物,可以大量地進(jìn)行人工繁殖,噴施或者施入土壤,調(diào)節(jié)土壤微環(huán)境,并能長(zhǎng)時(shí)間定殖,部分菌株還具有一定的促生作用等。這表明奇古菌、鏈霉菌可以改善土壤環(huán)境,增強(qiáng)土壤肥力。圖6c、圖6d表明變形菌門、放線菌門等主要優(yōu)勢(shì)菌群同土壤肥力指數(shù)的相關(guān)性并不顯著,解釋量為2≤0.1,>0.05,這可能與土壤環(huán)境的復(fù)雜性及矸石充填覆土的特殊性等多方面因素相關(guān)[25]。
圖6 土壤細(xì)菌相對(duì)豐度與土壤肥力指數(shù)的線性回歸模型
綜合考慮值、2因素,矸石充填不同復(fù)墾方向土壤肥力指數(shù)與奇古菌、鏈霉菌的相對(duì)豐度具有強(qiáng)相關(guān)性,對(duì)土壤肥力指數(shù)有一定響應(yīng)作用,在研究區(qū)可通過(guò)二者的相對(duì)豐度變化表征土壤肥力的優(yōu)劣,可采取措施合理人工干預(yù),改善復(fù)墾土壤肥力,提高土地生產(chǎn)力。
細(xì)菌是土壤微生物中占比最大,數(shù)量最多的種群[26],對(duì)于森林、草原及農(nóng)田等的生態(tài)系統(tǒng)環(huán)境具有重要的影響,是一種驅(qū)動(dòng)和保護(hù)地球的生物化學(xué)過(guò)程的關(guān)鍵因 素[27]。本研究發(fā)現(xiàn),不同復(fù)墾方向中相對(duì)豐度最高的菌種保持一致,優(yōu)勢(shì)門類群(相對(duì)豐度前3)均為變形菌門(32.42%~42.97%)、酸桿菌門(10.47%~15.87%)、放線菌門(8.90%~18.28%),與孫瑞波等[28]和Liu等[29]在不同類型土壤中得到的細(xì)菌優(yōu)勢(shì)菌群相似。已有研究發(fā)現(xiàn),變形菌以善于利用各種有機(jī)物的獨(dú)特性而在營(yíng)養(yǎng)豐富的環(huán)境中更易受到青睞[30],變形菌的相對(duì)豐度最高,這與一些研究所報(bào)道的結(jié)果相一致[31-32],證實(shí)了矸石充填復(fù)墾土壤細(xì)菌群落結(jié)構(gòu)中變形菌呈絕對(duì)優(yōu)勢(shì),僅是在不同復(fù)墾方向土壤細(xì)菌群落間比例存在差異。綱分類水平下的優(yōu)勢(shì)菌種-變形桿菌()(29.30%)、-變形桿菌()(13.07%)在細(xì)菌分類上從屬于變形菌門,也證實(shí)了變形菌在矸石充填復(fù)墾土壤中占據(jù)主導(dǎo)地位。該細(xì)菌作為土壤微生物中最豐富的種群之一,在農(nóng)田[33]、礦區(qū)[34]等均屬于優(yōu)勢(shì)群落,是土壤中最主要的細(xì)菌類群,其代謝活動(dòng)是土壤中最主要的細(xì)菌活動(dòng)。酸桿菌門廣泛分布于各種惡劣的自然環(huán)境中,可以改變土壤的酸性條件,對(duì)礦山土壤酸化生態(tài)起著重要作用[35]。放線菌門具有降解和利用有機(jī)物的潛在能力[36],是土壤養(yǎng)分供給的主要來(lái)源,在礦山惡劣環(huán)境中分布廣泛。Alpha多樣性分析表明,表中層草地土壤細(xì)菌Shannon_Wiener指數(shù)高于耕地、林地,Huang等[37]認(rèn)為土壤表面的殘?jiān)?、土壤有機(jī)物等創(chuàng)造了有利于微生物的棲息地。研究區(qū)草地種植大濱菊等草本植物,具備了較為豐富的植物群落,土壤養(yǎng)分供給充足,有利于土壤微生物的活動(dòng),與Huang等[37]的發(fā)現(xiàn)類似;Chao 1指數(shù),總體趨勢(shì)為林地>草地>耕地,這與蔡進(jìn)軍等的研究結(jié)果一致[38]。