• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Quantum multicast communication over the butterfly network

    2022-01-23 06:34:24XingBoPan潘興博XiuBoChen陳秀波GangXu徐剛ZhaoDou竇釗ZongPengLi李宗鵬andYiXianYang楊義先
    Chinese Physics B 2022年1期
    關(guān)鍵詞:徐剛

    Xing-Bo Pan(潘興博) Xiu-Bo Chen(陳秀波) Gang Xu(徐剛)Zhao Dou(竇釗) Zong-Peng Li(李宗鵬) and Yi-Xian Yang(楊義先)

    1Information Security Center,State Key Laboratory of Networking and Switching Technology,Beijing University of Posts and Telecommunications,Beijing 100876,China

    2School of Information Science and Technology,North China University of Technology,Beijing 100144,China

    3Huawei Technologies Co. Ltd,Shenzhen 518129,China

    4School of Computer Science,Wuhan University,Wuhan 430072,China

    Keywords: quantum nondemolition measurement, special single particle basis, quantum network coding,quantum multicast communication

    1. Introduction

    In 2000,Ahlswedeet al.[1]proposed the idea of classical network coding for the first time, which is of epoch-making significance and brings new opportunities for the development of information communication.

    Fig.1. Classic network coding.

    As shown in Fig.1, by performing an XOR operation at the bottleneck node,the receiversT1andT2can get bitsa1anda2simultaneously. The protocol completes two pairs of multicast communication over the butterfly network. The network coding solves the congestion problem at the bottleneck node,and improves the transmission efficiency and the total network throughput.[2-6]

    In 2007, Hayashiet al.[7]initiated proposed a quantum network coding protocol considering the advantages of network coding. As shown in Fig. 2, sendersS1andS2transmit pure states, while receivers receive the mixed states. Although this protocol can achieve quantum 2-pair multi-unicast communication, and the fidelity of the output states cannot reach 1. It is impossible in principle to replicate exactly an unknown quantum state due to the non-cloning theorem.[8]Subsequently, Kobayashiet al.[9-11]showed that as long as classical communication is free over the butterfly network,the perfect transmission of quantum states[12-15]can be completed. This result provides a theoretical basis for perfect quantum network coding.[12,16-19]So far, a large number of quantum network coding schemes[20-24]have been proposed,some of which have been implemented in experiments.[25,26]In Ref.[25],Luet al.have demonstrated Hayashi’protocol[12]by employing eight photons generated via spontaneous parametric down-conversion. The average fidelities of cross state transmission and cross entanglement distribution achieved exceed the theoretical upper bounds permitted without prior entanglement. In Ref. [26], Pathumsootet al.have completed a particular implementation of quantum network coding using measurement-based quantum computation on IBM Q processors. Pathumsootet al. have demonstrated how a quantum computer can be used to model an entangling quantum network and experimentally confirmed the operation of quantum network coding in a superconducting device. This shows that it has taken a step from the theory of quantum network coding toward practical use on real devices. At present, quantum network coding in the form of quantum multi-unicast communication[12,16-24]emerges in endlessly,while quantum network coding in the form of quantum multicast communication[27-30]is relatively less.

    Fig.2. Quantum network coding with universal cloning.

    In 2006, Shi and Soljanin[27]began to study the multicast problem in quantum networks. Through quantum lossless compression and decompression technology, quantum multicast communication can be completed in quantum networks. In 2009, Liet al.[28]proposed a new optimization quantum-inspired evolutionary algorithm (QEA) to solve the multicast routing problems. In 2010, Xinget al.[29]proposed an improved quantum-inspired evolutionary algorithm for coding resource optimization based network coding multicast scheme. In 2015,Xuet al.[30]proposed a quantum cooperative multicast coding scheme. In Ref.[30],Xuet al. gave the explicit definition of quantum cooperative multicast, and designed an efficient scheme for cooperative multicast of twolevel quantum states over the butterfly network.Quantum multicast communication solves the one-to-many quantum communication problem,which is a great significance to the practical application of quantum communication networks[31-35]in the future.

    We study quantum network coding and quantum multicast communication. In Ref.[36],Liet al. designed universal quantum operations by applying local operation and classical communication,[38]and proposed a perfect quantum multipleunicast network coding protocol. In Ref. [37], Pati proposed assisted cloning and orthogonal complementing of unknown quantum state. Without violating the quantum non-cloning theorem,by applying quantum non-demolitional measurement(QND),[39-41]the assisted clone and orthogonal complementation of an unknown quantum state can be achieved with the help of the quantum and classical channels. Subsequently, a number of perfect assisted cloning schemes[42-44]have been proposed.

