• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A neural network-based commutation optimization strategy and drive system design for brushless DC motor①

    2022-01-09 02:08:42LiuYuxiang劉宇翔YaoZhaolinYuanFangLiuMingLiXiangZhangXu
    High Technology Letters 2021年4期

    Liu Yuxiang(劉宇翔),Yao Zhaolin,Yuan Fang,Liu Ming,Li Xiang,Zhang Xu

    (State Key Laboratory on Integrated Optoelectronics,Institute of Semiconductors,Chinese Academy of Sciences,Beijing 100083,P.R.China)

    Abstract

    Key words:brushless DCmotor,senseless control,back electromotive force,neural network,hardware implantation,field programmable gate array(FPGA)

    0 Introduction

    Sensorless brushless direct current motor(BLDC motor)has a simple structure,small size,light weight due to sensor free compared with normal BLDC motor,thus is widely used among household appliances and aeromodelling where volume and weight are strictly limited[1].Current commutation strategies for sensorless BLDC include the zero-crossing detection method based on back electromotive force(back-EMF)[2],triple frequency harmonic method based on back-EMF[3-4],fuzzy control method[5-8],etc.With the development of neural network,motor commutation strategies based on neural network[9-12]have also been proposed.Among these methods,the zero-crossing detection method based on back-EMF has the most extensive application due to its simplicity and usability.

    In the conventional back-EMF based zero-crossing detection method,as the result of the algorithm,there will be a deviation between the predicted commutation point and the ideal commutation point[13-15]when the motor accelerates or decelerates,resulting in jittering and increasing in motor power consumption.However,most of the conventional optimization strategies only compensate for the commutation error generated when the motor is at a stable speed,and there is no targeted research on the commutation error generated when the motor is accelerating or decelerating.Also,the conventional neural network prediction is generally performed online through a host personal computer(PC)or digital signal processing(DSP)module,which will be limited by the transmission time of the signal and the performance of the DSP,and,therefore,limits the available speed range of the motor.When the motor speed is too fast,the commutation point can not be calculated in time,causing the motor failing in commutation and operating abnormally.

    To solve the above problem,this paper proposes a neural network based back-EMF optimization algorithm and quantifies the influence of motor acceleration or deceleration on the commutation point by introducing motor acceleration into the network.At the same time,this article builds a complete BLDC motor drive system based on the GD32F103 micro control unit(MCU),and uses Xilinx’s XC7A35T field programmable gate array(FPGA)to implement the neural network hardware acceleration module.The proposed network performance is tested and verified.The experimental results show that the proposed commutation strategy can improve the system stability effectively,and reduce the system power consumption by 11.7%.

    1 Proposed method

    1.1 Conventional BLDC motor commutation strategy

    When motor is working,the change of back-EMF is calculated by electromagnetic induction theory and shown as Fig.1,due to the armature winding cutting the magnetic line in the stator magnetic field.When the motor rotates in a constant speed,the time commutation occurs after detecting the zero-crossing event(hereinafter called delay-time)should equal to the time from the last commutation point to the zero-crossing event(hereinafter called wait-time)under ideal conditions,thus the sensorless commutation can be realized by measuring the wait-time and then estimating the delay-time with it.

    Fig.1 Relationship between back-EMF and working phase

    However,when the motor speed changes,the fluctuation of the motor will cause a large gap between wait-time and delay-time,introducing commutation errors as shown in Fig.2[9].The generated commutation error will result in fluctuations,low system stability and high power consumption.Also,the current spikes generated during commutation may also be dangerous to the control system.In worst-case scenario,serious commutation errors may even cause operational errors such as stalling and reversing,which greatly affects the normal operation of the motor.

    Fig.2 Back-EMF waveform when BLDC motor accelerates

    1.2 Proposed method

    To achieve an accurate prediction of the commutation point when the motor speed changes,this paper proposes an optimization strategy based on the neural network on the basis of the conventional back-EMF commutation method.The input of the network includes the current acceleration of the motor to make an accurate prediction on the commutation point when the motor speed changes.The structure of the network is shown in Fig.3,in which the input is the wait-time,the average acceleration of the motor during the waittime,and the output is the delay-time.When determining the number of hidden layers and the number of nodes,in consideration of a large network may lead to a large calculation delay,which will limit the maximum motor speed(that is,the network calculation delay cannot exceed the delay time,otherwise the optimal commutation point will be missed),the final network structure includes two hidden layers,each with 5 nodes(shown in Fig.3).This article implements network training through the backpropagation(BP)method.

