• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Novel pyrimidine-benzimidazole hybrids with antibacterial and antifungal properties and potential inhibition of SARS-CoV-2 main protease and spike glycoprotein

    2022-01-19 07:58:08ShrukKhnMyurKleFlkSiddiquiNitinNem
    Digital Chinese Medicine 2021年2期

    Shruk Khn, Myur Kle, Flk Siddiqui, Nitin Nem

    a. Department of Pharmaceutical Chemistry, MUP’s College of Pharmacy (B Pharm), Washim, Maharashtra 444504, India

    b. Department of Pharmaceutical Chemistry, Government College of Pharmacy, Aurangabad, Maharashtra 431003, India

    c. Department of Pharmacology, Shri Vile Parle Kelavani Mandal’s (SVKM’s) Institute of Pharmacy, Dhule, Maharashtra 424001, India

    Keywords SARS-CoV-2 inhibitor COVID-19 Molecular docking Pyrimidine-benzimidazole Bacteria Antifungal

    ABSTRACT

    1 Introduction

    Coronavirus disease 2019 (COVID-19)[1]induced by the novel severe acute respiratory syndrome-related coronavirus (SARS-CoV-2) has been declared by the World Health Organization (WHO) as a pandemic[2].Coronaviruses have triggered two other epidemics in addition to COVID-19, namely Middle East respiratory syndrome (MERS; 2012), and severe acute respiratory syndrome (SARS; 2002)[3]. The National Health Commission of China declared in January 20th, 2020 that SARS-CoV-2 infection is transmitted by person-to-person contact[4]. SARS-CoV-2 belongs to the same familyBetacoronaviruses, as those that caused SARS and MERS[5,6]. The novel coronavirus is a single-stranded positive-sense RNA with a diameter of 80 - 120 nm and 42 large viral RNA genomes[7].Coronaviruses are categorized as alpha- (α-COV),beta- (β-COV), gamma- (γ-COV), and delta- (δ-COV)types[8]. Six of them have infected humans, and SARS-CoV-2 is the seventh after SARS-CoV and MERS-CoV[9]. Symptoms of SARS-CoV-2 infection include fever, cough, dyspnea, myalgia, fatigue,decreased leukocyte counts, and pneumonia.Although numerous clinical trials have evaluated possible therapies for SARS-CoV-2 infection[10,11],treatment is not yet available for COVID-19[12].

    SARS-CoV-2 invades after binding to host cellular receptors[13,14]. Host cell receptors and the receptorbinding domain (RBD) of SARS-CoV-2 might be viable targets of interest in treating SARS-CoV-2 infection[15]. Nucleocapsid (N), envelope (E), membrane(M), and spike (S) proteins comprise the structural proteins of SARS-CoV-2[16,17]. The spike protein consists of an RBD that specifically binds to human angiotensin-converting enzyme-2 (hACE-2), which leads to host cell invasion[14,17]. Much investigative focus is presently directed towards developing specific novel inhibitors of the RBD or hACE-2.

    Remdesivir is an approved treatment for COVID-19[18]. Lopinavir and nelfinavir might inhibit SARSCoV-2 viral protease, and a clinical trial of favipiravir is underway for treating pneumonia induced by SARS-CoV-2[17]. Favipiravir is a purine nucleoside that disrupts viral RNA synthesis[1], and ivermectin inhibits the replication of SARS-CoV-2in vitro[19].Therefore, we used remdesivir, nelfinavir, lopinavir,favipiravir, and ivermectin along with the native ligand in the crystal structure of SARS-CoV-2 main protease, that is, N3 as reference moieties for molecular docking studies[20].

    Heterocyclic compounds provide scaffolds upon which pharmacophores can assemble to yield potent and selective drugs[21]. Among these, benzimidazole heterocyclics have attracted attention because they are easy to synthesize and have a wide range of biological activities. The benzimidazole ring is an essential component of vitamin-B12 in the form of 5, 6-dimethyl-l-(alpha-D-ribofuranosyl) benzimidazole[22].Various benzimidazole derivatives with human and veterinary anthelmintic[23], anti-ulcer[24], cardiotonic[25], antihypertensive[26], analgesic[27], anticonvulsant[28], anticancer[29]properties have been developed[30,31]. Pyrimidines and their derivatives also have anticancer[32], anxiolytic[33], antioxidant[34], antiviral[35], antifungal[36], anticonvulsant[36], antidepressant, and antibacterial properties[37]. The United States Food and Drug Administration (USFDA) has approved many purine and pyrimidine derivatives for the management of cancer and viral diseases[38].Pyrimidine-fused bicyclic heterocyclic agents have anticancer, antiviral, and many other biological activities.

    To date, 147 pyrimidine-fused bicyclic heterocyclic drugs have been approved for clinical application or are currently being clinically administered. The USFDA has authorized 57 of them to treat various diseases, among which, 22 are currently being applied to treat various types of cancer[39]. The pyrimidine ring system is abundant in nature as substituted and ring-fused compounds and equivalents,such as cytosine, thymine, uracil, thiamine (vitamin B1) and alloxan. It is also found in various synthetic compounds, including barbiturates and the HIV medication, zidovudine. Bacimethrin, a naturally occurring thiamine antimetabolite obtained in 1961 fromBacillus megatherium, is the most basic pyrimidine antibiotic, and it acts against many bacterial infections[40]. Pyrimidine-fused bicyclic heterocyclic compounds can serve as scaffolds to find new and effective medicines for specific biological targets.

    The present study aimed to synthesize and characterize pyrimidine-linked benzimidazole hybrids with antimicrobial and antifungal activity as well as inhibitory activity against SARS-CoV-2 main protease and spike glycoprotein. We screened their antiviral inhibitory action by molecular dockingin silicoas we were unable to screen them for SARS-CoV-2 activityin vivodue to safety issues. We therefore investigated their antimicrobial and antifungal activitiesin vitroas preliminary evidence of their biological potential. Molecular dockingin silicovalidates the binding affinity of compounds for target molecules as a docking scores (kcal/mol). This allows the prediction of structural activity relationships between compounds and targets.

    2 Materials and methods

    2.1 Molecular docking

    Compounds were screened by molecular docking using the PyRx-Virtual Screening Tool[41]on a Lenovo ThinkPad with a 64-bit operating system, an Intel(R)CoreTMi5-4300M processor with a base frequency of 2.60 GHz and 4GB RAM.

    The structures of approved drugs remdesivir, lopinavir, nelfinavir, invermectin, favipiravir, and native ligand (Spatial Data File [SDF]) were downloaded from the U.S. National Library of Medicine, Pub-Chem (https://pubchem.ncbi.nlm.nih.gov/), and the structures of 1,2,3,4-tetrahydropyrimidine-2-thiols and novel pyrimidine-linked benzimidazole derivatives were sketched in ChemDraw Ultra 8.0. Energy was minimized using a universal force field (UFF)[42].We investigated the binding affinity of the derivatives for the SARS-CoV-2 main protease (PDB ID: 6LU7)and spike glycoprotein (6VSB). The crystal structures of 6LU7 (https://www.rcsb.org/structure/6LU7) and 6VSB (https://www.rcsb.org/structure/6VSB) were downloaded from the RCSB Protein Data Bank. The native ligand in 6LU7 was N-[(5-methylisoxazol-3-yl)carbonyl] alanyl-L-valyl-N~1~-((1R, 2Z)-4-(benzyloxy)-4-oxo-1-{[(3R)-2-oxopyrrolidin-3-yl] methyl} but-2-enyl)-L-leucinamide[20]. The crystal structure of 6VSB did not indicate a native ligand. Molecular docking proceeded as described[43-45]. The interacting amino acid residues in the protein were identified using BIOVIA Discovery Studio Visualizer version 19.1.0.182 87 (Dassault Systemes, Paris,France)[46].