    In this paper,we propose a quantum multicast communication with network coding, which achieves quantum 2-pair multicast communication over the butterfly network. Then we extend quantum 2-pair multicast communication to the extended butterfly network,and quantumk-pair multicast communication is proposed over the extended butterfly network.Firstly,an EPR state is shared between each adjacent repeater of butterfly network, and use the quantum operations introduced in Subsection 2.1 to generate entanglement relationship between non-adjacent senders and receivers. Secondly, after each sender adds auxiliary particles according to the multicast numberk,the added auxiliary particles and the EPR state form a multi-particle entangled state through controlled NOT gates.Thirdly,we use Bell basis and single-particle basis to measure multi-particle entangled state, in which Bell basis measurement is quantum non-demolition measurement.Finally,by designing encoding and decoding strategies, quantum multicast communication can be completed with the help of classical and quantum channels.

    2. Preliminaries

    2.1. Quantum complementary state

    In our scheme,Victor prepares an arbitrary quantum state|ψ〉v=α|0〉v+β|1〉v,whereα=cos(θ/2),β=eiφsin(θ/2),just like representing an arbitrary quantum state on the bloch sphere. The normalization condition|α|2+|β|2=1 is satisfied. We define that|ψ⊥〉vis quantum complementary state of|ψ〉v,in which|ψ⊥〉v=α|1〉v-β*|0〉v.

    In order to achieve quantum multicast communication,Victor needs to perform the special single particle basis. We assume the special single particle basis{|m〉,|n〉}is

    The normalization and orthogonalization relationships are satisfied between the set of basis.

    2.2. Quantum operations

    We refer to the encoding and decoding operations in Refs.[21,36]to design quantum operations over the extended butterfly network. The extended butterfly network is shown in Fig.3.

    Fig.3. The extended butterfly network.

    Fig. 4. One source node to multiple target nodes: EPR pairs are shared between a source node and multiple target nodes, Connection operation Con→n2,...,mk→nk is applied as shown in Table 1.

    Table 1. Con→n2,...,mk→nk.

    Table 1. Con→n2,...,mk→nk.

    1 Quantum repeater Si performs CNOTm1m2,...,CNOTm1 mk successively.2 Quantum repeater Si uses {|0〉,|1〉} to measure particles m2,...,mk and let g=(g2,...,gk)be measurement result,where gi ∈{0,1}.3 Quantum repeater Si sends g2,...,gk to quantum repeater Tj (2 ≤j ≤k)through the classic channel,if g j (2 ≤j ≤k)=1,then Tj applies an X to particle nj.Here,the particles m1,m2,...,mk are owned by quantum repeater Si;the particles n1,n2,...,nk are owned by quantum repeater Tj,respectively;and X is Pauli operator.

    Fig.5. Multiple sources node to intermediate node: EPR pairs are shared between multiple source nodes and an intermediate node,Connection operationis applied as shown in Table 2.

    Table 2.

    Table 2.

    Fig.6. Intermediate node to multiple target nodes: EPR pairs are shared between an intermediate node and multiple target nodes,Connection operation Con→n1,m2→n2,...,mk→nk is applied as shown in Table 3.

    Table 3. Con→n1,m2→n2,...,mk→nk.

    Table 3. Con→n1,m2→n2,...,mk→nk.

    1 Quantum repeater R2 performs CNOTmm1,CNOTmm2,...,CNOTmmk successively.2 Quantum repeater R2 uses {|0〉,|1〉} to measure particles m1,m2,...,mk and let g=(g1,g2,...,gk)be measurement result,where gi ∈{0,1}.3 Quantum repeater R2 sends g1,g2,...,gk to quantum repeater Tj(1 ≤j ≤k) via classic channel, if gj (1 ≤j ≤k)=1, then Tj applies an X to particle n j.Here,the particles m,m1,m2,...,mk are owned by quantum repeater R2;the particle n j is owned by quantum repeater Tj (1 ≤j ≤k); and X is the Pauli operator.

    Fig. 7. Intermediate node to one target node: an EPR pair is shared between an intermediate node and a target node, Controlled-NOT gateis applied as shown in Table 4.

    1 An XOR operationm1⊕m2⊕...⊕mkis performed to get classical resultλat quantum repeaterTj.

    2. A controlled Not gateCNOTλmis performed at quantum repeaterTj,

    whereλis the control qubit andmis the target qubit.

    Here,the particlesm,m1,m2,...,mkare owned by quantum repeaterTj;the particlenis owned by quantum repeaterR2.

    Fig.8. Remove operation: delete the extra particles through Remove operation Reml→n as shown in Table 5.

    Table 5. Reml→n.

    Through the above connection (Figs. 4-7) and remove(Fig. 8) operations, the entanglement relationship can be established in the first step of our scheme.