    Fig.3 Structure of proposed BP neural network

    2 Implementation and experimental results

    2.1 Hardware test system

    The diagram of the hardware test system is shown in Fig.4.The motor used in the experiment is the X2212 brushless DC motor of SUNNYSKY,which is mainly used in rotorcraft,and its parameters are shown in Table 1.Since the speed of the rotorcraft often changes rapidly and drastically when working,it is suitable to verify the proposed algorithm in this paper.This article also builds a BLDC motor drive control system based on the GD32F103K8U6 MCU(GigaDevice),which realizes the drive of the motor and serves as a data transmission platform between FPGA and PC.Since the algorithm is optimized on the basis of the conventional back-EMF method,the MCU needs to output a fixed sequence to make the motor reach a certain initial speed when starting,and use the neural network to predict the commutation point after that.The experimental system is shown in Fig.5.

    Fig.4 Brushless DCmotor hardware test system

    Table 1 Parameters of the motor used in the experiment

    Fig.5 Neural network prediction experiment platform

    In the experiment,the incremental encoder is used(shown in Fig.4)to generate the ideal commutation signal as the training data of the network during the pre-experiment,and FPGA is used to decode output signal and transmit it to the host PC through the MCU,where the data is preprocessed and network training is completed.The encoder uses the incremental encoder E6B2-CWZ6Cfrom Omron,with a resolution of 2500P/R.The training data acquisition platform during actual testing is shown in Fig.6.

    Fig.6 Neural network training data acquisition platform

    When training the network,wait-timet1and delay-timet2can be acquired directly by receiving data,but the average acceleration needs to be calculated separately.The simplified diagram of motor operation process is shown in Fig.7.

    Fig.7 Simplified diagram of motor operation process in training

    Here it can be assumed that the acceleration duringt1andt2can be seen as approximately constant.There are two reasons for this assumption.On the one hand,t1andt2are very short for multi pole pair motors.For BLDC motor,the number of commutations per minute should be equal to the speed per minute multiplied by the number of motor pole pairs and then multiplied by the number of commutation phases per pair.Taking the motor used in this paper as instance,when motor speed is 7000 rpm,the interval between each phase is about 204μs.On the other hand,it can be seen from Fig.1 that at the beginning oft1(the previous commutation point)and at the end oft2(the later commutation point),the back-EMF force on motor is only affected by the motor speed.As assumed above,the motor speed is approximately constant in these phases,thus the two commutation points have the same back-EMF force.Additionally,the back-EMF force at the commutation point is also the same,so int1andt2,the work of back-EMF on the motor is the same.According to the definition of work and acceleration formula in physics,the assumption that the average acceleration oft1andt2are the same can be obtained.

    Based on the above conditions,a set of formulas can be derived(Eq.(1))and the acceleration could be calculated(shown in Eq.(2)after simplification).

    2.2 FPGA-based neural network hardware accelerator design

    Because the performance as well as the device resources of the MCU is not enough to realize the realtime calculation of the neural network,and in order to shorten the calculation delay to increase the available speed range of the system,FPGA is used to realize the hardware acceleration system of the neural network to meet the time requirements of the system.

    The flow chart of the acceleration system is shown in Fig.8,which is composed of 4 sub-modules,including universal asynchronous receiver/transmitter(UART)module,pre-treatment module,neural network calculation module,and output module.To minimize the system transmission delay,the UART transmission rate in the system is set to 3 375 000 baud,so the 32-bit input information can be transmitted in 20μs.The fixedpoint design is adopted in the hardware accelerator,and the parameter format in the network is Q13.18.

    Fig.8 FPGA-based prediction acceleration system

    At the same time,because the delay-time is not known when usingtheproposed algorithmtopredict,the above acceleration calculation method can no longer be used,thus a new estimation method is proposed by using the last phase change point and the phase change point before it.The operation diagram of the motor is shown in Fig.9.The calculation formula and the result are shown in Eq.(3)and Eq.(4).