Beta多樣性分析結(jié)果顯示,煤矸石充填復(fù)墾土壤在不同復(fù)墾方向細(xì)菌群落并無(wú)明顯差異性,土壤細(xì)菌群落組成與土層深度呈負(fù)相關(guān),是因?yàn)殡S著土壤深度的増加,能被土壤微生物分解利用的動(dòng)植物殘?bào)w逐漸減少,這與焦赫等[25]的研究結(jié)果比較一致。本文研究發(fā)現(xiàn),pH值同Chao1指數(shù)的變化一致,在一定程度上影響著復(fù)墾土壤微生物種群分布,但在不同復(fù)墾方向上差異不顯著,可能是由于pH值變化較為平緩(7.78<pH<8.30),對(duì)微生物的生長(zhǎng)影響不明顯。
土壤細(xì)菌不僅能快速有效地分解和轉(zhuǎn)化養(yǎng)分[39],影響植物對(duì)土壤肥力的獲取,而且細(xì)菌群落結(jié)構(gòu)的差異和變化規(guī)律還可以反映土壤的現(xiàn)狀和演變,可以用來(lái)反映土壤肥力的質(zhì)量[40]。本研究采取因子加權(quán)綜合法對(duì)不同復(fù)墾方向土壤肥力進(jìn)行綜合評(píng)價(jià),并依據(jù)肥力評(píng)價(jià)結(jié)果,基于冗余分析、線性回歸模型揭示了土壤細(xì)菌群落同土壤肥力指數(shù)之間的關(guān)系。冗余分析闡明了RDA模型的解釋量超過(guò)了85%,說(shuō)明本研究所選取的肥力指標(biāo)囊括了大部分對(duì)細(xì)菌群落作出貢獻(xiàn)的因子。奇古菌門、鏈霉菌屬對(duì)土壤肥力指數(shù)具有顯著的相關(guān)性,說(shuō)明二者對(duì)土壤肥力的提升有著重要的作用。肖玉娜等[41]研究發(fā)現(xiàn)奇古菌屬于有氧氨氧化功能群和硝化功能群,可以氧化極低濃度的銨以應(yīng)對(duì)采礦沉陷導(dǎo)致的土壤養(yǎng)分貧瘠環(huán)境。Brochier-Armanet等[42]認(rèn)為奇古菌類微生物屬于化能自養(yǎng)型微生物,在氮代謝循環(huán)中起著非常重要的作用,其分類下的氧化氨生成硝酸鹽而進(jìn)行化能自養(yǎng)生活[43]。以上研究結(jié)果證實(shí)奇古菌可以通過(guò)硝化作用促進(jìn)氮代謝循壞,間接改善土壤肥力。鏈霉菌作為放線菌的主要構(gòu)成類群,在自然界分布廣泛,具有代謝多樣性,能夠產(chǎn)生細(xì)胞外水解酶代謝糖、氨基酸和芳香族等化合物,其產(chǎn)生的抗生素、多氧酶素等在現(xiàn)代農(nóng)業(yè)中應(yīng)用廣泛。Dias等[44]研究發(fā)現(xiàn)施用鏈霉菌菌肥對(duì)干旱脅迫下種植的玉米產(chǎn)量有顯著影響,將耐旱的鏈霉菌接種到Cd千穗谷(),通過(guò)增加谷胱甘肽,提高過(guò)氧化氫酶活性及減少葉片中的丙二醛含量,以此增強(qiáng)植物對(duì)Cd的耐受性[45]。文一等[46]認(rèn)為鏈霉菌具有較強(qiáng)的抗砷毒害能力,可作為強(qiáng)化蜈蚣草修復(fù)砷污染土壤的材料。這些研究結(jié)果表明,盡管鏈霉菌是產(chǎn)生各種抗生素的主要來(lái)源,但其產(chǎn)生的抗生素類物質(zhì)可以特異性地作用于某些病原菌,降低其生長(zhǎng)和繁殖速度,優(yōu)化土壤微生物生存環(huán)境,間接促進(jìn)土壤肥力的提升。
復(fù)墾土壤微生物多樣性和群落結(jié)構(gòu)不僅受到復(fù)墾方向的影響,復(fù)墾年限、充填基質(zhì)同樣會(huì)對(duì)其產(chǎn)生影響。侯湖平等[9]發(fā)現(xiàn)隨著時(shí)間的推移,復(fù)墾土壤的微生物群落結(jié)構(gòu)組成會(huì)逐漸發(fā)生變化。在煤矸石充填復(fù)墾0~6a細(xì)菌群落多樣性較低,復(fù)墾15a后土壤各種性質(zhì)、微生物群落均已接近正常農(nóng)田土壤的水平[47]。