    3. Our works

    3.1. Quantum 2-pair multicast communication

    We propose a quantum 2-pair multicast communication scheme over the butterfly network. As shown in Fig. 9,Victor V prepares two arbitrary quantum states|ψ1〉1=α1|0〉1+β1|1〉1,|ψ2〉2=α2|0〉2+β2|1〉2, sends|ψ1〉1toS1and|ψ2〉2toS2. Whereα1= cos(θ1/2),α2= cos(θ2/2),β1= eiφ1sin(θ1/2),β2= eiφ2sin(θ2/2). It satisfies the normalization condition|α1|2+|β1|2=1,|α2|2+|β2|2=1. On the butterfly network, we allow either one qubit transmission in quantum channel or no more than two-bit classical communication in classical channel. Our scheme is divided into four stages: establishing entanglement relationship, adding auxiliary particles, quantum measurements and encoding process,and transmission and decoding process.

    Fig.9. The butterfly network with preparer.

    Secondly,adding auxiliary particles. In our scheme,auxiliary particles are added according to the multicast numberk. The number of auxiliary particles is (k-2)×2. According to the formula, there is no need to add auxiliary particles for quantum 2-pair multicast communication. Go directly to quantum measurements and encoding process. It should be noted that quantum 2-pair multicast communication is the only case which no auxiliary particles are added.

    Fig.10. The butterfly network with entanglement.

    Thirdly, quantum measurements and encoding process.The combined state of|ψi〉iand|Ψ+〉siitiiat each senderSi(i ∈(1,2))is

    Each senderSiuses Bell basis{|Ψ+〉,|Ψ-〉,|Φ+〉,|Φ-〉}to measure particlesi,sii, which is a quantum non-demolition measurement. The measurement results of Bell basis are encoded into 2-bitXiaccording to Table 6.

    Table 6. Bell measurements coding table.

    After senderSiperforms Bell basis measurement,follow by sending particleito Victor. Victor uses the single particle basis{|m〉i,|n〉i}to measure particlei, and encodes the measurement result with 1-bitYias shown in Table 7, whereYi,jrepresents the encoding result of thej-the single particle basis measurement applied by Victor to the senderSi. After Victor performs the single particle basis measurement,senderSiwill get quantum stateU(Yi)|ψ〉siior quantum complementary stateU(Yi)|ψ⊥〉sii. According to theYireceived from Victor,senderSiapplies recovery operationU(Yi)to obtain|ψ〉siior|ψ⊥〉siiwith equal probability.

    Table 7. Single particle basis coding table.

    Finally, transmission and decoding process. SenderS1sendsX1to intermediate nodeR1and receiverT2via classic channelsC(S1,R1) andC(S1,T2), respectively. SenderS2sendsX2to intermediate nodeR1and receiverT1via classic channelsC(S2,R1)andC(S2,T1),respectively. An XOR operation is performed to getX1⊕X2atR1, andX1⊕X2is transmitted to next nodeR2. AtR2,X1⊕X2is copied and transmitted to receiversT1andT2via classic channelsC(R2,T1)andC(R2,T2), respectively. ReceiverT1performs the XOR operation(X1⊕X2)⊕X2to obtainX1,and applies unitary operationU(X1)-1to quantum stateU(X1)|ψ1〉t11to get quantum state|ψ1〉t11. ReceiverT2performs the XOR operation(X1⊕X2)⊕X1to obtainX2, and applies unitary operationU(X2)-1to quantum stateU(X2)|ψ2〉t22to get quantum state|ψ2〉t22. SenderS1sends quantum state|ψ1〉or quantum complement state|ψ1⊥〉to receiverT2through quantum channelQ(S1,T2). SenderS2sends quantum state|ψ2〉or quantum complement state|ψ2⊥〉to receiverR1through quantum channelQ(S2,T1).

    Through the above four stages, quantum state|ψ1〉with probability 1 and quantum state|ψ2〉with probability 1/2 or quantum complement state|ψ2⊥〉with probability 1/2 can be obtained at receiverT1. Quantum state|ψ2〉with probability 1 and quantum state|ψ1〉with probability 1/2 or quantum complement state|ψ1⊥〉with probability 1/2 can be obtained at receiverT2.It should be noted that if the amplitudes of the transmitted quantum states|ψ1〉1and|ψ2〉2are real numbers,Victor will apply the special single particle basis{|m〉=α|0〉+β|1〉,|n〉=β|0〉-α|1〉}to perform quantum measurements, then each receiverT1,T2receives both quantum states|ψ1〉and|ψ2〉with probability 1. Thereby, quantum 2-pair multicast communication can be completed over the butterfly network.

    3.2. Quantum kkk-pair multicast communication scheme

    We extend quantum 2-pair multicast communication to extended butterfly network,and propose quantumk-pair multicast communication scheme over the extended butterfly network.

    Fig.11. The extended butterfly network with preparer V.

    Firstly, establishing entanglement relationship. The initial entanglement relationship over the extended butterfly network is shown in Fig. 12. By applying quantum operations introduced in Subsection 2.2,the entangled relationship is established between senderSiand receiverTi,i ∈{1,...,k}.

    Fig.12. The extended butterfly network with entanglement.