    Fig.9 Simplified diagram of motor operation process in predicting

    After getting delay-time,subtract it with the calculation and transmission delay provides the time that still needs to be delayed in the system.Then the system delays and outputs the commutation signal to the MCU to realize the commutation operation of the motor.The four modules of the FPGA hardware accelerator are at the same level,and with the sequential activation ensures that only one module is working,and the other three modules are in standby state to reduce power consumption of the system.

    2.3 Experimental result

    In experiments,the control method with sensor(incremental encoder),the conventional back-EMF control method,and the proposed commutation method based on the back-EMF neural network are tested and compared.Here the conventional back-EMF control method records wait-timet1by MCU,and calculates delay-timet2correspondingly.In this paper,t2equals 1/3t1,due to extra delays including calculation,transmission and other errors caused by non-ideal factors in practical application.This scale factor is derived from pre-experiment,where motor performance can be verified when the factor equals 2,1,1/2,1/3,1/4.The traditional back-EMF control method acts as the ablation study in the experiment.The proposed algorithm in this paper is based on the back-EMF control method,through which the measured parameters are sent to the network for training,and the control results are obtained to control the motor.

    The online debugging function of the PC software is used to modify the input throttle of the motor accurately in the test,and the adjustment range is 1150-1600(corresponding to the speed range of 2000-7500 rpm).The performance of the motor under acceleration and deceleration is tested.Under acceleration,the waveform of the total current and total voltage of the motor system is shown in Fig.10.It can be seen that compared with the conventional back-EMF control method,the motor runs more smoothly under the sensor-based method and the proposed method,and the current and voltage fluctuations are minimized when the speed changes.The stability of the conventional back-EMF control strategy is poor,with severe fluctuations and even negative currents which might damage the drive system.

    Fig.10 Total current(upper curve)and voltage(lower curve)during acceleration

    In order to quantitatively compare the control performance of each control strategy,this paper also calculates the motor operating power under different control strategies and the result is shown in Table 2.The control method with sensor has the smallest commutation power.The power consumption of conventional commutation method is the highest due to its low stability.The proposed method has a low power consumption,which reduced by 6.9%compared with the conventional control strategy.

    Table 2 Performance of each commutation strategy during acceleration

    Similarly,when the motor is decelerating,the waveform of the total current and total voltage of the motor is shown in Fig.11.It can be seen that the conventional commutation method is very unstable when the motor speed changes drastically,and the motor current has severe fluctuations.The instantaneous maximum reverse current can exceed 10 A,which generates higher requirements for the safety of the system.

    Table 3 shows the motor performance parameters under each commutation strategy when the motor is decelerating.The sensor-based control method and the control strategy proposed in this paper have low power consumption, while the conventional commutation strategy results in a large power consumption due to the current fluctuation during the commutation process.The proposed method in this paper can reduce the power consumption by 11.7%compared with the conventional back-EMF control method.

    Fig.11 Total current(upper curve)and voltage(lower curve)during deceleration

    Table 3 Performance of each commutation strategy during deceleration

    At the same time,with the neural network acceleration system built in this article,the maximum support motor speed can reach 7500 rpm,which improves the motor application range.By comparing the speed range of the motor under each control strategy and the working platform shown in Table 4,it can be seen that the BLDC motor drive system and neural network hardware acceleration system implemented in this paper have a wide range of motor speed without online host PC or floating-point DSP(FDSP)unit.

    Table 4 Realization result comparison

    3 Conclusions

    In this paper,to solve the poor motor stability and high power consumption in the conventional back-EMF based on commutation strategy,a neural network based commutation strategy of the sensorless BLDC motor is proposed.Trained by the data acquired by incremental encoder,the proposed method is verified by the motor drive system built with the FPGA-based neural network hardware acceleration module.

    The experimental results show that the proposed strategy can effectively improve the system stability.The current and voltage fluctuations caused by commutation error are minimized,thus power consumption during acceleration and deceleration is reduced by about 11.7%.Meanwhile,the system supports a maximum motor speed about 7500 rpm,which supports a wide speed range due to the FPGA acceleration module.