Dangi 等[48]分析了不同復(fù)墾階段土壤微生物群落結(jié)構(gòu)的變化特征,發(fā)現(xiàn)微生物群落結(jié)構(gòu)在復(fù)墾14a基本恢復(fù)為正常土壤水平。Dimitriu等[49]的研究表明,尾礦砂充填復(fù)墾土壤中微生物量較自然土壤明顯降低,不適宜土壤微生物結(jié)構(gòu)和功能的改善。董夢(mèng)陽(yáng)等[50]發(fā)現(xiàn)在以蛭石、粉煤灰為充填基質(zhì)的土壤微生物中,代謝產(chǎn)酸能力較強(qiáng)的酸桿菌、放線菌等細(xì)菌成為優(yōu)勢(shì)種群。目前的研究證實(shí),復(fù)墾土壤細(xì)菌群落結(jié)構(gòu)及其多樣性受到諸多因素共同影響,而多因素影響下的土壤微生物環(huán)境較為復(fù)雜。本文采取控制變量法,旨在揭示同一年限(15a)、同種充填基質(zhì)(煤矸石)條件下不同復(fù)墾方向(草地、耕地、林地)對(duì)微生物多樣性及種群結(jié)構(gòu)的影響,對(duì)復(fù)墾年限、充填基質(zhì)及其相互影響下的微生物研究將作為下一步研究的重點(diǎn)。
1)變形菌門、酸桿菌門、放線菌門為所有樣本中的主要優(yōu)勢(shì)菌門,其中變形菌門占據(jù)絕對(duì)優(yōu)勢(shì),在不同復(fù)墾方向占比均高達(dá)30%以上,優(yōu)勢(shì)菌在不同樣本間變動(dòng)不大,但比例會(huì)隨著土層深度增加而產(chǎn)生變化。
2)土壤細(xì)菌群落多樣性與豐富度整體上隨土層深度增加呈下降趨勢(shì),40~60 cm土層細(xì)菌群落多樣性與豐富度明顯低于其他土層,在不同復(fù)墾方向不存在顯著差異性。0~20 cm和20~40 cm土層,草地Chao1指數(shù)和Shannon_Wiener指數(shù)大于耕地和林地,但差異不顯著。深層土壤細(xì)菌群落組成明顯不同于其他土層。
3)RDA分析表明,TN、SOM、AP和AK是影響土壤細(xì)菌群落組成的主要肥力因子,但部分優(yōu)勢(shì)菌群對(duì)肥力因子的響應(yīng)并不明顯,可能與土壤微生物群落的高度復(fù)雜性以及矸石充填的特殊性等多方面因素相關(guān)?;诨貧w模型,土壤肥力指數(shù)與奇古菌門相對(duì)豐度呈極顯著正相關(guān)(<0.01),同鏈霉菌屬呈顯著負(fù)相關(guān)(<0.05),二者可作為復(fù)墾土壤肥力的響應(yīng)細(xì)菌,通過(guò)其相對(duì)豐度的變化衡量土壤肥力狀況,助力于兩淮礦區(qū)采煤沉陷地復(fù)墾土壤生產(chǎn)力的提高。
[1] 徐良驥,黃璨,李青青,等.煤矸石粒徑結(jié)構(gòu)對(duì)充填復(fù)墾重構(gòu)土壤理化性質(zhì)及農(nóng)作物生理生態(tài)性質(zhì)的影響[J]. 生態(tài)環(huán)境學(xué)報(bào),2016,25(1):141-148.
Xu Liangji, Huang Can, Li Qingqing, et al. Study on the physical-chemical properties of reconstructed soil in filling area affected by the substrate made of coal gangue with different particle size distributions and the crop effect[J]. Ecology and Environmental Science, 2016, 25(1): 141-148. (in Chinese with English abstract)
[2] 陳孝楊,王芳,嚴(yán)家平,等. 覆土厚度對(duì)礦區(qū)復(fù)墾土壤呼吸晝夜變化的影響[J]. 中國(guó)礦業(yè)大學(xué)學(xué)報(bào),2016,45(1):164-169.