    2.2 Design of novel pyrimidine-linked benzimidazole hybrids

    We designed derivatives by merging the 2-(chloromethyl)-1H-benzimidazole moiety with 1,2,3,4-tetrahydropyrimidine-2-thiol pyrimidine derivatives synthesized via the modified Biginelli reaction.Figure 1 shows the approach used to construct the derivatives. We then compared binding affinities of 1,2,3,4-tetrahydropyrimidine-2-thiols and novel pyrimidine-linked benzimidazole derivatives to determine the significance of merging the two moieties.

    Table 1 shows structures of the pyrimidine derivatives and final novel derivatives obtained by merging benzimidazole with pyrimidine.

    2.3 Laboratory procedures

    2.3.1 Synthesis of 2-(chloromethyl)-1H-benzimidazoleThis procedure is described in the Supplementary material. The yield was 85%. A yellowish-brown product recrystallized from dioxane; m.p., 152 - 154 °C[compared with the literature: 147.8 - 148.2 °C][47]. Care was taken while handling 2-(chloromethyl)-1Hbenzimidazole because it is a powerful skin and mucous membrane irritant[48]. Figure 2 shows the reaction scheme for the synthesis of this compound.

    2.3.2 Synthesis of pyrimidine derivativesThe modified Biginelli reaction proceeded as described and detailed in the Supplementary material[49]and generated 1,2,3,4-tetrahydropyrimidine-2-thiol from ethyl acetoacetate, aldehyde, and thiourea[37,50]at 75% - 95% yield (Figure 3).

    Figure 1 Synthesis of pyrimidine-linked benzimidazole scaffold

    Table 1 Structures of 1,2,3,4-tetrahydropyrimidine-2-thiols and novel pyrimidine-linked benzimidazole derivatives

    Figure 2 Synthesis of 2-(chloromethyl)-1H-benzimidazole

    2.3.3 Merging 2-(chloromethyl)-1H-benzimidazole and 1,2,3,4-tetrahydropyrimidine-2-thiols to synthesize pyrimidine-linked benzimidazole derivativesWe condensed 2-(chloromethyl)-1H-benzimidazole(1.66 g, 0.01 mol and 1,2,3,4-tetrahydropyrimidine-2-thiol (0.01 mol) by heating with potassium hydroxide(KOH) and H2O : acetone (2 : 1) at 50 - 60 °C for 45 min.The reaction mixture was chilled to room temperature, decanted into ice-cold water, filtered, and recrystallized from ethanol (Figure 4). The yield was 90% - 95%.

    2.4 Calculation of Lipinski rule of five

    Figure 3 Synthesis of 1,2,3,4-tetrahydropyrimidine-2-thiols via modified Biginelli reaction

    Figure 4 Synthesis of novel pyrimidine-linked benzimidazole derivatives

    We applied the Lipinski rule of five that defines the ability of new molecular entities to be useful drugs. In terms of drug development, the rule states that weak absorption or permeation is more likely when the criteria of > 5 H-bond donors, 10 H-bond acceptors, molecular weight > 500, and a measured LogP(MLogP) > 5 are met[51-54]. The properties of all derivatives were calculated using the SwissADME online tool(http://www.swissadme.ch/index.php).

    2.5 Biological activity

    Various concentrations of derivatives were prepared in DMSO to assess their antibacterial and antifungal activities against standard strains (Table 2) using broth dilution. Bacteria were maintained, and drugs were diluted in nutrient Mueller Hinton broth. The broth was inoculated with 108colony-forming units (CFU)per milliliter of test strains (Institute of MicrobialTechnology, Chandigarh, India) determined by turbidity. Stock solutions of synthesized derivates(2 mg/mL) were serially diluted for primary and secondary screening. The primary screen included 1 000, 500, and 250 μg/mL of synthesized derivatives,then those with activity were further screened at 200,100, 50, 25, 12.5, and 6.250 μg/mL. A control without antibiotic was subcultured (before inoculation) by spreading one loopful evenly over a quarter of a plate of medium suitable for growing test organisms and incubated at 37 °C overnight. The lowest concentrations of derivatives that inhibited bacterial or fungal growth were taken as minimal inhibitory concentrations (MICs). These were compared with the amount of control growth before incubation(original inoculum) to determine MIC accuracy[55-57].The standards for antibacterial activity were gentamycin, ampicillin, chloramphenicol,ciprofloxacin, and norfloxacin served, and those for antifungal activity were nystatin and griseofulvin.

    Table 2 Bacterial and fungal strains for activity assay

    3 Results

    3.1 Molecular docking

    Table 3 shows details of the SARS-CoV-2 main protease and spike glycoprotein according to PDB Xray structure validation reports.

    Table 4 shows details of the derivatives, their binding affinity (kcal/mol), number of hydrogen bonds formed with targets and active amino acid residues involved in interactions. Data for compounds 1a - 1h (1,2,3,4-tetrahydropyrimidine-2-thiols), are provided in Supplementary material.

    Table 5 shows the two- and three-dimensional(2D and 3D) binding positions of the derivatives.These enabled us to predict which atoms and/or groups in a ligand are involved in interactions with amino acid residues in target derivatives. Details of 2D and 3D-docking of compounds 1a - 1h are provided in the Supplementary material.

    Table 3 Crystal structures of SARS-CoV-2 main protease (Mpro) and spike glycoprotein used for molecular docking

    Table 4 Details of the synthesized derivatives

    Table 4 Continued

    Table 4 Continued

    Table 6 shows changes in the number of hydrogen bonds formed and binding affinity before and after merging with benzimidazole.

    3.2 Chemistry

    Spectral characterization revealed the formation of pyrimidine-linked benzimidazole derivatives. The chemistry, melting points, physical properties, and IR spectra are provided in the Supplementary material.

    3.2.1 2-(chloromethyl)-1H-benzimidazoleMolecular formula, C8H7ClN2; molecular weight, 166.61;appearance, yellowish brown; soluble in ethanol,acetone, benzene; elemental analysis, C, 57.67; H,4.23; Cl, 21.28; N, 16.81; LogP, 2.11; yield, 90%; m.p.,152 - 154 °C; IR: aromatic, 933 and 842 cm-1; halogen, 642 cm-1; NH bending, 1 600 cm-1; NH stretching,3 300 - 3 400 cm-1; CH bending, 700 and 842 cm-1; CH stretching, 3 084 cm-1; C = C, 1 650 cm-1.

    3.2.2 Ethyl 1,2,3,4-tetrahydro-2-mercapto-6-methylpyrimidine-5-carboxylate (1a)Molecular formula,C8H14N2O2,S; molecular weight, 198.24; appearance,light pink powder; soluble in ethanol, acetone,benzene; m/e ratio, 198.05 (100.0%), 199.05 (9.6%),200.04 (4.5%); elemental analysis, C, 48.47; H, 5.08; N,14.13; O, 16.14; S, 16.17; LogP, 1.66; yield, 80%; m.p.,213 - 215 °C; IR: NH bending, 1 600 cm-1; NH stretching, 3 315 cm-1; CH bending, 960 cm-1; CH stretching,3 030 cm-1; ester group, 1 710 cm-1; SH stretching,2 524 cm-1; C-S stretching, 680 cm-1; aromatic,690 cm-1.

