• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Research on classification diagnosis model of psoriasis based on deep residual network

    2022-01-19 07:58:08LIPengYIDINGChngsongLIShengMINHui
    Digital Chinese Medicine 2021年2期
    關(guān)鍵詞:面向全國(guó)細(xì)分共生

    LI Peng, YI N, DING Chngsong*, LI Sheng, MIN Hui

    a. School of Informatics, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China

    b. The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, China

    c. Key Laboratory of Medical Information Research, Central South University, College of Hunan Province, Changsha, Hunan 410013, China

    d. Software Institute, Hunan College of Information, Changsha, Hunan 410200, China

    ABSTRACT

    Keywords Psoriasis Deep residual network Data enhancement Cross-entropy Adam algorithm Recall

    1 Introduction

    Psoriasis is a chronic recurrent disease characterized by excessive proliferation of epidermal cells and immune inflammation[1]. The disease is characterized by a long course, stubborn, common and ugly appearance, and invasion of a variety of organs in the later stages, and is listed as one of the world’s top ten persistent diseases by the World Health Organization[2].

    Although several current studies have analyzed and summarized the medication rules of famous traditional Chinese medicine doctors for the treatment of psoriasis[3], the diagnosis of psoriasis is rarely discussed. In fact, according to statistics, there are approximately seven million psoriasis patients in China[4].However, only a small number have been diagnosed,mainly owing to a lack of diagnostic ability of grassroots doctors or hospitals. At the “Popular Science Activities of World Psoriasis Day” held in 2018, experts considered that artificial intelligence (AI) technology combined with big data can provide patients with more intuitive auxiliary diagnosis of psoriasis[5-8].

    Psoriasis cannot be completely cured. Basically every patient will relapse and need long-term followup treatment. The diagnosis and treatment of psoriasis, including its four major types, psoriasis vulgaris,joint psoriasis, purulent psoriasis, and erythroderma psoriasis, is very difficult. While diagnosing the disease, we should consider not only the appearance factors, but also the cardiovascular, psychological,gastrointestinal, autoimmune, and other aspects comprehensively. Accurately and quickly diagnosing suspected psoriasis patients and the psoriasis variant they are afflicted with poses a major problem[9]. The diagnosis involves a typical image classification problem, and convolutional neural networks (CNNs) used in deep learning are the primary method to deal with such medical image problems. Deep residual networks (ResNet) are known as one of the most representative CNN models[10]. In the 2015 ImageNet computer vision recognition challenge, ResNet emerged as the champion in all three major challenges: image classification, image location, and image detection.The system error rate of the visual computing group is as low as 3.57%, which can greatly improve computer vision problems. Currently, the group is being widely used in large-scale image data in various applications. This paper proposes a classification diagnosis model of psoriasis based on deep residual network. A ResNet-34 model was trained to classify and diagnose psoriasis, which effectively improved the recognition rate.

    2 Classification and diagnosis of psoriasis in ResNet

    2.1 ResNet principle

    Theoretically, it is generally believed that with greater CNN depth (more parameters), its nonlinear expression ability grows stronger, more complex feature pattern extraction can be performed, and better results can be obtained. However, a large number of studies[10,11]have shown that with an increasing number of layers and a deeper network,the result can worsen because the deeper the network, the lower the accuracy of classification, that is, the performance starts degrading. To solve this problem, HE et al.[10]proposed the famous deep residual network in 2016. ResNet is composed of stacked residual units (as shown in Figure 1). It is easy to optimize and can improve the accuracy by increasing the depth. The internal residual block uses jump connections (short circuit mechanism) to alleviate the gradient disappearance or gradient diffusion caused by increasing depth in deep neural networks.

    In the deep residual network shown in Figure 1,relu[12]represents the activation function of the network. The residual unitF(x) can be expressed as:

    F(x)=H(x)-x(1)

    Here,xrepresents the input value;H(x) represents the feature learned when the input isx. In the two-layer network shown in Figure 1, the optimal output is inputx, therefore, for the network without identity mapping, it needs to be optimized toH(x)=x; however, for the network with identity mapping, that is, a residual block, if the optimal output isx, then only the residual unitF(x) needs to be optimized to 0. The optimization of the latter is simpler and more effective than the former. The principle is as follows.

    Equation (3) can be rewritten as follows, that is,we can obtain the learning characteristics from shallowpto deepQ:

    According to the principle of back propagation[14],it is assumed that the error is ε and the partial derivative with respect toxpcan be obtained as follows:

    2.2 Classification and diagnosis process of psoriasis based on ResNet-34

    A flow chart of psoriasis classification diagnosis based on ResNet-34 is shown in Figure 2. Doctors or the suspected patients themselves take photos of the diseased parts and upload them to an application system or APP. The system or APP calls ResNet-34,which has been trained in advance and deployed to classify and diagnose the uploaded images, and output the conclusion (presence or absence of psoriasis) and the type of psoriasis in case of confirmed diagnosis.

    3 Technical details

    3.1 Psoriasis image preprocessing

    Due to the complexity of psoriasis, the location of the disease is also diverse. The pictures captured by the doctors or patients of the diseased parts are easily affected by factors such as illumination, camera equipment, and device pixels. As a result, there is massive noise and inconsistency of image formats in the obtained image data of psoriasis patients, which is not convenient for further processing. In this study,we preprocessed the sample images from three aspects: data enhancement, image size adjustment,and image format coding, to meet the input requirements of ResNet-34 and prepare for its training.