    The initial state of quantum system is

    The quantum state|Γ1〉becomes

    Each senderSiapplies Bell-basis to measure particle pairs (i,sii), (Auxi,1,Auxi,2),..., (Auxi,(k-2)×2-1,Auxi,(k-2)×2) successively, which is a quantum nondemolition measurement. After Bell-basis measurements,each receiverTiwill get one of the quantum states{|ψi〉tii,σz|ψi〉tii,σx|ψi〉tii,σzσx|ψi〉tii}. Each senderSisends particlesi,Auxi,1,...,Auxi,(k-2)×2-1to Victor. After receiving the single particles,Victor applies the special single particle basis{|m〉,|n〉}to measure the received particlesi,Auxi,1,...,Auxi,(k-2)×2-1. Here Victor will performk-1 single particle basis measurements. The basis{|m〉,|n〉}is

    Victor encodes each measurement result with 1-bitYiaccording to Table 7,and transmits(k-1)bitsYito senderSi. Each senderSireceives (k-1) bitsYifrom Victor. When theYiis 0,quantum complement state is obtained at sender,otherwise quantum state is obtained. After Victor performs the special single particle measurement,The state of particlessii,Auxi,2,...,Auxi,(k-2)×2will be obtained at each senderSiin the following form:

    4. Conclusion

    In this paper,we consider Bell states,auxiliary particles,and free classical channels as auxiliary resources to complete quantum multicast communication,which solve the bottleneck problem and improve the communication efficiency.Although auxiliary resources are consumed,quantum channels are used only once at most in our scheme. It should be noted that if the amplitudes of transmitted quantum states are real numbers,each receiver can receivekquantum states.

    In our scheme,no matter how many times Bell basis measurements are applied, the receivers use only one of the following four unitary operations to recover the quantum state,that is,{I,σx,σz,σxσz}. Therefore, the capacity of classical channel is no more than 2 bits in our scheme. The maximum capacity of classical channels will not be increased with the increase of multicast numberk,which saves the utilization of classical channels to some extent.

    At present, quantum multicast communication is in a booming stage. We are also the first attempt to study quantum multicast communication by adding auxiliary resources.Next,we will consider how to save resources to complete quantum multicast communication over the butterfly network,which is also the task we have been trying to solve.In the future,the establishment and application of quantum network[45-47]cannot be separated from quantum multicast communication.

    Acknowledgements

    Project supported by the National Natural Science Foundation of China (Grant Nos. 92046001, 61671087,61962009, and 61971021), the Fundamental Research Funds for the Central Universities (Grant Nos. 2019XD-A02 and 2020RC38), the Fund from Huawei Technologies Co. Ltd(Grant No. YBN2020085019), the Open Foundation of Guizhou Provincial Key Laboratory of Public Big Data(Grant No. 2018BDKFJJ018), the Fundamental Research Funds for Beijing Municipal Commission of Education, the Scientific Research Launch Funds of North China University of Technology, and Beijing Urban Governance Research Base of North China University of Technology.