    麻豆成人av视频| 性色avwww在线观看| 男女边摸边吃奶| 午夜福利,免费看| 亚洲av电影在线观看一区二区三区| 亚洲av国产av综合av卡| 在线看a的网站| 亚洲欧美精品专区久久| 亚洲国产精品专区欧美| 看非洲黑人一级黄片| 日韩大片免费观看网站| 伦理电影免费视频| videossex国产| 97精品久久久久久久久久精品| 成人二区视频| 日韩视频在线欧美| 久久久久久久久久成人| 国产在线视频一区二区| 最近中文字幕2019免费版| 中文天堂在线官网| 亚洲精品久久久久久婷婷小说| av播播在线观看一区| 亚洲一级一片aⅴ在线观看| 午夜久久久在线观看| 国产黄片视频在线免费观看| av国产久精品久网站免费入址| 男人爽女人下面视频在线观看| 亚洲精品中文字幕在线视频 | 最近手机中文字幕大全| 国产片特级美女逼逼视频| 亚洲国产精品成人久久小说| 99热这里只有是精品在线观看| av女优亚洲男人天堂| 99热这里只有是精品在线观看| 九九爱精品视频在线观看| 国产一区有黄有色的免费视频| 国产成人午夜福利电影在线观看| 欧美日本中文国产一区发布| 永久网站在线| 男女边摸边吃奶| 日产精品乱码卡一卡2卡三| 精品一区二区三区视频在线| 另类精品久久| 亚洲精品第二区| 欧美3d第一页| 亚洲国产精品国产精品| 久久精品国产亚洲av天美| 精品酒店卫生间| 寂寞人妻少妇视频99o| 国产极品粉嫩免费观看在线 | 国产精品麻豆人妻色哟哟久久| 夜夜爽夜夜爽视频| 女性生殖器流出的白浆| 久久久国产精品麻豆| 美女脱内裤让男人舔精品视频| 老司机影院毛片| 亚洲精品第二区| 亚洲图色成人| 蜜桃在线观看..| 色94色欧美一区二区| 99视频精品全部免费 在线| av有码第一页| 久久人妻熟女aⅴ| 不卡视频在线观看欧美| 色94色欧美一区二区| 久久久久国产网址| 美女内射精品一级片tv| 国产成人a∨麻豆精品| 夜夜骑夜夜射夜夜干| 国产成人aa在线观看| 欧美成人午夜免费资源| 日韩精品免费视频一区二区三区 | 国产 一区精品| 国产成人精品婷婷| 国内精品宾馆在线| 国产精品国产av在线观看| 日韩av在线免费看完整版不卡| 久久久国产一区二区| 久久久久精品性色| 午夜免费观看性视频| 美女大奶头黄色视频| 97在线视频观看| 熟女人妻精品中文字幕| 99国产精品免费福利视频| 欧美精品一区二区免费开放| 91精品国产国语对白视频| 欧美成人精品欧美一级黄| 国产在线视频一区二区| 99久久中文字幕三级久久日本| 亚洲va在线va天堂va国产| 欧美精品高潮呻吟av久久| 亚洲欧美精品自产自拍| av免费观看日本| 亚洲一区二区三区欧美精品| 日韩亚洲欧美综合| 国产亚洲一区二区精品| 国产日韩欧美在线精品| 尾随美女入室| 美女脱内裤让男人舔精品视频| 中文字幕人妻丝袜制服| 97精品久久久久久久久久精品| 晚上一个人看的免费电影| 久久久久久久大尺度免费视频| 夫妻午夜视频| 啦啦啦中文免费视频观看日本| av国产久精品久网站免费入址| 精品久久久久久久久av| 免费观看无遮挡的男女| 欧美 日韩 精品 国产| 麻豆成人av视频| 日日啪夜夜撸| 久久久久精品久久久久真实原创| 18禁裸乳无遮挡动漫免费视频| 亚洲情色 制服丝袜| 日韩成人av中文字幕在线观看| 性色avwww在线观看| 深夜a级毛片| 国产免费一级a男人的天堂| 日韩中字成人| 久久午夜综合久久蜜桃| 中文乱码字字幕精品一区二区三区| 狠狠精品人妻久久久久久综合| 