    Figure 2 Classification and diagnosis process of psoriasis using ResNet-34

    3.1.1 Data enhancement of psoriasis imagesThe acquisition of psoriasis data also involves significant cost. Therefore, if the limited existing data can somehow be enhanced, also called data amplification, it can provide a value equivalent to more data but without a substantial increase in size[13]. It is also an effective way to enlarge the data size. For the ResNet-34 training process, we hope that with a larger scale and higher quality of data, the generalization ability of the trained ResNet-34 can be improved. However, it is mostly difficult to cover all the possible scenarios while collecting data. For example, for illumination conditions, when collecting psoriasis image data, it is difficult for us to control the proportion of light. Therefore, when training the model, we need to add the data pertaining to illumination change and generate various training data dynamically to achieve better outcomes, reduce expenditure, and improve the model robustness.Therefore, it is necessary to enhance the data effectively in the particular case of psoriasis diagnosis. For image data, the commonly used data enhancement methods include rotation, translation,scaling, and edge filling. The core code used for data enhancement of psoriasis images is given below.

    Core code for data enhancement:#First import the keras library 1. from keras.preprocessing.image import ImageDataGenerator,2. img_to_array, load_img 3. pic_path = r‘./yinxiebing.jpg’ #create image path 4. augmentation_path = r‘./data_augmentation' #save path#Define the ImageDataGenerator and explain what actions are used to generate new images:5. data_gen = ImageDataGenerator(rotation_range = 30, #rotate width_shift_range = 0.1, #translation height_shift_range = 0.1, //zoom zoom_range = 0.2, #edge fill fill_mode = ‘nearest’)6. img = load_img(pic_path) #the address to load the picture 7. x = img_to_array(img) #convert to array format to ImageDataGenerator 8. x = x.reshape((1,) + x.shape)9. n = 1 10. for batch in data_gen.flow(x, batch_size = 1,save_to_dir = augmentation_path, save_prefix =‘train’,save_format = ‘jpeg’):11. n + = 1 12. if n > 10: #According to the operation defined by ImageDataGenerator, randomly select several types to generate 10 images.13 break

    3.1.2 Size adjustment of psoriasis imagesThis process involves uniformly adjusting the size of the pictures, which facilitates the use of ResNet-34 model for deep learning. In this study, considering the new psoriasis pictures generated after data augmentation as an example, the core code to adjust the size of psoriasis pictures is given below.

    Image resizing core code:1. from PIL import Image #use PIL library to change image size 2. import os #using os library to read file path 3. img_path = r'./data_augmentation' #read psoriasis pictures

    4. resize_path = r'./resize_image' #put the image after resizing into the resize_image folder 5. for i in os.listdir(img_path):6. im = Image.open(os.path.join(img_path,i))7. out = im.resize((224, 224)) #the size after resizing is 224 × 224 8. if not os.path.exists(resize_path):9. os.makedirs(resize_path)10. out.save(os.path.join(resize_path, i))

    3.1.3 TFRecord codeAs the ResNet-34 model can only accept numerical data as input, we also need to encode the images, that is, convert them to the TFRecord format. TFRecord is the standard format officially recommended by TensorFlow and helps store image data and tags into binary files, making it convenient to quickly copy, move, read, and store them in TensorFlow[14]. When training ResNet-34, by setting up a queue system, the psoriasis data in TFRecord format can be loaded into the queue in advance. The queue will automatically realize the random or orderly data in and out of the stack, and the independence between the queuing system and model training can accelerate the ResNet-34 reading and training. The following is the core code for converting psoriasis images into the TFRecord format.

    Core code for converting image data into TFRecord format:1. import os 2. from PIL import Image 3. import tensorflow as tf 4. cwd = r“./brand_picture/” #image path, two groups of tags are in this directory 5. file_path = r“./” #TFRecord file save path 6. bestnum = 1 000 #number of pictures stored in each TFRecord 7. num = 0 #which picture 8. recordfilenum = 0 #number of TFRecord files 9. classes = [] #put labels into classes 10. for i in os.listdir(cwd):11. classes.append(i)12. ftrecordfilename = (“traindata_63.TFRecords-%.3d”% reco-rdfilenum) #TFRecords format file name 13. writer =tf.python_io.TFRecordWriter(os.path.join(file_path,ftrecordfilename))

    14. for index, name in enumerate(classes):15. class_path = os.path.join(cwd, name)16. for img_name in os.listdir(class_path):17. num = num + 1 18. if num > bestnum: #over 1 000, write the next TFRecord 19. num = 1 20. recordfilenum + = 1 21. ftrecordfilename =(“traindata_63.TFRecords-%.3d”% recordfilenum)22. writer =tf.python_io.TFRecordWriter(os.path.join(file_path,ftrecordfilename))23. img_path = os.path.join(class_path,img_name)#address of each picture 24. img = Image.open(img_path, ‘r’)25. img_raw = img.tobytes() #convert pictures to binary format 26. example = tf.train.Example(27. features = tf.train.Features(feature = {‘label’:tf.train.Feature(int64_list =tf.train.Int64List(value = [index])),‘img_raw’: tf.train.Feature(bytes_list =tf.train.BytesList(value = [img_raw])),}))28. writer.write(example.SerializeToString())#serialize to string 29. write.close()

    3.2 Construction of ResNet-34

    Figure 3 ResNet-34 structure for psoriasis classification diagnosis

    3.3 Model training

    ResNet-34 solves the problems of information loss in traditional convolution by changing the learning objective, that is, from learning the complete output to only the residual. It protects the integrity of information by passing the input directly to the output. In the ResNet-34 model proposed in this paper, we use cross-entropy as the loss function to evaluate the accuracy of the model, use the adaptive moment estimation (Adam) algorithm as the optimization strategy in the training process, and use the Softmax function to realize the multiclassification diagnosis of psoriasis[15]. We will elaborate in detail below.