    猜你喜歡
    徐剛
    殺人者徐剛(短篇小說)
    飛天(2025年1期)2025-01-28 00:00:00
    徐剛書法作品選登
    共青城市蘇家垱鄉(xiāng):共繪美麗鄉(xiāng)村新畫卷
    Low-overhead fault-tolerant error correction scheme based on quantum stabilizer codes
    Universal quantum circuit evaluation on encrypted data using probabilistic quantum homomorphic encryption scheme*
    一瞬即永恒
    冬夜
    冬夜
    愿他永遠是少年
    南方文壇(2016年1期)2016-03-23 13:44:43
    冬夜
    小小說月刊(2016年2期)2016-02-16 12:28:37
    少妇裸体淫交视频免费看高清| 亚洲国产精品成人综合色| 日韩在线高清观看一区二区三区| 欧美变态另类bdsm刘玥| 日本一本二区三区精品| 国产成人精品一,二区| 黄色欧美视频在线观看| 国产免费又黄又爽又色| 国产探花在线观看一区二区| 99热这里只有是精品50| 国产又黄又爽又无遮挡在线| 国产精品久久久久久久电影| 亚洲av成人精品一二三区| 久久精品久久久久久噜噜老黄 | 日韩成人av中文字幕在线观看| av在线天堂中文字幕| 91精品伊人久久大香线蕉| 人妻少妇偷人精品九色| 亚洲欧美精品综合久久99| 老女人水多毛片| 免费人成在线观看视频色| 国产亚洲精品av在线| 伦精品一区二区三区| 国产亚洲精品av在线| 亚洲无线观看免费| 国产免费男女视频| 久久精品国产亚洲av涩爱| av福利片在线观看| 边亲边吃奶的免费视频| 2022亚洲国产成人精品| 亚洲欧美成人综合另类久久久 | av在线老鸭窝| 国产高清三级在线| 精品国内亚洲2022精品成人| 精品国内亚洲2022精品成人| 22中文网久久字幕| 国产黄a三级三级三级人| 99久国产av精品国产电影| 在线播放国产精品三级| 精品不卡国产一区二区三区| 亚洲怡红院男人天堂| 在线观看美女被高潮喷水网站| 午夜激情福利司机影院| 国产伦理片在线播放av一区| 久久欧美精品欧美久久欧美| 国产视频首页在线观看| 成人鲁丝片一二三区免费| 成人午夜精彩视频在线观看| 国产亚洲5aaaaa淫片| 精品午夜福利在线看| 久久韩国三级中文字幕| 亚洲av电影不卡..在线观看| 在线天堂最新版资源| 亚洲av成人精品一二三区| av在线播放精品| 国产69精品久久久久777片| 午夜视频国产福利| 国产极品天堂在线| 亚洲最大成人av| 国产精品久久久久久精品电影小说 | 最近最新中文字幕大全电影3| 波野结衣二区三区在线| 国产精品,欧美在线| 嫩草影院入口| 国产精品永久免费网站| 全区人妻精品视频| 国产av不卡久久| 日本欧美国产在线视频| 可以在线观看毛片的网站| 色网站视频免费| 日日撸夜夜添| 男人和女人高潮做爰伦理| 十八禁国产超污无遮挡网站| 免费观看在线日韩| 长腿黑丝高跟| 在现免费观看毛片| 欧美一级a爱片免费观看看| 高清午夜精品一区二区三区| 日韩欧美三级三区| 精品欧美国产一区二区三| 老师上课跳d突然被开到最大视频| 你懂的网址亚洲精品在线观看 | 成人午夜精彩视频在线观看| 午夜日本视频在线| 大又大粗又爽又黄少妇毛片口| 日本免费在线观看一区| 一边亲一边摸免费视频| 久久99热6这里只有精品| av在线亚洲专区| 欧美日本亚洲视频在线播放| 六月丁香七月| 天堂网av新在线| av.在线天堂| 国产精品,欧美在线| 亚洲综合精品二区| 欧美97在线视频| 永久免费av网站大全| 又粗又硬又长又爽又黄的视频| 成人性生交大片免费视频hd| 赤兔流量卡办理| 亚洲精品自拍成人| 视频中文字幕在线观看| 亚洲一区高清亚洲精品| 欧美97在线视频| 免费观看精品视频网站| 大香蕉97超碰在线| 久久久久网色| 精品99又大又爽又粗少妇毛片| 午夜精品国产一区二区电影 | 免费观看人在逋| 人妻系列 视频| 少妇的逼水好多| 亚洲av中文av极速乱| 亚洲精品国产成人久久av| 午夜免费激情av| 免费搜索国产男女视频| 波野结衣二区三区在线| 国产黄片美女视频| h日本视频在线播放| 成人亚洲欧美一区二区av| 国产极品天堂在线| 精品人妻视频免费看| eeuss影院久久| 免费电影在线观看免费观看| 高清av免费在线| 两个人视频免费观看高清| 性插视频无遮挡在线免费观看| 