    3.2.3 Ethyl-1,2,3,4-tetrahydro-2-mercapto-6-methyl-4-phenylpyrimidine-5-carboxylate (1b)Molecular formula, C14H18N2O2S; molecular weight, 274.34;appearance, milky white crystals; soluble in ethanol,acetone, benzene; m/e ratio, 274.08 (100.0%), 275.08(16.2%), 276.07 (4.5%), 276.08 (1.7%); elemental analysis, C, 61.29; H, 5.14; N, 10.21; O, 11.66; S, 11.69;LogP, 3.76; yield 85%; m.p., 203 - 205 °C; IR: NH bending 1 654 cm-1; NH stretching, 3 332 cm-1; CH bending, 869 cm-1; CH stretching, 3 180 cm-1; ester group, 1 700 cm-1; aromatic, 700 cm-1; SH stretching,2 582 cm-1; C-S stretching 692 cm-1.

    3.2.4 Ethyl-1,2,3,4-tetrahydro-4-(2-hydroxyphenyl)-2-mercapto-6-methylpyrimidine-5-carboxylate (1c)

    Molecular formula, C14H18N2O3S; molecular weight,290.34; appearance, prismatic white crystals; solublein ethanol, acetone, benzene; m/e ratio, 290.07(100.0%), 291.08 (15.4%), 292.07 (4.6%), 292.08(1.8%), 291.07 (1.5%; elemental analysis, C, 57.92; H,4.86; N, 9.65; O, 16.53; S, 11.04; LogP, 3.37; yield, 77%;m.p., 201 - 203 °C; IR: NH bending, 1 581 cm-1; NH stretching, 3 300 cm-1; CH bending, 756 cm-1; CH stretching, 3 003 cm-1; ester group, 1 751 cm-1;hydroxy group, 3 600 cm-1; aromatic o-disubstituted,730 cm-1; SH stretching, 2 600 cm-1; C-S stretching,650 cm-1.

    Table 5 2D and 3D docking positions of drugs targeting SARS-CoV-2 main protease and RBD of spike glycoprotein

    Table 5 Continued

    3.2.5 Ethyl-1,2,3,4-tetrahydro-4-(3-hydroxyphenyl)-2-mercapto-6-methylpyrimidine-5-carboxylate (1d)

    Molecular formula, C14H18N2O3S; molecular weight,290.34; appearance, light brown powder; soluble in ethanol, acetone, benzene; m/e ratio, 290.07(100.0%), 291.08 (15.4%), 292.07 (4.6%), 292.08(1.8%), 291.07 (1.5%); elemental analysis, C, 57.92; H,4.86; N, 9.65; O, 16.53; S, 11.04; LogP, 3.37; yield, 79%;m.p., 179 - 181 °C; IR: -NH bending, 1 610 cm-1; NH stretching, 3 319 cm-1; CH bending, 866 cm-1; CHstretching 3 150 cm-1; ester group 1 700 cm-1; hydroxy group, 3 600 cm-1aromatic m-disubstituted, 680 and 788 cm-1; SH stretching, 2 500 cm-1; C-S stretching,630 cm-1.

    Table 6 Affinity and hydrogen bonds formed after pyrimidine-linked benzimidazole hybrids bound to SARSCoV-2 main protease

    3.2.6 Ethyl-1,2,3,4-tetrahydro-4-(4-hydroxyphenyl)-2-mercapto-6-methylpyrimidine-5-carboxylate (1e)

    Molecular formula, C14H14N2O3S; molecular weight,290.34; appearance, off-white powder; soluble in ethanol, acetone, benzene; m/e ratio, 290.07(100.0%), 291.08 (15.4%), 292.07 (4.6%), 292.08(1.8%), 291.07 (1.5%); elemental analysis, C, 57.92; H,4.86; N, 9.65; O, 16.53; S, 11.04; LogP, 3.37; yield, 85%;m.p., 225 - 227 °C; IR: NH bending, 1 581 cm-1; NH stretching 3 400 cm-1; SH bending, 825 cm-1; SH stretching 3 016 and 3 196 cm-1; ester group 1 689 cm-1;hydroxy group 3 502 cm-1aromatic p-disubstituted,825 cm-1; SH stretching, 2 561 cm-1; C-S stretching,642 cm-1.

    3.2.7 Ethyl-4-(2-chlorophenyl)-1,2,3,4-tetrahydro-2-mercapto-6-methylpyrimidine-5-carboxylate (1f)

    Molecular formula, C14H17ClN2O2S; molecular weight, 308.78; appearance, yellowish white sticky product; soluble in ethanol, acetone, benzene; m/e ratio, 308.04 (100.0%), 310.04 (32.6%), 309.04 (16.9%),311.04 (5.9%), 310.03 (4.5%), 312.03 (1.5%), 310.05(1.1%); elemental analysis, C, 54.46; H, 4.24; Cl, 11.48;N, 9.07; O, 10.36; S, 10.38; LogP, 4.31; yield, 87%; m.p.192 - 194 °C; IR: NH bending, 1 580 cm-1; NH stretching, 3 350 cm-1; CH bending, 767 cm-1; CH stretching, 3 100 cm-1; ester group, 1 724 cm-1; halogen group, 646 cm-1; aromatic o-disubstituted, 767 cm-1;SH stretching, 2 349 cm-1; C-S stretching, 646 cm-1.

    3.2.8 Ethyl-1,2,3,4-tetrahydro-2-mercapto-4-(4-methoxyphenyl)-6-methylpyrimidine-5-carboxylate (1g)

    Molecular formula, C15H20N2O3S; molecular weight,304.36; appearance, white crystals; soluble in ethanol, acetone, benzene; m/e ratio, 304.09(100.0%), 305.09 (18.1%), 306.08 (4.5%), 306.09(2.1%); elemental analysis, C, 59.19; H, 5.30; N, 9.20;O, 15.77; S, 10.54; LogP, 3.63; yield, 92%; m.p., -199 -201 °C; IR: NH bending, 1 581 cm-1; NH stretching,3 319 cm-1; CH bending, 767 cm-1; CH stretching,3 150 cm-1; ester group, 1 710 cm-1; ether group,1 186 cm-1; aromatic p-disubstituted, 790 cm-1; SH stretching, 2 500 cm-1; C-S stretching, 653 cm-1.

    3.2.9 Ethyl-4-cinnamyl-1,2,3,4-tetrahydro-2-mercapto-6-methylpyrimidine-5-carboxylate (1h)Molecular formula, C17H22N2O2S; molecular weight, 314.4;appearance, white crystals; soluble in ethanol,acetone, benzene; m/e ratio, 314.11 (100.0%), 315.11(20.0%), 316.10 (4.5%), 316.12 (1.6%); Elemental Analysis, C, 64.94; H, 5.77; N, 8.91; O, 10.18; S, 10.20;LogP, 4.55; yield, 82%; m.p., 200 - 202 °C; IR, NH bending, 1 595 cm-1; NH stretching, 3 400 cm-1; CH bending, 852 cm-1; CH stretching, 3 150 cm-1; ester group, 1 703 cm-1; C = C, 1 670 cm-1; aromatic, monosubstituted, 700 and 770 cm-1; SH stretching,2 600 cm-1; SH stretching, 661 cm-1.