    3.3.1 Loss functionThe loss function is used to estimate the inconsistency between the predicted and real value of ResNet-34. It is a non-negative real value function. The smaller the loss function, the better the robustness of ResNet-34. In this study, we used cross-entropy as the loss function. Crossentropy can measure the difference between two different probability distributions in the same random variable, which is expressed as the difference between the real probability distribution and the predicted probability distribution of psoriasis. The smaller the cross-entropy, better the prediction effect of ResNet-34. The calculation formula is as follows:

    3.3.2 OptimizerIn this study, we used the Adam[16]algorithm to train ResNet-34. The Adam algorithm is an optimization algorithm that combines the Momentum[17]and RMSProp[18]algorithms in deep learning models. In the initial stage of training, we first initialized the cumulant and square cumulant of gradient:

    Then, in the t-round training, we calculated the parameter update of momentum algorithm and RMSProp algorithm:

    Through Equation (9), we can get the correction value of the parameter gradient cumulant in the first iteration. Next, the weight and bias of the model can be updated according to the combination of Momentum and RMSProp algorithms:

    In the Adam algorithm, parameter β1corresponds to β value in the Momentum algorithm, which is generally taken as 0.9; parameter β2corresponds to βvalue in the RMSProp algorithm, which is generally taken as 0.999, while ε is a smooth term, which is generally taken as 10-8, while the learning rateα needs to be slightly adjusted during training. To sum up, the pseudo code of the Adam algorithm can be expressed as follows:

    1. Initializevdw=0,vdb=0,sdw=0,sdb=0;

    2. In the t-th iteration, calculatedwanddbwith the mini batch gradient descent method;

    因此,2017年陽(yáng)光印網(wǎng)推出了“300+1合伙人計(jì)劃”,面向全國(guó)招募供應(yīng)商合伙人。所謂“300+1合伙人計(jì)劃”是指,原本只是與陽(yáng)光印網(wǎng)開(kāi)展接單生產(chǎn)的供應(yīng)廠商,通過(guò)資本合作等方式,成為陽(yáng)光印網(wǎng)控股廠商中的一員,進(jìn)而實(shí)現(xiàn)全面的共生共贏。這些供應(yīng)廠商將在其細(xì)分領(lǐng)域和所覆蓋的地域里,扮演陽(yáng)光印網(wǎng)優(yōu)勢(shì)穩(wěn)定供應(yīng)點(diǎn)的角色。

    3. Calculate the weighted average of the Momentum index;

    4. Update with RMSProp;

    5. Calculate the deviation correction of Momentum and RMSProp;

    6. Update the weights.

    3.4 Classification diagnosis

    After the ResNet-34 training, we used the Softmax function, mainly used in multi-classification processes, to realize the classification diagnosis of psoriasis. It maps the output of multiple neurons to the (0, 1) interval as probability to understand, to realize multi-classification. The output of ResNet-34 model has five values, representing the four common psoriasis types (vulgaris, arthritic, purulent, and erythroderma) and normal condition (no disease).Therefore, for each sample, according to the definition of the Softmax function, the probability that it belongs to the categoryiis as follows:

    4 Experiment

    4.1 Data sources

    From January 2017 to December 2019, we collected data of psoriasis patients from the affiliated hospitals of Hunan University of Chinese Medicine, and used them as the dataset for constructing the classification diagnosis model. The dataset contained the data of patients with four common types of psoriasis. All data types were images, sized 224 × 224. A total of 30 000 data samples were screened.

    4.2 Experimental setup

    We performed the experiment on an 8-core 16 thread computer (Intel Core i9-9960x @ 3.10GHz CPU, 16G memory), with Ubuntu 16.04 LTS 64-bit operating system. In the ResNet-34 model, relu function was selected as the activation function, and the psoriasis classification and diagnosis model based on deep residual network was implemented using Tensor-Flow and Anaconda platforms. In addition, to avoid model over fitting, we used k-fold cross validation(k = 10 in the paper) on 30 000 psoriasis data samples to evaluate the predictive performance of ResNet-34,and selected the best performance of the super parameters to obtain the final model.

    4.3 Evaluation index and comparison object

    In this study, the multi-classification problem was transformed into a binary classification problem for experimental evaluation. The transformation method used one vs. the rest method: one class is marked as a positive example and the remaining classes are marked as counter-examples. As the output of ResNet-34 in this study involved five possible types of results (four for psoriasis, one for normal), only five classifiers were constructed to realize the problem conversion. Then, the precision, recall,F1-score, and ROC curve were used to evaluate the performance of psoriasis classification diagnosis based on ResNet-34.Assuming that psoriasis patients represent positive cases and normal people represent counterexamples, the following confusion matrix can be used to measure the performance of ResNet-34.