久久av网站| 22中文网久久字幕| 日日摸夜夜添夜夜爱| 国产精品蜜桃在线观看| 日本免费在线观看一区| 久久久久人妻精品一区果冻| 亚洲人成网站在线播| 国产男女超爽视频在线观看| 97在线视频观看| 性色av一级| 岛国毛片在线播放| 日本vs欧美在线观看视频 | 国产黄片美女视频| 有码 亚洲区| 秋霞在线观看毛片| 夫妻性生交免费视频一级片| 免费av中文字幕在线| 青春草国产在线视频| 日韩,欧美,国产一区二区三区| 日韩精品有码人妻一区| 乱系列少妇在线播放| 国产成人一区二区在线| 国产成人免费观看mmmm| 一级黄片播放器| 亚洲久久久国产精品| 五月伊人婷婷丁香| 久久6这里有精品| 亚洲欧美一区二区三区国产| 丁香六月天网| 人妻制服诱惑在线中文字幕| 男女啪啪激烈高潮av片| 国产一区二区在线观看日韩| 中国三级夫妇交换| 一二三四中文在线观看免费高清| 亚洲欧美日韩另类电影网站| 自线自在国产av| 伊人久久精品亚洲午夜| 日日啪夜夜撸| 日韩av免费高清视频| 一级二级三级毛片免费看| 亚洲高清免费不卡视频| 免费看日本二区| 人人妻人人看人人澡| 亚洲国产精品一区二区三区在线| 少妇人妻 视频| 久久人人爽av亚洲精品天堂| 亚洲欧美一区二区三区国产| 欧美变态另类bdsm刘玥| 高清黄色对白视频在线免费看 | 国产成人一区二区在线| 亚洲国产av新网站| 国产中年淑女户外野战色| www.av在线官网国产| 各种免费的搞黄视频| 51国产日韩欧美| 免费看光身美女| 日本vs欧美在线观看视频 | av免费观看日本| 人妻人人澡人人爽人人| 国产伦在线观看视频一区| 一区二区av电影网| 久久久久网色| 久久久久久久久久久免费av| 男女国产视频网站| 高清毛片免费看| 国产女主播在线喷水免费视频网站| 亚洲av电影在线观看一区二区三区| 免费黄网站久久成人精品| 人妻夜夜爽99麻豆av| 一级毛片久久久久久久久女| 精品亚洲成国产av| 国产午夜精品久久久久久一区二区三区| 在线观看美女被高潮喷水网站| 黑人巨大精品欧美一区二区蜜桃 | av有码第一页| 国产精品一区二区在线不卡| videos熟女内射| 久久免费观看电影| 插阴视频在线观看视频| 久久精品国产亚洲av涩爱| 丰满人妻一区二区三区视频av| 亚洲欧美日韩另类电影网站| av.在线天堂| 99九九线精品视频在线观看视频| 观看免费一级毛片| 如日韩欧美国产精品一区二区三区 | 日本黄大片高清| 欧美日韩视频高清一区二区三区二| 国产亚洲av片在线观看秒播厂| 欧美精品一区二区大全| 丰满少妇做爰视频| 91精品一卡2卡3卡4卡| 日韩精品有码人妻一区| 国产亚洲一区二区精品| 亚洲精品aⅴ在线观看| 久久久久久久精品精品| av专区在线播放| 国内揄拍国产精品人妻在线| 麻豆精品久久久久久蜜桃| 国产精品一区二区在线观看99| 有码 亚洲区| 熟妇人妻不卡中文字幕| 国产精品偷伦视频观看了| 一本久久精品| 国产在线视频一区二区| 日韩强制内射视频| 夜夜爽夜夜爽视频| 亚洲怡红院男人天堂| av女优亚洲男人天堂| 国产欧美亚洲国产| 久久影院123| 亚洲图色成人| 亚洲欧美精品专区久久| 狂野欧美白嫩少妇大欣赏| 国产毛片在线视频| 亚洲天堂av无毛| 免费观看无遮挡的男女| 另类精品久久| 蜜桃在线观看..