欧美成人a在线观看| 国产精品熟女久久久久浪| 蜜桃亚洲精品一区二区三区| 亚洲在线观看片| 免费看光身美女| 国产欧美日韩精品一区二区| 国内精品一区二区在线观看| 精品久久久久久久人妻蜜臀av| 亚洲欧美日韩东京热| 男人舔奶头视频| 欧美性猛交黑人性爽| 国产乱来视频区| 国产免费男女视频| 亚洲伊人久久精品综合 | 久久人妻av系列| 久久精品91蜜桃| av免费在线看不卡| 在线免费观看不下载黄p国产| 看片在线看免费视频| 国产成人午夜福利电影在线观看| 久久久久九九精品影院| 国产精品国产三级国产专区5o | 又粗又爽又猛毛片免费看| 国产成年人精品一区二区| 一个人观看的视频www高清免费观看| 亚洲不卡免费看| 两性午夜刺激爽爽歪歪视频在线观看| 日韩欧美精品v在线| 淫秽高清视频在线观看| 乱系列少妇在线播放| 欧美高清性xxxxhd video| 麻豆一二三区av精品| 男人舔奶头视频| 男女国产视频网站| 人妻系列 视频| 亚洲人成网站在线观看播放| 午夜福利高清视频| 少妇的逼好多水| 一区二区三区乱码不卡18| 国产av一区在线观看免费| 一个人看的www免费观看视频| 成人国产麻豆网| 偷拍熟女少妇极品色| 熟女人妻精品中文字幕| 久久久久久久久久久丰满| 麻豆成人av视频| 2021天堂中文幕一二区在线观| 国产亚洲91精品色在线| 亚洲最大成人手机在线| 十八禁国产超污无遮挡网站| 精品熟女少妇av免费看| 七月丁香在线播放| 69av精品久久久久久| 日本黄色片子视频| 国产大屁股一区二区在线视频| 中国美白少妇内射xxxbb| 国语自产精品视频在线第100页| 亚洲激情五月婷婷啪啪| 丰满人妻一区二区三区视频av| 国产高清国产精品国产三级 | 蜜桃久久精品国产亚洲av| 亚洲欧美成人精品一区二区| 国产午夜福利久久久久久| 七月丁香在线播放| 少妇裸体淫交视频免费看高清| 欧美丝袜亚洲另类| 在线播放无遮挡| av免费观看日本| 六月丁香七月| 亚洲欧美成人精品一区二区| 免费不卡的大黄色大毛片视频在线观看 | 麻豆成人午夜福利视频| 人妻制服诱惑在线中文字幕| 欧美极品一区二区三区四区| 国产精品综合久久久久久久免费| 久久韩国三级中文字幕| 亚洲人成网站在线观看播放| 精品国产三级普通话版| 熟女人妻精品中文字幕| 久久久久久久久久久免费av| 男女国产视频网站| 国产综合懂色| 亚洲欧美精品专区久久| 老司机影院成人| 日韩在线高清观看一区二区三区| 菩萨蛮人人尽说江南好唐韦庄 | 亚洲国产高清在线一区二区三| 成人特级av手机在线观看| 嘟嘟电影网在线观看| 精品国产露脸久久av麻豆 | 校园人妻丝袜中文字幕| 99久久人妻综合| 成年版毛片免费区| 午夜福利网站1000一区二区三区| 在线播放无遮挡| 国产高清不卡午夜福利| 亚洲精品乱码久久久久久按摩| 国产一区二区在线av高清观看| 亚洲av熟女| 蜜桃久久精品国产亚洲av| 免费看光身美女| 久久99蜜桃精品久久| 国产亚洲午夜精品一区二区久久 | 国产午夜精品一二区理论片| 国产免费一级a男人的天堂| 七月丁香在线播放| 天美传媒精品一区二区| 99热6这里只有精品| 国产又黄又爽又无遮挡在线| 波野结衣二区三区在线| 色噜噜av男人的天堂激情| av在线播放精品| 久久99热6这里只有精品| 国产精品野战在线观看| 亚洲精品自拍成人| 18禁在线播放成人免费| 亚洲一区高清亚洲精品| 日日摸夜夜添夜夜添av毛片| 亚洲精品久久久久久婷婷小说 | 亚洲一区高清亚洲精品| 高清视频免费观看一区二区 | 亚洲成人精品中文字幕电影| 18禁裸乳无遮挡免费网站照片| 日韩欧美在线乱码| 日韩大片免费观看网站 | 中文字幕av成人在线电影| 岛国在线免费视频观看| 午夜视频国产福利| 97超视频在线观看视频| 成人亚洲精品av一区二区| 成人毛片60女人毛片免费| av在线天堂中文字幕| 日韩视频在线欧美| 国产精品一及| 国产亚洲一区二区精品| 久久精品91蜜桃| 国产黄色小视频在线观看| 亚洲av成人精品一区久久| 91av网一区二区| 一本一本综合久久| 国产黄片美女视频| 超碰av人人做人人爽久久| 亚洲av成人精品一区久久| 国产亚洲5aaaaa淫片| 美女cb高潮喷水在线观看| 一个人看视频在线观看www免费| av又黄又爽大尺度在线免费看 | 日本五十路高清| 一级毛片我不卡| 伦精品一区二区三区| 亚洲国产欧美在线一区| 韩国av在线不卡| 久久精品熟女亚洲av麻豆精品 | 菩萨蛮人人尽说江南好唐韦庄 | 国模一区二区三区四区视频| 国产精品美女特级片免费视频播放器| 免费黄网站久久成人精品| 久久久久国产网址| 国产精品一及| 久热久热在线精品观看| 亚洲精品乱码久久久久久按摩| 97热精品久久久久久| 91狼人影院| 99久久中文字幕三级久久日本| 欧美丝袜亚洲另类| 成人毛片a级毛片在线播放| 丝袜美腿在线中文| 麻豆成人av视频| 欧美精品国产亚洲| 日韩欧美国产在线观看| 黄片wwwwww| 国产中年淑女户外野战色| .