    Here,TPindicates that the positive example is predicted to be a positive example, that is, the real case;FNmeans that the positive example is predicted to be a negative example, that is, a false counter example;FPis a prediction of a counter example as a positive example, that is, a false positive example; andTNis a prediction of a counter example as a counter example, that is, a true counter example. According to Table 1, precision, recall, andF1-score can be defined as:

    For the task of psoriasis diagnosis, it is necessary to focus on the recall instead of precision because most cases involve a positive case (no disease) and small number of counter cases (disease). The sample proportion of the two groups is very different. For example, in 100 records, 10 cases of psoriasis were found, out of which six were false positives and four were accurately identified. Although the precision was reduced to 94%, the recall increased from 0 to 100%. Although the disease was misreported occasionally, there was no omission of people with psoriasis.

    Table 1 Performance indicators of psoriasis classification based on confusion matrix

    The receiver operating characteristic (ROC) curve is used to describe the tradeoff between true positive and false positive rates. The true positive and false positive rates are defined as follows:

    In addition, we compared the performance of ResNet-34 and VGG19 in psoriasis diagnosis to evaluate the superiority of this model. The implementation of VGG19 is described in reference.

    4.4 Result analysis

    Figure 4 shows the comparative recall rates of ResNet-34 and VGG19 for classification diagnosis on the psoriasis dataset. As evident from Figure 4, the recall rates of both the methods increase by varying degrees with an increase in the psoriasis dataset size.However, on the whole, the recall rate of this method is always higher than that of VGG19. On average, the recall rate of this method is approximately 9.5%higher than that of VGG19. The reasons are as follows: (1) compared with VGG19, ResNet-34 has greater depth and can extract better and richer features of psoriasis; (2) ResNet-34 can effectively solve the performance degradation problem caused by the increasing network depth by introducing the concept of residual blocks and adding identity mapping connection into the network structure.

    Figure 4 Comparison of recall (ResNet-34 vs. VGG19)

    Figure 5 shows the comparativeF1-scores of the two methods for the classification diagnosis of psoriasis. It is visible that theF1-scores of the two methods show a rising trend with an increase in the scale of psoriasis dataset. However, the performance of the proposed method is always better than that of VGG19. The reasons are as follows: (1) we used a variety of techniques, such as data enhancement and TFRecord encoding to clean the original psoriasis images, which minimized the impact of noise data on the diagnosis model; (2) we used the Adam algorithm to train the model, which reduced the training time and further ensured the accuracy of diagnosis.

    Finally, to comprehensively evaluate the specificity and sensitivity of ResNet-34 and VGG19 in the classification and diagnosis of psoriasis, their ROC curves were drawn and compared, as shown in Figure 6. For each test sample, ResNet-34 and VGG19 received a “score” value for each classification, which indicated the likelihood of the sample to belong to a positive (or negative) case. To draw the ROC curve,we required a series of values pertaining to true positive and false positive rates. In this study, we achieved this objective by performing the following steps:

    Figure 5 Comparison of F1-scores (ResNet-34 vs.VGG19)

    (1) Sort the “score” value from high to low and use it as the threshold;

    (2) For each threshold, the test samples, whose“score” value is greater than or equal to this threshold, are considered as positive cases, while others are negative examples. This step helped form a set of forecast data;

    (3) The ROC curve can be obtained by connecting the observed data values.

    Figure 6 ROC-AUC comparison (ResNet-34 vs.VGG19)

    In Figure 6, the area under the ROC curve is called AUC. The classifier with a larger AUC value (area) has better performance. In Figure 5, the AUC values below the red and black lines represent the classification performances of VGG19 and ResNet-34, respectively. The AUC value of the latter is clearly higher than that of the former, which shows that ResNet-34 performs better than VGG19, and can be applied to psoriasis classification diagnosis task in real environment.

    5 Conclusion

    Psoriasis is a type of skin disease and is very difficult to cure. Owing to the various causes of the disease,accurately classifying and diagnosing psoriasis is difficult. In this paper, a psoriasis classification diagnosis model based on deep residual network is proposed. A 34-layer residual network was designed to achieve an accurate diagnosis of psoriasis. The final experimental results also verify the effectiveness of the proposed model. In the next step, we will continue to analyze the symptoms, syndrome types,and medication rules of psoriasis, build the knowledge map of the integrated diagnosis,treatment, and medication of psoriasis, and further propose a psoriasis medication recommendation model based on graph convolution neural network,to provide better a decision support system for doctors' diagnosis and treatment.

    Acknowledgements

    We thank for the funding support from the Key Research and Development Plan of China(No. 2017YFC1703306), Youth Project of Natural Science Foundation of Hunan Province (No.2019JJ50453), Project of Hunan Health Commission(No. 202112072217), Open Fund Project of Hunan University of Traditional Chinese Medicine(No. 2018JK02), and General Project of Education Department of Hunan Province (No. 19C1318).

    Competing interests

    The authors declare no conflict of interest.