| 男女啪啪激烈高潮av片| 久久6这里有精品| 九九爱精品视频在线观看| 熟女av电影| 日本与韩国留学比较| 久久国产亚洲av麻豆专区| 人妻 亚洲 视频| 99久久精品热视频| 18禁动态无遮挡网站| 人妻夜夜爽99麻豆av| 国精品久久久久久国模美| 久热这里只有精品99| 国产极品粉嫩免费观看在线 | 成人二区视频| 亚洲一区二区三区欧美精品| 精品一区二区三区视频在线| 国产有黄有色有爽视频| 男男h啪啪无遮挡| 午夜免费男女啪啪视频观看| 国产亚洲欧美精品永久| 国产日韩欧美亚洲二区| 日韩精品有码人妻一区| 免费看日本二区| 美女大奶头黄色视频| 丰满少妇做爰视频| 久久久久久久久久久免费av| 亚洲精品久久午夜乱码| 少妇的逼水好多| 亚洲av男天堂| 国产91av在线免费观看| 午夜av观看不卡| 国产片特级美女逼逼视频| 亚洲国产日韩一区二区| 97超视频在线观看视频| 国产精品一区www在线观看| 日韩视频在线欧美| 国产在线一区二区三区精| 在线播放无遮挡| 亚洲欧洲国产日韩| 成人特级av手机在线观看| 热99国产精品久久久久久7| 免费人成在线观看视频色| 日本av免费视频播放| 精品国产国语对白av| 成人美女网站在线观看视频| 国内少妇人妻偷人精品xxx网站| 一级二级三级毛片免费看| 中文字幕亚洲精品专区| 亚洲av日韩在线播放| 久久久精品94久久精品| 天堂俺去俺来也www色官网| 久久久欧美国产精品| 日产精品乱码卡一卡2卡三| 99久久综合免费| 成人综合一区亚洲| 汤姆久久久久久久影院中文字幕| 男女边吃奶边做爰视频| 水蜜桃什么品种好| 国产伦理片在线播放av一区| 日本午夜av视频| 嫩草影院入口| 男人添女人高潮全过程视频| 婷婷色麻豆天堂久久| 免费观看无遮挡的男女| 精品久久久噜噜| 久久热精品热| 色婷婷久久久亚洲欧美| 制服丝袜香蕉在线| 国产精品久久久久成人av| 久久女婷五月综合色啪小说| 久久韩国三级中文字幕| 国产精品.久久久| 99九九线精品视频在线观看视频| 91精品一卡2卡3卡4卡| 免费久久久久久久精品成人欧美视频 | av网站免费在线观看视频| 欧美日韩国产mv在线观看视频| 国产欧美亚洲国产| 国精品久久久久久国模美| 国产伦理片在线播放av一区| 99九九线精品视频在线观看视频| 久久亚洲国产成人精品v| 免费av中文字幕在线| 中文字幕久久专区| 一级片'在线观看视频| 精品人妻一区二区三区麻豆| www.色视频.com| 18禁动态无遮挡网站| 国产精品无大码| 51国产日韩欧美| 天天操日日干夜夜撸| av不卡在线播放| 黄色日韩在线| 18禁在线无遮挡免费观看视频| 岛国毛片在线播放| 国产免费视频播放在线视频| 十八禁网站网址无遮挡 | av福利片在线观看| 国产免费一区二区三区四区乱码| 大陆偷拍与自拍| 六月丁香七月| 久久国产精品大桥未久av | 男女免费视频国产| 精品一区二区三区视频在线| 三级国产精品欧美在线观看| 女性被躁到高潮视频| 老司机影院毛片| 男男h啪啪无遮挡| www.av在线官网国产| 久久99热这里只频精品6学生| 亚洲性久久影院| 亚洲国产精品一区三区| 欧美激情国产日韩精品一区| 久久久久久久精品精品| 黄色一级大片看看| 久久6这里有精品| 亚洲国产日韩一区二区| 国产av国产精品国产| 欧美激情国产日韩精品一区| 啦啦啦中文免费视频观看日本| 在线精品无人区一区二区三| 最近中文字幕高清免费大全6| 亚洲,欧美,日韩| 美女xxoo啪啪120秒动态图| 国产午夜精品一二区理论片| 伦理电影免费视频| 人妻一区二区av| 亚洲av电影在线观看一区二区三区| 