Chen Xiaoyang, Wang Fang, Yan Jiaping, et al. Effects of soil cover thickness on diurnal variation of soil respiration during reclamation in mining area[J]. Journal of China University of Mining & Technology, 2016, 45(1): 164-169. (in Chinese with English abstract)
[3] 安麗蕓,李君劍,嚴(yán)俊霞,等. 微生物多樣性對(duì)土壤碳代謝特征的影響[J]. 環(huán)境科學(xué),2017,38(10):4420-4426.
An Liyun, Li Junjian, Yan Junxia, et al. Effects of microbial diversity on soil carbon mineralization[J]. Environmental Science, 2017, 38(10): 4420-4426. (in Chinese with English abstract)
[4] 樊文華,白中科,李慧峰,等. 不同復(fù)墾模式及復(fù)墾年限對(duì)土壤微生物的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2011,27(2):330-336.
Fan Wenhua, Bai Zhongke, Li Huifeng, et al. Effects of different vegetation restoration patterns and reclamation years on microbes in reclaimed soil[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE), 2011, 27(2): 330-336. (in Chinese with English abstract)
[5] Li Y Y, Chen L Q, Wen H Y, et al. Pyrosequencing-based assessment of bacterial community structure in mine soil affected by mining subside[J]. International Journal of Mining Science and Technology, 2014(24): 701-705.
[6] 曹夢(mèng),張?zhí)m蘭,李貞,等.復(fù)墾年限及植被模式對(duì)煤礦復(fù)墾土壤微生物多樣性的影響(英文)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(5):278-285.
Cao Meng, Zhang Lanlan, Li Zhen, et al. Effects of regenerated periods and vegetation modes on soil microbial functional diversity in regenerated land of opencast coal mine[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(5): 278-285. (in English with Chinese abstract)
[7] Kim K Y, Kim H T, Kim D, et al. Distribution characteristics ofairborne bacteria and fungi in the feedstuff-manufacturing factories[J]. Journal of Hazardous Materials, 2009, 169(1/2/3): 1054-1060.
[8] 王繼玥,劉燕,劉勇,等. 基于高通量測(cè)序檢測(cè)Pb污染對(duì)三葉草根際土壤細(xì)菌多樣性的影響[J]. 環(huán)境科學(xué)研究,2018,31(1):102-110.
Wang Jiyue, Liu Yan, Liu Yong, et al. Effect of lead pollution on bacterial diversity in rhizosphere of clover based on high-throughput sequencing[J]. Research of Environmental Sciences, 2018, 31(1): 102-110. (in Chinese with English abstract)
[9] 侯湖平,王琛,李金融,等. 煤矸石充填不同復(fù)墾年限土壤細(xì)菌群落結(jié)構(gòu)及其酶活性[J]. 中國(guó)環(huán)境科學(xué),2017,37(11):4230-4240.
Hou Huping, Wang Chen, Li Jinrong, et al. Variation of bacterial community structure and enzyme activities in reclaimed soil filled with coal gangues along a relamation chronosequence[J]. China Environmental Science, 2017, 37(11): 4230-4240. (in Chinese with English abstract)
[10] 王瑾. 西部煤礦區(qū)開(kāi)采擾動(dòng)對(duì)根際微生態(tài)影響及微生物復(fù)墾效應(yīng)[D]. 北京:中國(guó)礦業(yè)大學(xué)(北京),2015.
Wang Jin. Impacts of Coal Mining Disturbance on Rhizosphere Micro-ecological and Microbial Reclamation Effect in Western Area of China[D]. Beijing: China University of Mining & Technology, (Beijing), 2015. (in Chinese with English abstract)
[11] Li J J, Zhou X M, Yan J X, et al. Effects of regenerating vegetation on soil enzyme activity and microbial structure in reclaimed soils on a surface coal mine site[J]. Applied Soil Ecology, 2015, 87: 56-62.
[12] 徐良驥,黃璨,章如芹,等. 煤矸石充填復(fù)墾地理化特性與重金屬分布特征[J]. 農(nóng)業(yè)工程學(xué)報(bào),2014,30(5):211-219.