    猜你喜歡
    面向全國(guó)細(xì)分共生
    《今天》雜志(面向全國(guó)發(fā)行的大型綜合期刊)
    今天(2023年23期)2023-10-09 09:02:48
    《今天》雜志(面向全國(guó)發(fā)行的大型綜合期刊)投稿須知
    今天(2023年14期)2023-09-23 08:16:58
    《今天》雜志(面向全國(guó)發(fā)行的大型綜合期刊)
    今天(2023年11期)2023-08-04 05:15:50
    人與熊貓 和諧共生
    共生
    深耕環(huán)保細(xì)分領(lǐng)域,維爾利為環(huán)保注入新動(dòng)力
    面向全國(guó)征稿 面向國(guó)內(nèi)外發(fā)行 歡迎訂閱《中央社會(huì)主義學(xué)院學(xué)報(bào)》
    優(yōu)生共生圈培養(yǎng)模式探索
    優(yōu)生共生圈培養(yǎng)模式探索
    1~7月,我國(guó)貨車(chē)各細(xì)分市場(chǎng)均有增長(zhǎng)
    噜噜噜噜噜久久久久久91| 嫩草影视91久久| 亚洲成a人片在线一区二区| 国产精华一区二区三区| 深夜精品福利| 亚洲 国产 在线| 变态另类成人亚洲欧美熟女| 深夜a级毛片| 亚洲av中文字字幕乱码综合| 最近在线观看免费完整版| 欧美黑人欧美精品刺激| 久久精品国产自在天天线| 大型黄色视频在线免费观看| 午夜福利在线在线| 国产在线男女| 久久亚洲精品不卡| 中文字幕av在线有码专区| 午夜精品久久久久久毛片777| 俺也久久电影网| 香蕉av资源在线| 亚州av有码| 麻豆成人av在线观看| 搞女人的毛片| 十八禁人妻一区二区| 人人妻人人澡欧美一区二区| 18禁黄网站禁片免费观看直播| 欧美日韩瑟瑟在线播放| 亚洲在线观看片| 男人和女人高潮做爰伦理| 无人区码免费观看不卡| 欧美成人性av电影在线观看| 美女xxoo啪啪120秒动态图 | 国产美女午夜福利| 成人无遮挡网站| 国产精品美女特级片免费视频播放器| 亚洲一区高清亚洲精品| 日本撒尿小便嘘嘘汇集6| 午夜福利成人在线免费观看| 欧美一级a爱片免费观看看| 可以在线观看毛片的网站| 天堂网av新在线| 又黄又爽又刺激的免费视频.| 国产v大片淫在线免费观看| 在线免费观看不下载黄p国产 | 一级作爱视频免费观看| 国产精品影院久久| 看黄色毛片网站| 一级a爱片免费观看的视频| 久久国产精品人妻蜜桃| 国内精品久久久久久久电影| 亚洲av熟女| 狠狠狠狠99中文字幕| 最近最新中文字幕大全电影3| 国产日本99.免费观看| 成人鲁丝片一二三区免费| 国产亚洲精品久久久com| 深爱激情五月婷婷| 国产精品人妻久久久久久| 毛片女人毛片| 一本一本综合久久| www.www免费av| 一边摸一边抽搐一进一小说| av在线天堂中文字幕| 免费搜索国产男女视频| 毛片女人毛片| 少妇人妻精品综合一区二区 | 999久久久精品免费观看国产| 色5月婷婷丁香| 亚洲黑人精品在线| 中国美女看黄片| 老司机午夜十八禁免费视频| 成熟少妇高潮喷水视频| 蜜桃久久精品国产亚洲av| 精品国内亚洲2022精品成人| 日本一本二区三区精品| 午夜视频国产福利| 老司机深夜福利视频在线观看| 亚洲,欧美,日韩| 免费无遮挡裸体视频| 757午夜福利合集在线观看| 亚洲人成网站在线播放欧美日韩| 免费看a级黄色片| 色吧在线观看| 少妇的逼好多水| 成人特级av手机在线观看| 波多野结衣高清作品| 国产成年人精品一区二区| 黄色女人牲交| 精品久久久久久久久av| 精品一区二区免费观看| 日韩欧美三级三区| 精品久久国产蜜桃| 九色成人免费人妻av| 久久6这里有精品| a在线观看视频网站| 欧美色欧美亚洲另类二区| 久久久国产成人精品二区| 在线播放国产精品三级| 免费看不卡的av| 欧美变态另类bdsm刘玥| 国产午夜精品一二区理论片| 亚洲人成网站高清观看| 亚洲精品乱码久久久v下载方式| 亚洲精品一区蜜桃| 精品视频人人做人人爽| 免费看光身美女| 国产综合懂色| 波多野结衣巨乳人妻| 国产熟女欧美一区二区| 嫩草影院新地址| 插逼视频在线观看| 免费观看在线日韩| 成人黄色视频免费在线看| 欧美日韩在线观看h| 亚洲天堂av无毛| 美女主播在线视频| 国内揄拍国产精品人妻在线| 男女国产视频网站| 校园人妻丝袜中文字幕| 免费观看的影片在线观看| 久热久热在线精品观看| 久久精品国产亚洲av天美| av在线老鸭窝| 看十八女毛片水多多多| 日本黄大片高清| 亚洲欧美成人综合另类久久久| 