    3.2.10 Ethyl-2-((1H-benzo[d]imidazol-2-yl)methylthio)-1,2,3,4-tetrahydro-6-methylpyrimidine-5-carboxylate (2a)Molecular formula, C16H20N4O2S; molecular weight, 328.39; appearance, yellowish brown;soluble in ethanol, acetone, benzene; m/e ratio,328.10 (100.0%), 329.10 (19.7%), 330.10 (5.3%), 330.11(1.5%); elemental analysis, C, 58.52; H, 4.91; N, 17.06;O, 9.74; S, 9.76; LogP, 3.07; yield, 91%; m.p., 172 -174 °C; IR: NH bending, 1 546 cm-1; NH stretching,3 313 cm-1; CH bending, 750 cm-1; CH stretching,3 034 cm-1; ester group, 1 700 cm-1; C = C, 1 600 cm-1;aromatic, 750 cm-1; -C-S-C, 750 cm-1; C-S stretching,680 cm-1.

    3.2.11 Ethyl-2-((1H-benzo[d]imidazol-2-yl)methylthio)-1,2,3,4-tetrahydro-6-methyl-4-phenylpyrimidine-5-carboxylate (2b)Molecular formula, C22H24N4O2S;molecular weight, 404.48; appearance, yellowish brown; soluble in ethanol, acetone, benzene; m/e ratio, 404.13 (100.0%), 405.13 (26.1%), 406.13 (5.5%),406.14 (2.8%), 407.13 (1.1%); elemental analysis, C,65.33; H, 4.98; N, 13.85; O, 7.91; S, 7.93; LogP, 5.17;yield, 93%; m.p., 142 - 144 °C; IR, NH bending,1 600 cm-1; NH stretching, 3 313 cm-1; CH bending,842 cm-1; CH stretching, 3 061 cm-1; ester group,1 700 cm-1; C= C, 1 600 cm-1; aromatic, 700 and 742 cm-1;C = N group, 1 644 cm-1; -C-S-C, 742 cm-1; C-S stretching, 700 cm-1.

    3.2.12 Ethyl-2-((1H-benzo[d]imidazol-2-yl)methylthio)-1,2,3,4-tetrahydro-4-(2-hydroxyphenyl)-6-methylpyrimidine-5-carboxylate (2c)Molecular formula,C22H24N4O3S; molecular weight, 420.48; appearance,yellowish brown; soluble in ethanol, acetone,benzene; m/e ratio, 420.13 (100.0%), 421.13 (24.1%),422.12 (4.5%), 422.13 (3.9%), 421.12 (2.3%), 423.12(1.1%); elemental analysis, C, 62.84; H, 4.79; N, 13.32;O, 11.41; S, 7.63; LogP, 4.78; yield, 95%; m.p., 152 -154 °C; IR: NH bending, 1 593 cm-1; NH stretching,3 313 cm-1; CH bending, 700 cm-1; CH stretching,3 055 cm-1; ester group, 1 764 cm-1; C = C, 1 600 cm-1;aromatic o-disubstituted, 700 and 746 cm-1; C = N group, 1 670 cm-1; C-S-C, 746 cm-1; C-S stretching,600 cm-1.

    3.2.13 Ethyl-2-((1H-benzo[d]imidazol-2-yl)methylthio)-1,2,3,4-tetrahydro-4-(3-hydroxyphenyl)-6-methylpyrimidine-5-carboxylate (2d)Molecular formula,C22H24N4O3S; molecular weight, 420.48; appearance,yellowish brown; soluble in ethanol, acetone,benzene; m/e ratio, 420.13 (100.0%), 421.13 (24.1%),422.12 (4.5%), 422.13 (3.9%), 421.12 (2.3%), 423.12(1.1%); elemental analysis, C, 62.84; H, 4.79; N, 13.32;O, 11.41; S, 7.63; LogP, 4.78; yield, 95%; m.p., 223 -225 °C; IR: NH bending, 1 595 cm-1; NH stretching,3 300 cm-1; CH bending, 700 cm-1; CH stretching,3 050 cm-1; ester group, 1 700 cm-1; C = C, 1 600 cm-1;aromatic m-disubstituted, 700 and 742 cm-1; C = N group, 1 595 cm-1; -C-S-C, 742 cm-1; C-S stretching,700 cm-1.

    3.2.14 Ethyl-2-((1H-benzo[d]imidazol-2-yl)methylthio)-1,2,3,4-tetrahydro-4-(4-hydroxyphenyl)-6-methylpyrimidine-5-carboxylate (2e)Molecular formula,C22H24N4O3S; molecular weight, 420.48; appearance,yellowish brown; soluble in ethanol, acetone,benzene; m/e ratio, 420.13 (100.0%), 421.13 (24.1%),422.12 (4.5%), 422.13 (3.9%), 421.12 (2.3%), 423.12(1.1%); elemental analysis, C, 62.84; H, 4.79; N, 13.32;O, 11.41; S, 7.63; LogP, 4.78; yield, 96%; m.p., 138 -140 °C; IR: NH bending, 1 598 cm-1; NH stretching,3 400 cm-1; CH bending, 850 cm-1; CH stretching,3 062 cm-1; ester group, 1 700 cm-1; C = C, 1 598 cm-1;aromatic p-disubstituted, 742 cm-1; C-S-C, 742 cm-1;C-S stretching, 690 cm-1.

    3.2.15 Ethyl-2-((1H-benzo[d]imidazol-2-yl)methylthio)-4-(2-chlorophenyl)-1,2,3,4-tetrahydro-6-methylpyrimidine-5-carboxylate (2f)Molecular formula,C22H23ClN4O2S; molecular weight, 438.93;appearance, yellowish brown; soluble in ethanol,acetone, benzene; m/e ratio, 438.09 (100.0%), 440.09(37.0%), 439.10 (24.1%), 441.09 (9.5%), 440.10 (3.2%),439.09 (2.3%), 442.08 (1.4%); elemental analysis, C,60.20; H, 4.36; Cl, 8.08; N, 12.76; O, 7.29; S, 7.31; LogP, 5.73; yield, 90%; m.p., 106 - 108 °C; IR: NH bending,1 571 cm-1; NH stretching, 3 298 cm-1; CH bending,700 cm-1; CH stretching, 2 950 cm-1; ester group,1 700 cm-1; C = C, 1 470 cm-1; C = N group, 1 691 cm-1;halogen, 700 cm-1; aromatic o-disubstituted, 752 cm-1;-C-S-C, 752 cm-1; C-S stretching, 650 cm-1.

    3.2.16 Ethyl-2-((1H-benzo[d]imidazol-2-yl)methylthio)-1,2,3,4-tetrahydro-4-(2-methoxyphenyl)-6-methylpyrimidine-5-carboxylate (2g)Molecular formula,C23H26N4O3S; molecular weight, 434.51; appearance,yellowish brown; soluble in ethanol, acetone,benzene; m/e ratio, 434.14 (100.0%), 435.14 (27.2%),436.14 (5.1%), 436.15 (3.7%), 437.14 (1.2%); elemental analysis, C, 63.58; H, 5.10; N, 12.89; O, 11.05; S, 7.38;LogP, 5.04; yield, 92%; m.p., 148 - 150 °C; IR: NH bending, 1 590 cm-1; NH stretching, 3 300 cm-1; CH bending, 833 cm-1; CH stretching, 3 150 cm-1; ester group, 1 699 cm-1; ether, 1 184 cm-1; C = C, 1 450 cm-1;C = N group, 1 680 cm-1; aromatic p-disubstituted,800 cm-1; C-S-C, 744 cm-1; C-S stretching, 650 cm-1.