Xu Liangji, Huang Can, Zhang Ruqin, et al. Physical and chemical properties and distribution characteristics of heavy metals in reclaimed land filled with coal gangue[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(5): 211-219. (in Chinese with English abstract)
[13] 鮑士旦. 土壤農(nóng)化分析(第三版)[M]. 北京:中國(guó)農(nóng)業(yè)出版社,2000.
[14] 嚴(yán)婷婷,趙艷,王超霞,等. 水稻種子內(nèi)生細(xì)菌16S rDNA基因高通量測(cè)序PCR引物篩選和菌群結(jié)構(gòu)分析[J]. 農(nóng)業(yè)生物技術(shù)學(xué)報(bào),2021,29(2):316-326.
Yan Tingting, Zhao Yan, Wang Chaoxia, et al. Screening of PCR primers targeted 16S rDNA gene for high throughput sequencing of endophytic bacteria in rice (oryza sativa) seeds and analysis of bacterial community structure[J]. Journal of Agricultural Biotechnology, 2021, 29(2): 316-326. (in Chinese with English abstract)
[15] Li P, Liang H B, Lin W T, et al. Microbiota dynamics associated with environmental conditions and potential roles of cellulolytic communities in traditional Chinese cereal starter solid-state fermentation[J]. Applied and Environmental Microbiology, 2015, 81(15): 5144-5156.
[16] Nottingham A T, Fierer N, Turner B L, et al. Microbes follow Humboldt:temperature drives plant and soil microbial diversity patterns from the Amazon to the Andes[J]. Ecology, 2018, 99(11): 2455-2466.
[17] Agnelli A, Ascher J, Corti G, et al. Distribution of microbial communities in a forest soil profile investigated by microbial biomass, soil respiration and DGGE of total and extracellular DNA[J]. Soil Biology and Biochemistry, 2004, 36(5): 859-868.
[18] Stursová M, Baldrian P. Effects of soil properties and management on the activity of soil organic matter transforming enzymes and the quantification of soil-bound and free activity[J]. Plant Soil, 2011, 338(1/2): 99-110.
[19] 蔡蕓霜. 桂西北峰叢洼地典型農(nóng)區(qū)不同耕作模式對(duì)土壤微生物群落特征的影響研究[D]. 南寧:南寧師范大學(xué),2020.
Cai Yunshuang. Response to Soil Microbial Characteristics on Different Tillage Models in the Typical Farming Area of Peak-cluster Depression, Northwest Guangxi[D]. Nanning: Nanning Normal University, 2020. (in Chinese with English abstract)
[20] 全國(guó)土壤普查辦公室. 中國(guó)土壤普查技術(shù)[M]. 北京:農(nóng)業(yè)出版社,1992.
[21] 孫海運(yùn),李新舉,胡振琪,等. 馬家塔露天礦區(qū)復(fù)墾土壤質(zhì)量變化[J]. 農(nóng)業(yè)工程學(xué)報(bào),2008,24(12):205-209.
Sun Haiyun, Li Xinju, Hu Zhenqi, et al. Variance of reclamation soil quality in Majiata opencast mine region[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2008, 24(12): 205-209. (in Chinese with English abstract)
[22] 李文廣,楊曉曉,黃春國(guó),等. 飼料油菜作綠肥對(duì)后茬麥田土壤肥力及細(xì)菌群落的影響[J]. 中國(guó)農(nóng)業(yè)科學(xué),2019,52(15):2664-2677.
Li Wenguang, Yang Xiaoxiao, Huang Chunguo, et al. Effects of rapeseed green manure on soil fertility and bacterial community in dryland wheat field[J]. Scientia Agricultura Sinica, 2019, 52(15): 2664-2677. (in Chinese with English abstract)
[23] 馬靜,盧永強(qiáng),張琦,等.黃土高原采煤沉陷對(duì)土壤微生物群落的影響[J]. 土壤學(xué)報(bào),2021,58(5):1278-1288.
Ma Jing, Lu Yongqiang, Zhang Qi, et al. Effects of coal mining subsidence on soil microbial community in the loess plateau[J]. Acta Pedologica Sinica, 2021, 58(5):1278-1288.(in Chinese with English abstract)
[24] 何文. 農(nóng)用黃赭色鏈霉菌菌劑的制備工藝及應(yīng)用效果研究[D]. 泰安:山東農(nóng)業(yè)大學(xué),2017.