深爱激情五月婷婷| 欧美xxxx黑人xx丫x性爽| 天堂俺去俺来也www色官网| 成人鲁丝片一二三区免费| 在线观看一区二区三区激情| 国产成人freesex在线| 国产免费福利视频在线观看| 欧美bdsm另类| 亚洲国产欧美人成| 在线观看三级黄色| 成人漫画全彩无遮挡| 日韩亚洲欧美综合| 美女视频免费永久观看网站| 国产成人午夜福利电影在线观看| 肉色欧美久久久久久久蜜桃 | 亚洲av福利一区| 校园人妻丝袜中文字幕| 男插女下体视频免费在线播放| 一级av片app| 中文字幕亚洲精品专区| 晚上一个人看的免费电影| 国产在线男女| 亚洲经典国产精华液单| 国产免费福利视频在线观看| 你懂的网址亚洲精品在线观看| 交换朋友夫妻互换小说| 亚洲av免费在线观看| 九色成人免费人妻av| 亚洲精品国产色婷婷电影| av国产久精品久网站免费入址| 日本黄色片子视频| 久久精品熟女亚洲av麻豆精品| 丝袜喷水一区| 欧美潮喷喷水| 91精品一卡2卡3卡4卡| 大香蕉久久网| 全区人妻精品视频| 免费看a级黄色片| 日本wwww免费看| 丰满人妻一区二区三区视频av| 国国产精品蜜臀av免费| 天天躁日日操中文字幕| 精品99又大又爽又粗少妇毛片| av在线老鸭窝| 日韩,欧美,国产一区二区三区| 久久鲁丝午夜福利片| 国产老妇女一区| 国产精品一区二区三区四区免费观看| 另类亚洲欧美激情| 国产探花极品一区二区| 精品少妇黑人巨大在线播放| 纵有疾风起免费观看全集完整版| 日本黄大片高清| 街头女战士在线观看网站| 最近最新中文字幕免费大全7| 久久久国产一区二区| 欧美成人a在线观看| 青春草国产在线视频| 青春草视频在线免费观看| 国产伦在线观看视频一区| 91狼人影院| .国产精品久久| 永久网站在线| 成人黄色视频免费在线看| 一边亲一边摸免费视频| 免费观看a级毛片全部| 日韩三级伦理在线观看| av又黄又爽大尺度在线免费看| 国产精品爽爽va在线观看网站| 久久ye,这里只有精品| 亚洲综合精品二区| 国产精品99久久99久久久不卡 | 精品久久久噜噜| 国产精品久久久久久精品古装| 又爽又黄a免费视频| 久久久久久久久久成人| 欧美三级亚洲精品| 久久久久精品久久久久真实原创| 2018国产大陆天天弄谢| 综合色丁香网| 国产 精品1| 99热全是精品| av在线老鸭窝| 80岁老熟妇乱子伦牲交| 亚洲国产日韩一区二区| 久久99精品国语久久久| 五月玫瑰六月丁香| 男的添女的下面高潮视频| 免费观看无遮挡的男女| 禁无遮挡网站| 婷婷色av中文字幕| 真实男女啪啪啪动态图| 亚洲经典国产精华液单| 免费看a级黄色片| 亚洲熟女精品中文字幕| 亚州av有码| 国产在视频线精品| 亚洲在线观看片| 午夜福利高清视频| 日本黄大片高清| 精品人妻一区二区三区麻豆| 亚洲,欧美,日韩| 三级国产精品欧美在线观看| 亚洲美女视频黄频| 最后的刺客免费高清国语| 成年女人在线观看亚洲视频 | 国产老妇伦熟女老妇高清| 国产视频首页在线观看| 精品一区二区三区视频在线| 午夜免费鲁丝| 极品少妇高潮喷水抽搐| 亚洲精品乱码久久久久久按摩| 午夜福利在线在线| 久久久久久伊人网av| 黄色怎么调成土黄色| 国产精品99久久99久久久不卡 | 一区二区三区四区激情视频| 国产视频内射| 蜜桃久久精品国产亚洲av| 亚洲精品一二三| 91久久精品电影网| av国产免费在线观看| 中文精品一卡2卡3卡4更新| 婷婷色综合www| 久久久久久久亚洲中文字幕| 久久久欧美国产精品| 国产熟女欧美一区二区| 久久久成人免费电影| 欧美zozozo另类| 免费看av在线观看网站| 亚洲性久久影院| 91久久精品电影网| 国产伦精品一区二区三区视频9| 在线观看三级黄色| 亚洲最大成人av| 国产淫片久久久久久久久| 秋霞伦理黄片| 国产精品一区二区在线观看99| 在线观看一区二区三区| 国产精品爽爽va在线观看网站| 久久久久精品性色| 在线观看人妻少妇| 久久久久国产网址| 欧美亚洲 丝袜 人妻 在线| 有码 亚洲区| 亚洲精品国产av成人精品| 亚洲精品国产av蜜桃| 夜夜爽夜夜爽视频| 国产成人freesex在线| 人妻夜夜爽99麻豆av| 国产精品秋霞免费鲁丝片| 我要看日韩黄色一级片| 欧美成人一区二区免费高清观看| 如何舔出高潮| 亚洲欧美日韩东京热| 国产一区二区三区av在线| 亚洲色图综合在线观看| 人妻系列 视频| 欧美变态另类bdsm刘玥| 身体一侧抽搐| 久久久国产一区二区| 爱豆传媒免费全集在线观看| 六月丁香七月| 久久精品夜色国产| 国产欧美日韩精品一区二区| 在线看a的网站| 国产欧美另类精品又又久久亚洲欧美| 