国产精品久久| 乱人视频在线观看| 久久久精品大字幕| av免费在线看不卡| 亚洲国产精品久久男人天堂| 亚洲欧美日韩无卡精品| 国产中年淑女户外野战色| av.在线天堂| 亚洲欧美日韩卡通动漫| 伦精品一区二区三区| 国产成人福利小说| 青春草视频在线免费观看| 亚洲综合色惰| 亚洲精品一区蜜桃| 草草在线视频免费看| 晚上一个人看的免费电影| 亚洲真实伦在线观看| 最近2019中文字幕mv第一页| 日韩欧美 国产精品| 大香蕉97超碰在线| 日本黄大片高清| 亚洲综合精品二区| 亚洲电影在线观看av| 亚洲高清免费不卡视频| 亚洲经典国产精华液单| videossex国产| 色综合色国产| 天天躁日日操中文字幕| 国语自产精品视频在线第100页| 噜噜噜噜噜久久久久久91| 国产视频内射| 夫妻性生交免费视频一级片| 综合色av麻豆| 国产色爽女视频免费观看| 亚洲综合色惰| 丝袜喷水一区| 亚洲综合色惰| 久久久a久久爽久久v久久| 精品久久久久久电影网 | 国产精品国产三级国产av玫瑰| 久久精品国产亚洲av天美| av国产免费在线观看| 秋霞在线观看毛片| 久久亚洲精品不卡| 午夜精品国产一区二区电影 | www.av在线官网国产| 久久久久久大精品| 午夜免费男女啪啪视频观看| 淫秽高清视频在线观看| kizo精华| 欧美一区二区亚洲| 日日摸夜夜添夜夜添av毛片| 国产精品女同一区二区软件| 亚洲在久久综合| 色哟哟·www| 青春草视频在线免费观看| 亚洲自偷自拍三级| 成人欧美大片| 亚洲精品国产成人久久av| 乱码一卡2卡4卡精品| 免费av毛片视频| 亚洲不卡免费看| 少妇丰满av| 久热久热在线精品观看| 欧美日韩精品成人综合77777| 嘟嘟电影网在线观看| av播播在线观看一区| 日韩一区二区三区影片| 少妇人妻一区二区三区视频| 老司机福利观看| 成人三级黄色视频| 成年av动漫网址| av国产免费在线观看| 国产精品蜜桃在线观看| 亚洲av成人精品一二三区| 日本三级黄在线观看| 热99在线观看视频| 中文在线观看免费www的网站| 免费av毛片视频| 亚洲国产精品国产精品| 亚州av有码| 十八禁国产超污无遮挡网站| 高清av免费在线| 啦啦啦观看免费观看视频高清| 亚洲国产精品专区欧美| 少妇熟女欧美另类| 一级黄色大片毛片| 国产亚洲av片在线观看秒播厂 | 国产精品国产三级国产专区5o | 一夜夜www| 啦啦啦观看免费观看视频高清| 最新中文字幕久久久久| 国产美女午夜福利| 一级黄色大片毛片| 成人午夜高清在线视频| 免费一级毛片在线播放高清视频| 九九久久精品国产亚洲av麻豆| 日韩一区二区三区影片| 精品熟女少妇av免费看| 卡戴珊不雅视频在线播放| 欧美日本视频| 国产亚洲91精品色在线| 九九爱精品视频在线观看| 国产三级在线视频| 99在线视频只有这里精品首页| 欧美激情久久久久久爽电影| 我要看日韩黄色一级片| 一个人看视频在线观看www免费| 搡老妇女老女人老熟妇| 亚洲色图av天堂| 亚洲五月天丁香| 黄色日韩在线| 久久久久九九精品影院| 国产女主播在线喷水免费视频网站 | 最近2019中文字幕mv第一页| 村上凉子中文字幕在线| 高清毛片免费看| 亚洲伊人久久精品综合 | 少妇的逼水好多| 我的女老师完整版在线观看| 精品久久久久久久久久久久久| 亚洲精品乱久久久久久| 久久久精品大字幕| 欧美一区二区国产精品久久精品| 国产午夜精品论理片| 欧美性感艳星| 一个人看的www免费观看视频| 久久久久九九精品影院| 亚洲精品aⅴ在线观看| 99热6这里只有精品| 国产一区二区三区av在线| 午夜精品国产一区二区电影 | 全区人妻精品视频| 国产精品嫩草影院av在线观看| 国产乱人视频| 啦啦啦啦在线视频资源| 久久亚洲精品不卡| 国产色婷婷99| 乱人视频在线观看| 久久久久久久久久久免费av| 免费观看的影片在线观看| 国产精品综合久久久久久久免费| 免费看av在线观看网站| 亚洲av成人精品一二三区| 久久久a久久爽久久v久久| 精品久久国产蜜桃| 精品国内亚洲2022精品成人| 国产成人免费观看mmmm| 亚洲激情五月婷婷啪啪| 99国产精品一区二区蜜桃av| 国产 一区 欧美 日韩| 亚洲精品久久久久久婷婷小说 | 一边摸一边抽搐一进一小说| 国产精品麻豆人妻色哟哟久久 | 国产精品一及| 