    3.2.17 Ethyl-2-((1H-benzo[d]imidazol-2-yl)methylthio)-4-cinnamyl-1,2,3,4-tetrahydro-6-methylpyrimidine-5-carboxylate (2h)Molecular formula, C25H28N4O2S;molecular weight, 444.55; appearance, yellowish brown; solubility, ethanol, acetone, benzene; m/e ratio, 444.16 (100.0%), 445.17 (27.4%), 446.16 (5.2%),446.17 (4.0%), 445.16 (2.3%), 447.16 (1.2%); elemental analysis, C, 67.54; H, 5.44; N, 12.60; O, 7.20; S, 7.21;LogP, 5.04; yield, 90%; m.p., 180 - 182 °C; IR: NH bending, 1 564 cm-1; NH stretching, 3 250 cm-1; CH bending, 850 cm-1; CH stretching, 3 059 cm-1; ester group, 1 700 cm-1; C = C, 1 480 cm-1; C = N group,1 680 cm-1; aromatic mono-substituted, 694 cm-1; -CS-C, 746 cm-1; C-S stretching, 694 cm-1.

    3.3 Antimicrobial and antifungal activity

    The antimicrobial susceptibility of all synthesized pyrimidine-linked benzimidazole derivatives was tested. Table 7 shows the MIC and minimum fungicidal concentrations (MFCs). The MIC of derivative 2a againstE. coliwas 62.5 μg/mL, which was much more potent than ampicillin, whereas derivatives 2c, 2e, and 2f were equipotent at a MIC of 100 μg/mL.Pseudomonas aeruginosawas sensitive to all synthesized derivatives at 62.5, 100, and 250 μg/mL,but not to ampicillin.Staphylococcus aureuswas sensitive to derivatives 2a, 2b, 2d, 2e, and 2g at 200,100, 100, 100, and 200 μg/mL, respectively, indicating that they were more potent than ampicillin, which was active at 250 μg/mL. The MICs of derivatives 2b and 2f were both 100 μg/mL, and these compounds were equipotent againstS. pyogenes. Derivatives 2b,2c, 2d, 2e, and 2f exerted more effective fungicidal activity againstC. albicanscompared with griseofulvin with MICs of 250 and 500 μg/mL,respectively.

    We used nystatin and griseofulvin as the standard antifungals againstA. niger,C. albicans, andA.clavatus. Table 7 shows the MFCs. Derivatives 2b, 2c,2d, 2e, and 2f exerted fungicidal activity against,C. albicanswas sensitive at a MIC of 250 μg/mL compared with griseofulvin at 500 μg/mL.

    Table 7 Minimum inhibitory and fungicidal concentrations of standard drugs and synthesized derivatives(μg/mL)

    3.4 Lipinski rule of five

    None of the derivatives violated the rule of 5,indicating good absorption or permeation of the derivatives (Table 8).

    4 Discussion

    We applied molecular docking to compare the ability of pyrimidine-linked benzimidazole hybrids to inhibit SARS-CoV-2 main protease and the RBD of spike glycoprotein with approved drugs and native ligands. The binding affinity of several derivatives was similar to that of approved drugs. The formation of a hydrogen bonds with target molecules results in inhibition, but binding affinity can be increased by van der Waals forces, Pi-Pi, and hydrophobic interactions. Thus, optimal inhibitors should comprise ligands that form hydrogen bonds with targets. For example, the binding affinity of remdesivir for the main protease is - 7 kcal/mol,which is much lower than that of approved drugs, but it forms about eight hydrogen bonds with target,which confers better inhibitory activity than these drugs. This could explain why it has been accepted for clinical trials for the management of COVID-19.Our novel derivatives also formed hydrogen bonds with their targets, indicating inhibitory potencytowards the SARS-CoV-2 main protease.

    Table 8 Lipinski rule of five for all synthesized derivatives

    The binding affinity of our novel derivatives for the RBD of the SARS-CoV-2 spike glycoprotein was as good that that of the approved drugs. The binding affinity of ivermectin for the RBD of SARS-CoV-2 spike glycoprotein is - 9.1 kcal/mol and it forms four hydrogen bonds. It interacts with Cys-C at 379, Glu-A at 988, Val-C at 382, Pro-A at 987, Val-A at 991, Val-B at 991, and Lys-C at 378. The binding affinity of remdesivir is - 6.3 kcal/mol and it forms five hydrogen bonds with the RBD. It interacts with Asn-B at 542,Thr-B at 547, Asp-C at 745, Leu-C at 981, Thr-B at 549, Lys-B at 386, and Leu-C at 981. Favipiravir forms four hydrogen bonds with the RBD and its binding affinity is - 5.2 kcal/mol. It interacts with Asp-A at 994,Phe-C at 970, Arg-C at 995, Thr-C at 998, and Gly-C at 999. Ivermectin, remdesivir, and favipiravir are currently applied to treat SARS-CoV-2 infection. Several of our derivatives have good binding affinity and formed up to four hydrogen bonds with the RBD of the SARS-CoV-2 spike glycoprotein.

    Antimicrobial screening revealed that compounds with an aromatic ring at the R position were more potent than ampicillin, which is the standard antimicrobial againstP. aeruginosa,S. aureus, andS. pyogenes.This might be attributed to the polar effect of the aromatic rings. Derivatives without substitution at the R position were more potent than ampicillin againstE. coliandS. aureus, which might have been due to being smaller and having a low molecular weight. Compounds with phenyl, hydroxy phenyl,and chlorophenyl substitutions at the R position were more active than griseofulvin againstC. albicans.

    The drug-likeliness of ligands was assessed using Lipinski's rule of five in order to determine the pharmacokinetic characteristics of the synthesized ligands. All ligands were recognized as drug-like compounds and without any structural caution the physicochemical filter was passed through. The virtual screening method has the advantage of being able to produce ligands with high predicted binding affinities for completely new protein sequences. Here from the binding affinity, we can choose few potential ligands for the further optimization and development of novel anti-SARS-CoV-2 drugs. Compound 2c, 2d, 2e,2f, 2g, and 2h exhibited good binding affinity with main protease and RBD of spike glycoprotein, also formed enough number of hydrogen bonds. We can choose these ligands for further optimization and validation, in order to search for more novel compounds for the treatment of COVID-19.

    We determined changes in the binding affinity of pyrimidines after combining them with benzimidazole to predict the contributions of functional groups. The numbers of hydrogen bonds also changed, indicating the significance of merging benzimidazole with pyrimidine.

    The docking scores of almost all derivatives indicated that binding affinity increased when merged with benzimidazole. Compound 1a formed four hydrogen bonds and 2a formed only one with the SARS-CoV-2 main protease. Compounds 2c, 2d, 2e,2f, and 2 g had better binding affinity and formed more hydrogen bonds than compound 2b, indicating that synthesized derivatives with different substituted benzaldehydes, preferably at the ortho and meta positions, would generate more potent derivatives. The binding affinity of compound 2h increased and it formed two hydrogen bonds, indicating that increasing the chain length of the R group increases potency. We speculated that substitution with cinnamaldehyde will increase binding affinity as well as the number of hydrogen bonds. The information rendered by molecular docking study improved understanding of the structural requirements for developing more novel blockers of SARS-CoV-2 main protease and inhibitors of the RBD of spike glycoprotein.Figure 5 shows the predicted pharmacophore features of each compound.