亚洲最大成人手机在线| 亚洲丝袜综合中文字幕| 欧美精品人与动牲交sv欧美| 国产精品爽爽va在线观看网站| 建设人人有责人人尽责人人享有的 | 欧美xxxx性猛交bbbb| 波多野结衣巨乳人妻| 久久精品人妻少妇| 有码 亚洲区| 国产中年淑女户外野战色| 欧美潮喷喷水| 欧美精品人与动牲交sv欧美| 丰满乱子伦码专区| 黄色视频在线播放观看不卡| 亚洲av成人精品一区久久| 成人毛片a级毛片在线播放| 国产亚洲午夜精品一区二区久久 | 美女脱内裤让男人舔精品视频| 日韩伦理黄色片| 国精品久久久久久国模美| 中文字幕亚洲精品专区| 不卡视频在线观看欧美| 精华霜和精华液先用哪个| 亚洲欧美日韩卡通动漫| 亚洲久久久久久中文字幕| 国产黄片美女视频| 又大又黄又爽视频免费| 秋霞在线观看毛片| 久久精品国产亚洲网站| 欧美日本视频| 在线观看av片永久免费下载| 国产精品精品国产色婷婷| 国产乱来视频区| 搞女人的毛片| 欧美三级亚洲精品| 少妇人妻 视频| 美女内射精品一级片tv| 丝袜喷水一区| 你懂的网址亚洲精品在线观看| 午夜福利高清视频| 久久久精品94久久精品| 精品久久久久久久末码| 亚洲成人一二三区av| 亚洲成色77777| 一级毛片 在线播放| 国产精品一区www在线观看| 免费av观看视频| 亚洲成人精品中文字幕电影| 校园人妻丝袜中文字幕| 新久久久久国产一级毛片| 你懂的网址亚洲精品在线观看| 九色成人免费人妻av| 国产视频内射| 一个人看视频在线观看www免费| 99久久精品热视频| 高清欧美精品videossex| 日韩一区二区视频免费看| 国产黄频视频在线观看| 久久97久久精品| av黄色大香蕉| 寂寞人妻少妇视频99o| 国产成人福利小说| 亚洲成人一二三区av| 三级男女做爰猛烈吃奶摸视频| 久久久国产一区二区| 欧美丝袜亚洲另类| 久久精品国产亚洲av涩爱| 久久99热这里只有精品18| 最近手机中文字幕大全| 日韩欧美一区视频在线观看 | 亚洲久久久久久中文字幕| 成人毛片60女人毛片免费| a级毛片免费高清观看在线播放| 特大巨黑吊av在线直播| 欧美日韩综合久久久久久| 国产一区亚洲一区在线观看| 亚洲人与动物交配视频| 黄色日韩在线| av一本久久久久| 国产69精品久久久久777片| 亚洲最大成人中文| 久久久久久伊人网av| 在线免费观看不下载黄p国产| 特级一级黄色大片| 爱豆传媒免费全集在线观看| 狂野欧美白嫩少妇大欣赏| 欧美激情国产日韩精品一区| 亚洲av.av天堂| 丝袜脚勾引网站| 内射极品少妇av片p| 国产精品久久久久久精品电影| 国产 精品1| 欧美激情国产日韩精品一区| 亚洲国产精品专区欧美| 99热6这里只有精品| 欧美人与善性xxx| 免费电影在线观看免费观看| 久久久色成人| 亚洲,欧美,日韩| 国产精品国产三级国产av玫瑰| 亚洲精品第二区| 老司机影院毛片| 中国国产av一级| 97在线人人人人妻| 男女边摸边吃奶| 色播亚洲综合网| 亚洲在线观看片| 看非洲黑人一级黄片| 高清欧美精品videossex| 日韩成人伦理影院| 日韩中字成人| 2021少妇久久久久久久久久久| 欧美人与善性xxx| 国产精品人妻久久久影院| 日韩一区二区三区影片| 国产熟女欧美一区二区| 日本av手机在线免费观看| 国产 一区 欧美 日韩| 欧美日韩在线观看h| 亚洲av免费高清在线观看| kizo精华| 色吧在线观看| 久久精品夜色国产| 国产精品一区二区三区四区免费观看| 亚洲内射少妇av| 午夜精品国产一区二区电影 | 日韩三级伦理在线观看| 久久久久久久大尺度免费视频| 欧美日韩一区二区视频在线观看视频在线 | 国产成人福利小说| 成年av动漫网址| 午夜福利在线在线| 亚洲最大成人手机在线| 日日摸夜夜添夜夜添av毛片| 少妇人妻 视频| 韩国高清视频一区二区三区| 女人久久www免费人成看片| 黑人高潮一二区| 久久久久久久大尺度免费视频| 日韩一本色道免费dvd| 女人十人毛片免费观看3o分钟| 久久久久久久亚洲中文字幕| 国产精品福利在线免费观看| 在线观看免费高清a一片| 免费看日本二区| 伊人久久精品亚洲午夜| 日韩人妻高清精品专区| 亚洲av福利一区| 禁无遮挡网站| 丝袜喷水一区| 午夜福利在线观看免费完整高清在| 久久精品国产自在天天线| 亚洲精品影视一区二区三区av| 嘟嘟电影网在线观看| 欧美日本视频| eeuss影院久久| 夫妻午夜视频| 在线观看免费高清a一片| 国产 一区精品| 久久人人爽av亚洲精品天堂 | 精品久久久久久久末码| 国产精品99久久久久久久久| 国产亚洲午夜精品一区二区久久 | 久久久久久伊人网av| 