He Wen. Preparation of Agricultural Agent withSilaceus and Its Application Effect[D]. Taian:Shandong Agricultural University, 2017. (in Chinese with English abstract)
[25] 焦赫,李新舉.煤矸石充填復(fù)墾土壤細(xì)菌群落變化[J].煤炭學(xué)報(bào),2021,46(10):3332-3341.
Jiao He, Li Xinju. Variation in the soil bacterial community of reclaimed land filled with coal gangue[J]. Journal of China Coal Society, 2021, 46(10): 3332-3341. (in Chinese with English abstract)
[26] 厲桂香,馬克明. 北京東靈山樹(shù)線處土壤細(xì)菌的PICRUSt基因預(yù)測(cè)分析[J]. 生態(tài)學(xué)報(bào),2018,38(6):2180-2186.
Li Guixiang, Ma Keming. PICRUSt-based predicted metagenomic analysis of treeline soil bacteria on Mount Dongling, Beijing[J]. Acta Ecologica Sinica, 2018, 38(6): 2180-2186. (in Chinese with English abstract)
[27] Veresoglou S D, Halley J M, Rillig M C. Extinction risk of soil biota[J]. Nature Communications, 2015, 6(1): 8862
[28] 孫瑞波,郭熙盛,王道中,等. 長(zhǎng)期施用化肥及秸稈還田對(duì)砂姜黑土細(xì)菌群落的影響[J]. 微生物學(xué)通報(bào),2015,42(10):2049-2057.
Sun Ruibo, Guo Xisheng, Wang Daozhong, et al. The impact of long-term application of chemical fertilizers and straw returning on soil bacterial community[J]. Microbiology China, 2015, 42(10): 2049-2057. (in Chinese with English abstract)
[29] Liu J J, Sui Y Y, Yu Z H, et al. High throughput sequencing analysis of biogeographical distribution of bacterial communities in the black soils of northeast China[J]. Soil Biology and Biochemistry, 2014, 70: 113-122.
[30] Goldfarb K C, Karaoz U, Hanson C A, et al. Differential growth responses of soil bacterial taxa to carbon substrates of varying chemical recalcitrance[J]. Frontiers in Microbiology, 2011, 2(94): 94.
[31] Tang Z X, Fan F L, Wan Y F, et al. Abundance and diversity of RuBisCO genes responsible for CO2fixation in arid soils of Northwest China[J]. Pedosphere, 2015, 25(1): 150-159.
[32] Xiao H B, Li Z W, Chang X F, et al. Microbial CO2assimilation is not limited by the decrease in autotrophic bacterial abundance and diversity in eroded watershed[J]. Biology and Fertility of Soils, 2018, 54(5): 595-605.
[33] Xue K, Wu L Y, Deng Y, et al. Functional gene differences in soil microbial communities from conventional, low-input, and organic farmlands.[J]. Applied and Environmental Microbiology, 2013, 79(4): 1284-1292.
[34] Rodionov A, Dubchak I, Arkin A, et al. Reconstruction of regulatory and metabolic pathways in metal-reducing delta-proteobacteria.[J]. Genome Biology, 2004, 5(11): R90
[35] Liu J J, Sui Y Y, Yu Z H, et al. Diversity and distribution patterns of acidobacterial communities in the black soil zone of northeast China[J]. Soil Biology and Biochemistry, 2016, 95: 212-222.
[36] Banerjee S, Walder F, Buchi L, et al. Agricultural intensification reduces microbial network complexity and the abundance of keystone taxa in roots[J]. ISME Journal: Multidisciplinary Journal of Microbial Ecology, 2019, 13(4): 1722-1736.
[37] Huang Y, Yesilonis I, Szlavecz K. Soil microarthropod communities of urban green spaces in Baltimore, Maryland,USA[J]. Urban Forestry & Urban Greening, 2020, 53(1/2): 126676.
[38] 蔡進(jìn)軍,董立國(guó),李生寶,等. 黃土丘陵區(qū)不同土地利用方式土壤微生物功能多樣性特征[J]. 生態(tài)環(huán)境學(xué)報(bào),2016,25(4):555-562.