    Figure 5 Predicted pharmacophore features of novel derivatives for further optimization

    5 Conclusion

    We could not assess the ability of our derivatives to inhibit SARS-CoV-2in vitrodue to safety reasons.However, we investigated their antimicrobial and antifungal properties as preliminary biological evidence. We found that pyrimidine-linked benzimidazole derivatives at specific concentrations were more effective than the standard ampicillin against gram-positive and gram-negative bacteria.Some derivatives were more active at higher concentrations than standard drugs. Gram-negative abcteriaE. coliandP. aeruginosawere more sensitive to the novel derivatives than gram-positive bacteriaS. aureusandS. pyogenes.C. albicanswas sensitive to the derivatives at a MFC of 250 μg/mL.

    The molecular docking method was used to examine whether any possible ligands had potential interactions with the main protease and RBD of spike glycoprotein. Despite certain disadvantages, such as the use ofin vitroconditions rather thanin vivoconditions, molecular docking enables researchers to make more accurate decisions in a smaller duration.We developed eight of derivatives that had binding affinity and potential anti SARS-CoV-2 activities that exceeded those of currently approved drugs for treating COVID-19 infection. However, understanding the pharmacophore features of the SARS-CoV-2 main protease and the RBD of spike glycoprotein provides much scope to generate more potent derivatives. Optimizing the properties of these derivatives in modelsin vivoandin vitro, will lead to more effective options to fight SARS-CoV-2 infection. Because of the critical global COVID-19 situation, we believe that extensive investigation is imperative to acquire a deeper understanding of SARS-CoV-2 and generate effective agents to treat and prevent infection worldwide.At present, a single lead could be a game changer.

    Competing interests

    The authors declare no conflict of interest.