日韩一区二区三区影片| 永久网站在线| 日韩免费高清中文字幕av| 精品酒店卫生间| 久久久精品94久久精品| 欧美一级a爱片免费观看看| 亚洲国产av新网站| 亚洲av不卡在线观看| 国产精品国产三级专区第一集| 在线观看免费高清a一片| 国产又色又爽无遮挡免| 日韩三级伦理在线观看| 亚洲不卡免费看| 亚洲成人精品中文字幕电影| 美女cb高潮喷水在线观看| 少妇高潮的动态图| 国产男人的电影天堂91| 国产亚洲一区二区精品| 在线观看av片永久免费下载| 婷婷色综合www| 在线a可以看的网站| 青春草亚洲视频在线观看| 小蜜桃在线观看免费完整版高清| 国产亚洲91精品色在线| 久久久成人免费电影| 成年免费大片在线观看| 天天躁夜夜躁狠狠久久av| 男人和女人高潮做爰伦理| 免费av不卡在线播放| 久久精品久久精品一区二区三区| 97超碰精品成人国产| 亚洲一级一片aⅴ在线观看| 亚洲国产成人一精品久久久| 亚洲欧美日韩无卡精品| 亚洲四区av| 全区人妻精品视频| 久久97久久精品| 欧美高清成人免费视频www| 国产黄a三级三级三级人| 亚洲精品乱码久久久v下载方式| 日本午夜av视频| 国产视频内射| 只有这里有精品99| 国产精品嫩草影院av在线观看| 少妇高潮的动态图| 精品少妇久久久久久888优播| 亚洲精华国产精华液的使用体验| 亚洲精品乱久久久久久| 亚洲久久久久久中文字幕| 在线观看av片永久免费下载| 亚洲欧美中文字幕日韩二区| 大话2 男鬼变身卡| 亚洲欧美清纯卡通| 免费av不卡在线播放| 亚洲精品影视一区二区三区av| 在线精品无人区一区二区三 | 国产一区二区三区av在线| 日韩一区二区三区影片| 日日啪夜夜撸| 久久久久性生活片| av在线观看视频网站免费| 国产精品国产三级国产专区5o| 欧美日韩在线观看h| 中文字幕亚洲精品专区| 国产精品秋霞免费鲁丝片| 尤物成人国产欧美一区二区三区| 久久久成人免费电影| 老司机影院成人| 一级av片app| 国产午夜精品一二区理论片| 久久久久久久精品精品| 少妇高潮的动态图| 一区二区三区免费毛片| 插逼视频在线观看| 中文乱码字字幕精品一区二区三区| 久久久久久九九精品二区国产| 亚洲精品日本国产第一区| 欧美日韩一区二区视频在线观看视频在线 | 大片电影免费在线观看免费| 国产色爽女视频免费观看| 人体艺术视频欧美日本| 爱豆传媒免费全集在线观看| 精品人妻一区二区三区麻豆| 我的女老师完整版在线观看| 在线观看人妻少妇| 国产精品麻豆人妻色哟哟久久| 街头女战士在线观看网站| 又爽又黄无遮挡网站| 又大又黄又爽视频免费| 九九爱精品视频在线观看| 久久国产乱子免费精品| 如何舔出高潮| 99久久精品热视频| 国产爽快片一区二区三区| 久久久久久伊人网av| 观看免费一级毛片| 国产精品三级大全| 欧美xxxx性猛交bbbb| 99热国产这里只有精品6| 国产日韩欧美亚洲二区| 高清av免费在线| 久久精品国产亚洲av涩爱| 欧美一区二区亚洲| 小蜜桃在线观看免费完整版高清| 成人特级av手机在线观看| 亚洲av中文字字幕乱码综合| 亚洲av一区综合| h日本视频在线播放| 卡戴珊不雅视频在线播放| 日本免费在线观看一区| 日韩亚洲欧美综合| 最近最新中文字幕大全电影3| 精品一区在线观看国产| 女人久久www免费人成看片| 性插视频无遮挡在线免费观看| 欧美激情久久久久久爽电影| 18禁在线无遮挡免费观看视频| 欧美日韩一区二区视频在线观看视频在线 | 免费看日本二区| 精品视频人人做人人爽| 国产成年人精品一区二区| 日日啪夜夜爽| 亚洲一级一片aⅴ在线观看| 国产成人aa在线观看| av在线app专区| 少妇的逼好多水| 欧美激情国产日韩精品一区| 丰满少妇做爰视频| 在线看a的网站| 久久人人爽av亚洲精品天堂 | 亚洲电影在线观看av| 亚洲高清免费不卡视频| 国产女主播在线喷水免费视频网站| 欧美丝袜亚洲另类| 人妻制服诱惑在线中文字幕| 亚洲精品影视一区二区三区av| 内射极品少妇av片p| 亚洲精品国产av成人精品| 神马国产精品三级电影在线观看| 极品教师在线视频| 免费高清在线观看视频在线观看| 又爽又黄无遮挡网站| 在线a可以看的网站| 欧美精品一区二区大全| 热99国产精品久久久久久7| 在线观看av片永久免费下载| 中文字幕制服av| 国产男人的电影天堂91| 赤兔流量卡办理| 丝袜美腿在线中文| 亚洲av日韩在线播放| 亚洲精品456在线播放app| 国产成人免费观看mmmm| 91精品一卡2卡3卡4卡| 国产精品久久久久久av不卡| 欧美精品人与动牲交sv欧美| 狂野欧美激情性bbbbbb| 精品人妻偷拍中文字幕|