午夜免费男女啪啪视频观看| 欧美性感艳星| 免费看光身美女| 久久久久久久精品精品| av有码第一页| 午夜91福利影院| 夫妻性生交免费视频一级片| 亚洲欧美清纯卡通| 三级国产精品欧美在线观看| 日韩 亚洲 欧美在线| 伊人亚洲综合成人网| 国产片特级美女逼逼视频| 午夜福利网站1000一区二区三区| 水蜜桃什么品种好| 日产精品乱码卡一卡2卡三| 免费在线观看成人毛片| 一区二区三区精品91| 青春草国产在线视频| 自拍偷自拍亚洲精品老妇| 三级国产精品片| 亚洲真实伦在线观看| a级毛色黄片| 在线观看免费日韩欧美大片 | 国产伦在线观看视频一区| 国产综合精华液| 国产精品99久久久久久久久| 久久97久久精品| 国产成人精品福利久久| 嫩草影院入口| 久久人妻熟女aⅴ| 老司机影院成人| 午夜福利网站1000一区二区三区| 曰老女人黄片| 亚洲精品aⅴ在线观看| 一级毛片我不卡| 精品酒店卫生间| 日韩制服骚丝袜av| 免费播放大片免费观看视频在线观看| 国产精品熟女久久久久浪| 伦精品一区二区三区| 精品国产一区二区三区久久久樱花| 青春草亚洲视频在线观看| 一个人免费看片子| 国产熟女午夜一区二区三区 | av国产久精品久网站免费入址| 伦精品一区二区三区| 国产亚洲91精品色在线| 久久精品国产a三级三级三级| 亚洲美女视频黄频| 亚洲国产毛片av蜜桃av| 欧美精品国产亚洲| 亚洲欧美成人精品一区二区| 日本爱情动作片www.在线观看| 伦理电影大哥的女人| 亚洲国产最新在线播放| 午夜福利网站1000一区二区三区| 99热全是精品| 哪个播放器可以免费观看大片| 特大巨黑吊av在线直播| 少妇人妻 视频| 中文在线观看免费www的网站| 大码成人一级视频| 久久毛片免费看一区二区三区| 99九九线精品视频在线观看视频| 大香蕉久久网| 人妻人人澡人人爽人人| 国内少妇人妻偷人精品xxx网站| 免费在线观看成人毛片| 精品国产乱码久久久久久小说| 亚洲图色成人| xxx大片免费视频| 赤兔流量卡办理| 一级毛片久久久久久久久女| 成人亚洲精品一区在线观看| 久久国内精品自在自线图片| 午夜福利网站1000一区二区三区| a级毛色黄片| 3wmmmm亚洲av在线观看| 观看免费一级毛片| 成人特级av手机在线观看| 人妻一区二区av| 一二三四中文在线观看免费高清| 欧美三级亚洲精品| 久久精品夜色国产| 69精品国产乱码久久久| videos熟女内射| 久久久国产一区二区| 亚洲精华国产精华液的使用体验| 国产黄片视频在线免费观看| 波野结衣二区三区在线| 下体分泌物呈黄色| 少妇人妻一区二区三区视频| 极品少妇高潮喷水抽搐| 97在线视频观看| 亚洲在久久综合| 麻豆精品久久久久久蜜桃| 国产黄频视频在线观看| 久久精品国产a三级三级三级| 五月玫瑰六月丁香| 尾随美女入室| 精品国产国语对白av| 午夜福利网站1000一区二区三区| 国产日韩欧美视频二区| 99热国产这里只有精品6| 丁香六月天网| 国产亚洲最大av| 久久鲁丝午夜福利片| 精品国产国语对白av| 边亲边吃奶的免费视频| 免费看日本二区| 日日撸夜夜添| 久久久精品免费免费高清| 亚洲精品久久午夜乱码| 肉色欧美久久久久久久蜜桃| 久久精品夜色国产| 又大又黄又爽视频免费| 国产淫语在线视频| 久久99热这里只频精品6学生| 欧美区成人在线视频| 亚洲国产色片| 成人黄色视频免费在线看| 精品亚洲成a人片在线观看| 国产精品免费大片| 不卡视频在线观看欧美| 欧美 亚洲 国产 日韩一| 汤姆久久久久久久影院中文字幕| 黑人巨大精品欧美一区二区蜜桃 | 搡女人真爽免费视频火全软件| 国产高清三级在线| 国产精品一区二区在线不卡| .