    每晚都被弄得嗷嗷叫到高潮| 制服人妻中文乱码| 午夜激情福利司机影院| 黑人欧美特级aaaaaa片| 亚洲一区中文字幕在线| 国产av在哪里看| 亚洲成人国产一区在线观看| 99国产精品一区二区蜜桃av| 成人国语在线视频| 一级毛片高清免费大全| 悠悠久久av| 久久中文看片网| 欧美成人性av电影在线观看| 久久久国产成人精品二区| 国产激情欧美一区二区| 黄色成人免费大全| 一a级毛片在线观看| 亚洲九九香蕉| 性欧美人与动物交配| 一级毛片高清免费大全| 男人舔女人的私密视频| 亚洲精品色激情综合| 老鸭窝网址在线观看| 欧美黄色淫秽网站| 特级一级黄色大片| 国产精品影院久久| 露出奶头的视频| tocl精华| 国产探花在线观看一区二区| 日韩欧美 国产精品| 黄片小视频在线播放| 69av精品久久久久久| 桃色一区二区三区在线观看| 无限看片的www在线观看| 亚洲全国av大片| 波多野结衣高清作品| 欧美黑人巨大hd| 老司机午夜福利在线观看视频| 欧美高清成人免费视频www| 欧美一区二区精品小视频在线| 国产成年人精品一区二区| 中国美女看黄片| 一卡2卡三卡四卡精品乱码亚洲| 欧美乱色亚洲激情| 97人妻精品一区二区三区麻豆| 俄罗斯特黄特色一大片| 又爽又黄无遮挡网站| 中文资源天堂在线| 亚洲成人精品中文字幕电影| 国产成人精品无人区| 性欧美人与动物交配| 欧美乱色亚洲激情| 99热只有精品国产| 人成视频在线观看免费观看| 好男人在线观看高清免费视频| 亚洲国产欧美一区二区综合| 国产伦一二天堂av在线观看| 免费在线观看日本一区| 免费在线观看视频国产中文字幕亚洲| 国产激情偷乱视频一区二区| 香蕉久久夜色| 少妇熟女aⅴ在线视频| 国产乱人伦免费视频| 国产一区二区三区视频了| av天堂在线播放| 亚洲美女视频黄频| 天堂√8在线中文| 一夜夜www| 国产精华一区二区三区| 两人在一起打扑克的视频| 国产av一区在线观看免费| 中文字幕av在线有码专区| 亚洲欧美日韩东京热| 亚洲成人久久性| 搡老岳熟女国产| 中文字幕人妻丝袜一区二区| 给我免费播放毛片高清在线观看| 最新美女视频免费是黄的| 久久国产精品影院| 丰满人妻一区二区三区视频av | av福利片在线观看| 亚洲精品一区av在线观看| 欧美精品亚洲一区二区| 亚洲aⅴ乱码一区二区在线播放 | www国产在线视频色| 级片在线观看| 国产亚洲精品av在线| 一级黄色大片毛片| 欧美+亚洲+日韩+国产| 国产不卡一卡二| 国产精品九九99| 日韩av在线大香蕉| 一进一出抽搐动态| 欧美中文综合在线视频| 精品一区二区三区av网在线观看| 欧美乱色亚洲激情| 老汉色∧v一级毛片| 美女免费视频网站| 免费在线观看完整版高清| 欧美乱妇无乱码| 99热这里只有是精品50| 久久香蕉精品热| 亚洲片人在线观看| 色精品久久人妻99蜜桃| 精品一区二区三区av网在线观看| 午夜视频精品福利| 久久精品国产亚洲av香蕉五月| 国产私拍福利视频在线观看| 免费电影在线观看免费观看| 欧美性猛交╳xxx乱大交人| 我要搜黄色片| 十八禁人妻一区二区| 免费在线观看成人毛片| 日韩欧美国产在线观看| 国产av麻豆久久久久久久| 亚洲一区中文字幕在线| av天堂在线播放| 男女床上黄色一级片免费看| 国产精品av久久久久免费| 国产精华一区二区三区| 美女扒开内裤让男人捅视频| 99久久99久久久精品蜜桃| 悠悠久久av| 中文字幕熟女人妻在线| 亚洲av电影不卡..在线观看| 日本黄大片高清| 欧美性猛交黑人性爽| 一边摸一边抽搐一进一小说| 欧美3d第一页| 成人18禁在线播放| 久久久久免费精品人妻一区二区| 麻豆久久精品国产亚洲av| 国内揄拍国产精品人妻在线| 亚洲性夜色夜夜综合| 51午夜福利影视在线观看| 免费看十八禁软件| 久久久久国产一级毛片高清牌| 看免费av毛片| 黄色成人免费大全| 亚洲美女黄片视频| 久久香蕉国产精品| 嫁个100分男人电影在线观看| 亚洲免费av在线视频| 久久久久久久久免费视频了| 欧美精品啪啪一区二区三区| 老汉色∧v一级毛片| 国产精品一及| 亚洲aⅴ乱码一区二区在线播放 | 欧美成人午夜精品| 国产一区二区激情短视频| 精品无人区乱码1区二区| 熟妇人妻久久中文字幕3abv| 久久精品国产亚洲av香蕉五月| 久久性视频一级片| 欧美高清成人免费视频www| 国产一区在线观看成人免费| 在线观看午夜福利视频| 亚洲中文日韩欧美视频| 久久人人精品亚洲av| 亚洲精品粉嫩美女一区| 超碰成人久久| 久久精品91蜜桃| 99久久精品热视频| 欧美成人性av电影在线观看| 真人一进一出gif抽搐免费| 九色国产91popny在线| 亚洲欧美激情综合另类| 国产久久久一区二区三区| 老司机在亚洲福利影院| 久久99热这里只有精品18| 日韩高清综合在线| 91老司机精品| 精品一区二区三区视频在线观看免费| 亚洲精品久久国产高清桃花| 国产精品久久电影中文字幕| 手机成人av网站| 日韩成人在线观看一区二区三区| 亚洲九九香蕉| 美女扒开内裤让男人捅视频| 国产乱人伦免费视频| 国产精品久久久人人做人人爽| 丝袜美腿诱惑在线| av片东京热男人的天堂| 欧美乱码精品一区二区三区| 国产精品久久久久久亚洲av鲁大| 俄罗斯特黄特色一大片| 99久久精品国产亚洲精品| 国产伦一二天堂av在线观看| 亚洲自拍偷在线| 亚洲av第一区精品v没综合| 最新在线观看一区二区三区| 国产激情欧美一区二区| 精品一区二区三区视频在线观看免费| 天天躁夜夜躁狠狠躁躁| 欧美黑人欧美精品刺激| 欧美日韩一级在线毛片| 看片在线看免费视频| 男人舔女人的私密视频| 国产精品日韩av在线免费观看| 日韩大码丰满熟妇| 免费在线观看成人毛片| 色综合婷婷激情| 国产免费男女视频| 久久久久久九九精品二区国产 | 波多野结衣高清作品| 最近在线观看免费完整版| 亚洲欧洲精品一区二区精品久久久| 不卡av一区二区三区| 婷婷精品国产亚洲av在线| 国产三级黄色录像| 热99re8久久精品国产| 看片在线看免费视频| 18禁观看日本| 91成年电影在线观看| 很黄的视频免费| 黄色毛片三级朝国网站| 色哟哟哟哟哟哟| 一进一出好大好爽视频| 国产精品久久久久久人妻精品电影| 一进一出抽搐动态| 亚洲av成人精品一区久久| 老司机深夜福利视频在线观看| 亚洲全国av大片| 欧美一区二区国产精品久久精品 | 91大片在线观看| 亚洲欧美精品综合一区二区三区| 欧美黑人精品巨大| 欧美zozozo另类| 成人亚洲精品av一区二区| 亚洲最大成人中文| 亚洲欧美日韩无卡精品| 91av网站免费观看| 欧美3d第一页| 又黄又粗又硬又大视频| 99国产极品粉嫩在线观看| 亚洲av熟女| 精品国内亚洲2022精品成人| 草草在线视频免费看| 在线观看日韩欧美| 看黄色毛片网站| 午夜两性在线视频| 99久久综合精品五月天人人| 亚洲 欧美一区二区三区| 国产伦在线观看视频一区| 精品午夜福利视频在线观看一区| 国产高清有码在线观看视频 | 制服诱惑二区| 精品久久久久久久久久免费视频| 午夜两性在线视频| 亚洲激情在线av| 午夜免费激情av| 中文字幕最新亚洲高清| 久久国产精品影院| 国产精品av视频在线免费观看| 男女视频在线观看网站免费 | 国产主播在线观看一区二区| 国内毛片毛片毛片毛片毛片| 国产亚洲欧美98| 免费在线观看视频国产中文字幕亚洲| 色噜噜av男人的天堂激情| 免费观看人在逋| 国产探花在线观看一区二区| 久久久久久久久久黄片| 蜜桃久久精品国产亚洲av| www.