亚洲在线观看片| 国产国拍精品亚洲av在线观看| a级一级毛片免费在线观看| 亚洲av一区综合| 久久精品国产亚洲av涩爱| 色综合站精品国产| 国产成人一区二区在线| 亚洲国产最新在线播放| 日韩av不卡免费在线播放| 久久精品久久久久久久性| 久久精品夜夜夜夜夜久久蜜豆| 热99re8久久精品国产| 久久99精品国语久久久| 国产久久久一区二区三区| 丰满人妻一区二区三区视频av| 免费一级毛片在线播放高清视频| 69人妻影院| 在线a可以看的网站| 99在线视频只有这里精品首页| 国产av在哪里看| 久久久a久久爽久久v久久| 又粗又硬又长又爽又黄的视频| 欧美日本视频| videossex国产| 成人毛片a级毛片在线播放| 美女高潮的动态| 菩萨蛮人人尽说江南好唐韦庄 | 九九久久精品国产亚洲av麻豆| 夜夜爽夜夜爽视频| 免费大片18禁| 欧美日韩综合久久久久久| 国产人妻一区二区三区在| av播播在线观看一区| 在线播放国产精品三级| 丰满乱子伦码专区| 三级经典国产精品| 午夜爱爱视频在线播放| 黄片wwwwww| 成人美女网站在线观看视频| 99九九线精品视频在线观看视频| 黄色日韩在线| 久久精品夜色国产| 久久精品夜夜夜夜夜久久蜜豆| 中文字幕久久专区| 国产黄片视频在线免费观看| 夜夜看夜夜爽夜夜摸| 少妇熟女欧美另类| 亚洲伊人久久精品综合 | 国产精品一区二区三区四区久久| 免费av观看视频| av卡一久久| ponron亚洲| 极品教师在线视频| 五月玫瑰六月丁香| 国产精品不卡视频一区二区| 男女视频在线观看网站免费| 男的添女的下面高潮视频| 国产精品蜜桃在线观看| av在线蜜桃| 少妇熟女欧美另类| 国产精品久久久久久精品电影| 国产精品电影一区二区三区| 免费观看性生交大片5| 亚洲av二区三区四区| 亚洲aⅴ乱码一区二区在线播放| 久久久a久久爽久久v久久| 18+在线观看网站| 亚洲国产欧洲综合997久久,| 国产精品电影一区二区三区| a级毛片免费高清观看在线播放| 国产欧美日韩精品一区二区| 亚洲欧洲日产国产| 国产又色又爽无遮挡免| 久久久久久国产a免费观看| 看片在线看免费视频| 97在线视频观看| 亚洲精华国产精华液的使用体验| 中国国产av一级| 高清视频免费观看一区二区 | 舔av片在线| 久久久久久久久久成人| 免费观看人在逋| 国产精品乱码一区二三区的特点| 99国产精品一区二区蜜桃av| 欧美激情国产日韩精品一区| 免费大片18禁| 亚洲国产精品合色在线| 18禁在线无遮挡免费观看视频| 在线a可以看的网站| 国产亚洲av嫩草精品影院| 两个人的视频大全免费| 亚洲人与动物交配视频| 人人妻人人澡欧美一区二区| 亚洲精品456在线播放app| 日本色播在线视频| 午夜福利成人在线免费观看| 日本猛色少妇xxxxx猛交久久| 伦理电影大哥的女人| 成人性生交大片免费视频hd| 久久这里只有精品中国| 日韩在线高清观看一区二区三区| 亚洲欧美清纯卡通| 97人妻精品一区二区三区麻豆| 18禁动态无遮挡网站| 亚洲av成人精品一二三区| 国产乱来视频区| 老师上课跳d突然被开到最大视频| 亚洲成人中文字幕在线播放| 久久久国产成人精品二区| 欧美又色又爽又黄视频| 如何舔出高潮| 国产国拍精品亚洲av在线观看| 日韩,欧美,国产一区二区三区 | 中文亚洲av片在线观看爽| 国产亚洲一区二区精品| 五月玫瑰六月丁香| 免费无遮挡裸体视频| 非洲黑人性xxxx精品又粗又长| 七月丁香在线播放| 国产成人freesex在线| 乱系列少妇在线播放| 亚洲国产精品专区欧美| 伦精品一区二区三区| 国产片特级美女逼逼视频| 婷婷色综合大香蕉| 欧美变态另类bdsm刘玥| 最近手机中文字幕大全| 日韩中字成人| 国产激情偷乱视频一区二区| 97热精品久久久久久| 日韩欧美精品v在线| 中文字幕人妻熟人妻熟丝袜美| 色吧在线观看| 老师上课跳d突然被开到最大视频| av又黄又爽大尺度在线免费看 | 色哟哟·www| 夫妻性生交免费视频一级片| 欧美3d第一页| 爱豆传媒免费全集在线观看| 精品酒店卫生间| 久久久久性生活片| 亚洲18禁久久av| 国产白丝娇喘喷水9色精品| 一级黄片播放器| 日韩三级伦理在线观看| 免费无遮挡裸体视频| 韩国高清视频一区二区三区| 高清av免费在线| 精品不卡国产一区二区三区| 国产精品久久久久久久久免| 丰满乱子伦码专区| 久久精品91蜜桃| 成年av动漫网址| 99九九线精品视频在线观看视频| 成人毛片60女人毛片免费| 国产精品永久免费网站| 一个人免费在线观看电影| 日韩欧美 国产精品| 中文在线观看免费www的网站| 69人妻影院| 蜜臀久久99精品久久宅男|