国产精品久久| a 毛片基地| 日本av免费视频播放| 又爽又黄a免费视频| 欧美国产精品一级二级三级 | 国内精品宾馆在线| 大话2 男鬼变身卡| 亚洲精品日本国产第一区| 国产免费一级a男人的天堂| 国产精品熟女久久久久浪| 免费av不卡在线播放| 久久韩国三级中文字幕| 国产探花极品一区二区| 校园人妻丝袜中文字幕| 内射极品少妇av片p| 日本av手机在线免费观看| 色5月婷婷丁香| 丰满迷人的少妇在线观看| 在线播放无遮挡| 一边亲一边摸免费视频| 日韩电影二区| 丰满人妻一区二区三区视频av| 免费黄频网站在线观看国产| 日韩三级伦理在线观看| 黄色欧美视频在线观看| 久久人人爽人人爽人人片va| 成年女人在线观看亚洲视频| 日本猛色少妇xxxxx猛交久久| 久久这里有精品视频免费| 免费av中文字幕在线| 蜜桃在线观看..| 一级二级三级毛片免费看| 欧美+日韩+精品| 久久97久久精品| .国产精品久久| 性色avwww在线观看| 免费观看在线日韩| 日韩亚洲欧美综合| 美女大奶头黄色视频| 亚洲欧美日韩另类电影网站| 免费高清在线观看视频在线观看| 国产69精品久久久久777片| 国产 一区精品| 亚洲人成网站在线播| 亚洲国产精品专区欧美| av在线老鸭窝| 色哟哟·www| 人人妻人人看人人澡| 久久青草综合色| 大话2 男鬼变身卡| 亚洲av不卡在线观看| 最近最新中文字幕免费大全7| 午夜福利,免费看| 国产精品久久久久成人av| 久久久精品免费免费高清| 伦理电影免费视频| 美女脱内裤让男人舔精品视频| 国产中年淑女户外野战色| 久久久久久伊人网av| 美女中出高潮动态图| 啦啦啦视频在线资源免费观看| 国内少妇人妻偷人精品xxx网站| 久久久久久人妻| 男女国产视频网站| 九九在线视频观看精品| 国产精品国产三级国产专区5o| 99久久中文字幕三级久久日本| 午夜福利,免费看| 99久国产av精品国产电影| 亚洲美女黄色视频免费看| 欧美一级a爱片免费观看看| 国产av国产精品国产| 国产永久视频网站| 久久久久久人妻| 狂野欧美激情性xxxx在线观看| 人体艺术视频欧美日本| 婷婷色av中文字幕| 国产国拍精品亚洲av在线观看| 99国产精品免费福利视频| 18禁在线无遮挡免费观看视频| 亚洲第一区二区三区不卡| 水蜜桃什么品种好| a级毛片在线看网站| a级毛色黄片| 美女大奶头黄色视频| 秋霞在线观看毛片| 美女主播在线视频| 亚洲精品乱码久久久v下载方式| 亚洲欧美一区二区三区黑人 | 免费黄网站久久成人精品| 一级毛片 在线播放| 久久精品熟女亚洲av麻豆精品| 成人漫画全彩无遮挡| 国产欧美亚洲国产| 插阴视频在线观看视频| 欧美精品人与动牲交sv欧美| 国产日韩欧美视频二区| 久久久久精品久久久久真实原创| 国产亚洲av片在线观看秒播厂| 精品久久国产蜜桃| 99re6热这里在线精品视频| 六月丁香七月| 亚洲精品aⅴ在线观看| 色视频www国产| 九九久久精品国产亚洲av麻豆| 欧美精品高潮呻吟av久久| 男女边吃奶边做爰视频| 日本黄色日本黄色录像| 国语对白做爰xxxⅹ性视频网站| 天天躁夜夜躁狠狠久久av| 91成人精品电影| 久久97久久精品| 日日啪夜夜撸| 中文字幕久久专区| av国产久精品久网站免费入址| 国产真实伦视频高清在线观看|