Cai Jinjun, Dong Liguo, Li Shengbao, et al. The characteristics of soil microbe function diversity in semi-arid loess hilly region[J]. Ecology and Environmental Sciences, 2016, 25(4): 555-562. (in Chinese with English abstract)
[39] Bardgett R D, Putten W H V D. Belowground biodiversity and ecosystem functioning[J]. Nature, 2014, 515(7528): 505-511.
[40] 張文文,劉秉儒,牛宋芳. 引黃灌區(qū)不同種植年限紫花苜蓿土壤養(yǎng)分與細(xì)菌群落特征研究[J]. 草業(yè)學(xué)報(bào),2019,28(5):46-54.
Zhang Wenwen, Liu Bingru, Niu Songfang. Correlation between soil nutrient status and the bacterial community composition in alfalfa stands of different ages in the Yellow River irrigation area[J]. Acta Prataculturae Sinica, 2019, 28(5): 46-54. (in Chinese with English abstract)
[41] 肖玉娜,鐘信林,王北辰,等. 通遼科爾沁地區(qū)土壤微生物群落結(jié)構(gòu)和功能及其影響因素[J]. 地球科學(xué),2020,45(3):1071-1081.
Xiao Yuna, Zhong Xinlin, Wang Beichen, et al. Microbial community structure and function and their influencing factors in the soil of Horqin Area of Tongliao City, Inner Mongolia[J]. Earth Science, 2020, 45(3): 1071-1081. (in Chinese with English abstract)
[42] Brochier-Armanet C, Boussau B, Gribaldo S, et al. Mesophilic crenarchaeota: Proposal for a third archaeal phylum, the Thaumarchaeota[J]. Nature Reviews Microbiolpgy, 2008, 6(3): 245-252.
[43] Arp D J, Stein L Y. Metabolism of inorganic N compounds by ammonia-oxidizing bacteria[J]. Critical Reviews in Biochemistry and Molecular Biology, 2003, 38 (6): 471-495.
[44] Dias M P, Bastos M S, Xavier V B, et al. Plant growth and resistance promoted by Streptomyces spp. in tomato[J]. Plant Physiology and Biochemistry, 2017, 118: 479-493
[45] Cao S M, Wang W K, Wang F, et al. Drought-tolerant Streptomyces pactum Act12 assist phytoremediation of cadmium-contaminated soil by Amaranthus hypochondriacus: Great potential application in arid/semi-arid areas[J]. Ecology, Environment & Conservation, 2016, 23(15): 14898-14907.
[46] 文一,廖曉勇,閻秀蘭. 鏈霉菌的抗砷特性及其對(duì)蜈蚣草富集砷的作用[J]. 生態(tài)毒理學(xué)報(bào),2013,8(2):186-193.
Wen Yi, Liao Xiaoyong, Yan Xiulan. Arsenic-resistance ofsp. andits effects on arsenic enrichment of pteris vittata L. [J]. Asian Journal of Ecotoxicology, 2013, 8(2): 186-193. (in Chinese with English abstract)
[47] 李金融,侯湖平,王琛,等. 基于高通量測(cè)序的復(fù)墾土壤細(xì)菌多樣性研究[J]. 環(huán)境科學(xué)與技術(shù),2018,41(12):148-157.
Li Jinrong, Hou Huping, Wang Chen, et al. Soil bacteria diversity of reclaimed soil based on high throughput sequencing[J]. Environmental Science & Technology, 2018, 41(12): 148-157. (in Chinese with English abstract)
[48] Dangi S R, Stahl P D, Wick A F, et al. Soil microbial community recovery in reclaimed soilson a surface coal mine site[J]. Soil Science Society of Ameriacn Journal, 2012, 76(3): 915-924.
[49] Dimitriu P A, Prescott C E, Quideau S A, et al. Impact of reclamation of surface-mined boreal forest soils on microbial community composition and function[J]. Soil Biology and Biochemistry, 2010, 42(12): 2289-2297.
[50] 董夢(mèng)陽(yáng),董遠(yuǎn)鵬,徐子文,等. 赤泥改良過(guò)程中微生物群落及酶活性恢復(fù)研究[J]. 中國(guó)環(huán)境科學(xué),2021,41(2):913-922.