自偷自拍.com| 成年人黄色毛片网站| 欧美性长视频在线观看| 久久中文字幕一级| 亚洲中文日韩欧美视频| 变态另类丝袜制服| 国内精品久久久久精免费| 18禁黄网站禁片免费观看直播| 18禁黄网站禁片午夜丰满| 一级黄色大片毛片| 精品久久久久久久末码| 午夜激情av网站| 俄罗斯特黄特色一大片| 99国产精品99久久久久| 国产午夜精品久久久久久| √禁漫天堂资源中文www| 男人舔奶头视频| 亚洲五月婷婷丁香| 在线观看免费视频日本深夜| 岛国在线免费视频观看| 中文资源天堂在线| 90打野战视频偷拍视频| 成人欧美大片| 亚洲熟妇熟女久久| 最近最新中文字幕大全电影3| 99国产极品粉嫩在线观看| 后天国语完整版免费观看| 免费无遮挡裸体视频| 国产精品av久久久久免费| 亚洲精品av麻豆狂野| 国产精品免费一区二区三区在线| 日韩欧美在线二视频| 久久国产乱子伦精品免费另类| 99精品久久久久人妻精品| 法律面前人人平等表现在哪些方面| 亚洲精品亚洲一区二区| 最近的中文字幕免费完整| 精品一区二区三区人妻视频| 国产精华一区二区三区| 小说图片视频综合网站| 少妇猛男粗大的猛烈进出视频 | 最近视频中文字幕2019在线8| 日韩视频在线欧美| 我的女老师完整版在线观看| 亚洲精品乱码久久久v下载方式| 国产精品无大码| 亚洲人与动物交配视频| 日本免费一区二区三区高清不卡| 日本欧美国产在线视频| 欧美三级亚洲精品| 久久韩国三级中文字幕| 人人妻人人澡人人爽人人夜夜 | 久久精品久久久久久噜噜老黄 | 不卡视频在线观看欧美| 欧美日韩乱码在线| 亚洲人成网站高清观看| 日日撸夜夜添| 日韩欧美国产在线观看| 久久亚洲精品不卡| 内地一区二区视频在线| 久久精品久久久久久噜噜老黄 | 成人高潮视频无遮挡免费网站| 国国产精品蜜臀av免费| 亚洲在线自拍视频| 又粗又硬又长又爽又黄的视频 | 26uuu在线亚洲综合色| 成人鲁丝片一二三区免费| 2022亚洲国产成人精品| 51国产日韩欧美| 欧美一区二区精品小视频在线| 最后的刺客免费高清国语| 国产白丝娇喘喷水9色精品| 我要搜黄色片| 不卡视频在线观看欧美| 青青草视频在线视频观看| 中文字幕av在线有码专区| 久久这里只有精品中国| 熟女人妻精品中文字幕| 一级毛片aaaaaa免费看小| 精品久久久久久成人av| 九草在线视频观看| 国产成年人精品一区二区| 国产精品伦人一区二区| 我的老师免费观看完整版| 亚洲高清免费不卡视频| 久久久久免费精品人妻一区二区| 亚洲熟妇中文字幕五十中出| 免费黄网站久久成人精品| 日韩欧美 国产精品| 成年女人永久免费观看视频| 最近2019中文字幕mv第一页| 看十八女毛片水多多多| 有码 亚洲区| 三级毛片av免费| 成人欧美大片| 精品久久久久久久久亚洲| 国产精品爽爽va在线观看网站| 青春草国产在线视频 | 久久99蜜桃精品久久| 嫩草影院入口| 亚洲av电影不卡..在线观看| 久久久欧美国产精品| 国产成人精品久久久久久| 精华霜和精华液先用哪个| 18禁在线无遮挡免费观看视频| 日本在线视频免费播放| 插逼视频在线观看| 99在线人妻在线中文字幕| 狂野欧美白嫩少妇大欣赏| 亚洲,欧美,日韩| 国产私拍福利视频在线观看| 青春草国产在线视频 | 97超视频在线观看视频| 欧美丝袜亚洲另类| 欧美不卡视频在线免费观看| АⅤ资源中文在线天堂| 成年免费大片在线观看| 欧美日韩综合久久久久久| av又黄又爽大尺度在线免费看 | 少妇猛男粗大的猛烈进出视频 | 男女啪啪激烈高潮av片| 欧美成人a在线观看| 国产在线男女| 国产精品久久久久久精品电影| 久久精品夜色国产| 国产精品不卡视频一区二区| 亚洲精品色激情综合| 国产精品久久久久久久久免| 欧美+亚洲+日韩+国产| 国产精华一区二区三区| 欧美激情国产日韩精品一区| 久久久久久久久久黄片| 午夜精品国产一区二区电影 | 五月玫瑰六月丁香| av在线老鸭窝| 国产成人福利小说| 精品久久久噜噜| 亚洲av成人av| 又爽又黄a免费视频| 久久中文看片网| 免费在线观看成人毛片| 免费观看a级毛片全部| 一进一出抽搐动态| 欧美日韩在线观看h| 亚洲一区高清亚洲精品| 日韩中字成人| 精品日产1卡2卡| 婷婷六月久久综合丁香| 高清在线视频一区二区三区 | a级毛片a级免费在线| 少妇的逼水好多| 美女xxoo啪啪120秒动态图| av在线亚洲专区| 69人妻影院| 特级一级黄色大片| 六月丁香七月| 插逼视频在线观看| 国产精品一区www在线观看| 亚洲精品日韩在线中文字幕 | 亚洲欧洲国产日韩| 尤物成人国产欧美一区二区三区| 欧美精品国产亚洲| 中文字幕av在线有码专区| 美女xxoo啪啪120秒动态图| 欧美日韩国产亚洲二区| 91久久精品国产一区二区成人| 久久久久久久久久久免费av| 欧美xxxx黑人xx丫x性爽| 中文亚洲av片在线观看爽| 在现免费观看毛片| 亚洲激情五月婷婷啪啪| 亚洲欧美精品综合久久99| 人人妻人人澡欧美一区二区| 特大巨黑吊av在线直播| 国产精品久久久久久亚洲av鲁大| 如何舔出高潮| 丰满的人妻完整版| 青春草视频在线免费观看| 久久久久久久午夜电影| 久久久久免费精品人妻一区二区| 岛国在线免费视频观看| 精品不卡国产一区二区三区| 国产淫片久久久久久久久| 久久久午夜欧美精品| 日本黄色片子视频| 日韩制服骚丝袜av| 国内精品久久久久精免费| 日韩强制内射视频| 国产精品永久免费网站| 99热只有精品国产| 欧美高清成人免费视频www| 亚洲av第一区精品v没综合| 麻豆成人av视频| 欧美激情在线99| 国产黄片美女视频| 六月丁香七月| 欧美激情久久久久久爽电影| 久久久久久伊人网av| 在线免费观看的www视频| 国产视频内射| 人妻夜夜爽99麻豆av| 六月丁香七月| 国内精品一区二区在线观看| 国产av不卡久久| 精品日产1卡2卡| 一区二区三区高清视频在线| 蜜臀久久99精品久久宅男| a级毛片免费高清观看在线播放| 国产精品国产三级国产av玫瑰| 亚洲三级黄色毛片| 一级二级三级毛片免费看| 国产伦一二天堂av在线观看| 六月丁香七月| 1000部很黄的大片| 婷婷色av中文字幕| 美女国产视频在线观看| a级一级毛片免费在线观看| 我要搜黄色片| 国产熟女欧美一区二区| 亚洲国产精品成人综合色| av天堂中文字幕网| 亚洲人与动物交配视频| eeuss影院久久| 中文字幕免费在线视频6| 99热网站在线观看| 国产av麻豆久久久久久久| 久久久久久国产a免费观看| 伦精品一区二区三区| 午夜亚洲福利在线播放| 免费av不卡在线播放| 亚洲国产色片| 欧美三级亚洲精品| 国产一区二区三区在线臀色熟女| 日韩成人伦理影院| 亚洲婷婷狠狠爱综合网| 亚洲中文字幕日韩| 久久99热6这里只有精品| 精品国产三级普通话版| 中文字幕人妻熟人妻熟丝袜美| 少妇的逼好多水| 两性午夜刺激爽爽歪歪视频在线观看| 午夜亚洲福利在线播放| 亚洲中文字幕日韩| 丝袜美腿在线中文| 精品熟女少妇av免费看| 国产中年淑女户外野战色| 蜜臀久久99精品久久宅男| 直男gayav资源| 精品久久国产蜜桃| 中文资源天堂在线| 国模一区二区三区四区视频| 国产午夜福利久久久久久| 日本撒尿小便嘘嘘汇集6| 菩萨蛮人人尽说江南好唐韦庄 | 一本久久精品| 国产精品久久久久久亚洲av鲁大| 99久国产av精品| 爱豆传媒免费全集在线观看| 欧美日本视频| 一夜夜www| 亚洲经典国产精华液单| 亚洲av一区综合| 日韩,欧美,国产一区二区三区 | 18禁在线无遮挡免费观看视频| 99热这里只有是精品50| 久久久久久久久久黄片| 亚洲精品456在线播放app| 久久精品91蜜桃| 日本免费a在线| 成人高潮视频无遮挡免费网站| 久久中文看片网| 国产老妇伦熟女老妇高清| 日本成人三级电影网站| 18禁在线播放成人免费| 日韩成人伦理影院| 美女黄网站色视频| 日韩欧美国产在线观看| 午夜a级毛片| 九九爱精品视频在线观看| 国产精品久久久久久亚洲av鲁大| 精品无人区乱码1区二区| 夜夜看夜夜爽夜夜摸| 九色成人免费人妻av| 成年av动漫网址| 中文字幕av成人在线电影| 国产麻豆成人av免费视频| 一个人看的www免费观看视频| 免费人成视频x8x8入口观看| kizo精华| av在线天堂中文字幕| 青春草视频在线免费观看| 国产成人福利小说| 最近最新中文字幕大全电影3| 国产亚洲91精品色在线| 亚洲av电影不卡..在线观看| 免费不卡的大黄色大毛片视频在线观看 | 婷婷精品国产亚洲av| 嫩草影院入口| 国产av在哪里看| 亚洲av电影不卡..在线观看| 久久久精品94久久精品| .国产精品久久| 欧美xxxx黑人xx丫x性爽| 久久欧美精品欧美久久欧美| 成熟少妇高潮喷水视频| 国产国拍精品亚洲av在线观看| 国内精品一区二区在线观看| 日本爱情动作片www.在线观看| 99久久九九国产精品国产免费| 99久久精品国产国产毛片| 成人三级黄色视频| 午夜久久久久精精品| 日本免费a在线| 久久久久久久久久久免费av| 最近的中文字幕免费完整| 91麻豆精品激情在线观看国产| 亚洲丝袜综合中文字幕| 欧美在线一区亚洲| 日韩一本色道免费dvd| 国产一级毛片在线| 国产高清视频在线观看网站| 国产精品国产高清国产av| 高清毛片免费观看视频网站| 亚洲欧美日韩无卡精品| 日本撒尿小便嘘嘘汇集6| 丰满人妻一区二区三区视频av| 欧美日韩国产亚洲二区| 亚洲精品影视一区二区三区av| 免费看a级黄色片| 中文字幕精品亚洲无线码一区| 美女大奶头视频| 成人一区二区视频在线观看| 色哟哟·www| 国产精品.久久久| 在线免费观看不下载黄p国产| 久久99蜜桃精品久久| 欧美色视频一区免费| 免费看a级黄色片| 国产一级毛片在线| 99热网站在线观看| 亚洲丝袜综合中文字幕| 日韩欧美精品免费久久| 亚洲自拍偷在线| 精品久久久久久成人av| 中国国产av一级| 看十八女毛片水多多多| 一级黄片播放器| 精品国产三级普通话版| 91狼人影院| 一本一本综合久久| 亚洲成人精品中文字幕电影|