Dong Mengyang, Dong Yuanpeng, Xu Ziwen, et al. Resilience of soil microbiome and enzyme activity with soil amelioration of Bayer process red mud[J]. China Environmental Science, 2021, 41(2): 913-922. (in Chinese with English abstract)
Bacterial community structure of reclaimed soil and its relationship with soil fertility
Liu Jun1, Zhang Shiwen1,2※, Song Guifang1, Wang Yang1, Zhu Yafei1, Lu Shengjun1, Lan Miao1, Xia Shasha1
(1.,,232001,;2.,232001,)
Reclaimed soil can be utilized to quickly and effectively produce under reasonable manual intervention. This study aims to clarify the influence of the reclamation on soil microorganisms in the Lianghuai coal mine area. The coal gangue filling reclaimed soil was also taken as the research object in the field investigation and sampling. Illumina MiSeq high-throughput sequencing was used to analyze the V4 region of specific gene fragments of soil bacteria. Biodiversity was then explored to clarify the soil bacterial community and the response to soil fertility using non-metric multi-dimensional scale analysis, redundancy analysis, variance analysis, fertility index, and regression. The results show that there was no significant effect of reclamation directions on the distribution of bacterial dominant communities from the composition, but there were different proportions of reclamation directions. Specifically,(32.42%-42.97%),(10.47%- 15.87%),(8.90%-18.28%) were the main dominant bacteria groups. Among them,occupied the most, accounting for more than 30%. Alpha diversity demonstrated that there was no significant difference in the abundance and diversity of bacterial soil samples in different reclamation directions. Some indexes also maintained stable, where the Shannon_Wiener index ranged from 6.19 to 6.85, while Chao1 index ranged from 3131.97 to 4938.37, and the Pielou index of each sample fluctuated around 0.8. Beta diversity analysis showed that there was also no significant difference in the composition of bacterial communities in different reclamation directions. Furthermore, the composition of soil bacterial communities was negatively correlated with the soil depth. The composition of soil bacteria was attributed to different living conditions in the top, middle, and bottom soil layers, such as moisture, aeration, temperature, and nutrients. The pH value was consistent with the change of the diversity index, indicating only a slight influence on the dominant microbial flora and biodiversity. A one-way analysis of variance was carried out on the soil fertility indexes of reclamation directions. It was found that the content of fertility indexes in the surface soil was much higher than that in the bottom soil in general. The fertility quality was evaluated in the order of the cultivated land > grassland > forest, where the cultivated land performed the best reclamation direction. The redundancy analysis showed that the TN, SOM, AP, and AK were the main fertility factors to determine the composition of soil bacterial communities. But some dominant bacterial communities presented no response to the fertility factors, due to the high complexity of the soil microbial community and the regional conditions. The regression model showed that the soil fertility index was positively correlated with the relative abundance of the(<0.01), and thewas negatively correlated (<0.05). Moreover, there was no strong correlation with the main dominant phylum, due to the complexity of the soil environment of the coal gangue reclaimed land. Consequently, the relative abundance ofandcan be selected as important biological indicators to evaluate soil fertility, according to the linear regression and the functional effects ofand. The finding can also provide strong theoretical support to improve the fertility and quality of the reclaimed soil with the gangue at the microbial level in the Lianghuai mining area.
reclamation; bacteria; high-throughput sequencing; community structure; soil fertility
10.11975/j.issn.1002-6819.2021.21.015
S154.3
A
1002-6819(2021)-21-0124-10
劉俊,張世文,宋桂芳,等. 復(fù)墾土壤細(xì)菌群落結(jié)構(gòu)及其與土壤肥力的關(guān)系[J]. 農(nóng)業(yè)工程學(xué)報(bào),2021,37(21):124-133.doi:10.11975/j.issn.1002-6819.2021.21.015 http://www.tcsae.org
Liu Jun, Zhang Shiwen, Song Guifang, et al. Bacterial community structure of reclaimed soil and its relationship with soil fertility[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(21): 124-133. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2021.21.015 http://www.tcsae.org
2021-06-05
2021-09-24
安徽省自然資源科技項(xiàng)目(2020-K-8);國(guó)家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2020YFC1908601);淮北礦業(yè)集團(tuán)科技研發(fā)項(xiàng)目(No.2020-113)
劉俊,研究方向?yàn)榈V區(qū)生態(tài)修復(fù)。Email:2020200081@aust.edu.cn
張世文,教授,博導(dǎo),研究方向?yàn)榈V區(qū)土地復(fù)墾與生態(tài)修復(fù)。Email:shwzhang@aust.edu.cn