• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Wedge template optimization and parallelization of depth map in intra-frame prediction algorithms①

    2022-01-09 02:08:36XieXiaoyan謝曉燕WangYuShiPengfeiZhuYunDengJunyongZhaoHuan
    High Technology Letters 2021年4期

    Xie Xiaoyan(謝曉燕),Wang Yu②,Shi Pengfei,Zhu Yun,Deng Junyong,Zhao Huan

    (*School of Computing Science&Technology,Xi’an University of Posts and Telecommunications,Xi’an 710121,P.R.China)

    (**School of Electronic Engineering,Xi’an University of Posts and Telecommunications,Xi’an 710121,P.R.China)

    Abstract

    Key words:3D high-efficiency video coding(3D-HEVC),wedge segmentation,simplified search template,parallelization,depth model mode(DMM)

    0 Introduction

    As an advance of 2D video,3D video coding has been drawn in some new characteristics.In order to code for 3D video more efficiently,the multi-view video plus depth(MVD)representation is formed by ISO/IEC MPEG and ITU-T VCEG.Depth information is rendered or synthesized by depth image-based rendering(DIBR)[1].The increased depth map adds redundancy in processing.Therefore,the wedge segmentation with residual adaptation for depth blocks is presented to reduce the bit rate and increase the quality of rendered view[2].This strategy has been adopted to extend the high efficiency video coding(HEVC)standard for coding of MVD data[3].In order to select the optimal template in wedge segmentation,the exhaustive search of wedge-shaped template leads to very high complexity and storage cost of intra prediction.

    Recently,experts have been trying various optimization schemes.The main achievement solutions in this field are skipping some templates search for specific blocks[4-7],or making wedge template set simplified[8-9].Ref.[4]skipped most unnecessary candidates by a simple squared Euclidean distance of variances based rough mode decision,to cope with unacceptable computational burden,based on investigating the statistical characteristics of variance distributions in the two partitions of depth model mode(DMM).Ref.[5]proposed a simplified edge detect algorithm to judge the edge block by extracting the maximum difference between the four corner pixel values of the coding block.DMM mode is executed only for those coding blocks classified as an edge block.To a certain extent,skipping some model searching directly can reduce the coding time,but additional computation overhead for edge detection can not be ignored.Ref.[8]proposed a simplified algorithm which only searches the partition patterns in a limited set,based on such a consideration that the separation line in the best matching pattern should be similar to the edge in an actual depth prediction unit(PU).Ref.[9]pointed out that the division direction of the DMM mode should be similar to the prediction direction of the mode in the coarse selection result of the HEVC intra mode,which can be used to reduce unnecessary division calculations in DMM subsection 1(DMM-1).Those work always try to avoid DMM-1 evaluation in particular conditions.However,none of above can essentially reduce the number of wedge template.

    For the sake of real-time processing performance of codec,other researchers attempt to accelerate the DMMs with hardware design.In Ref.[10],five modules composed pipeline architecture was involved in parallel,three of them handle block sizes of 8×8,16×16,and 32×32,and two identical modules for all 4×4 sizes.The external memorized table stocked the wedgelets and their syntaxes for all block sizes are introduced to simplified calculation.However,the exhaustive approach resulting in high time consumption are not discussed.In Ref.[11],a 5-level pipeline architecture was proposed to accelerate the calculation,in view of the fact that there is no data correlation in wedge segmentation calculation.Although the coding cycle is reduced by 52.3%,but at the cost of 1568 gates are increased.They can only cope with 4×4 depth block.It can not be ignored,there needs to predict 8×8,16×16,and 32×32 PU size in HEVC.For which,search space and template number are far greater than 4×4.Ref.[12]designed a scalable structure supporting different block sizes,used shared resources to allow efficient area usage,smaller power dissipation,and to achieve higher throughput.It skipped the refinement stage of DMM-1,reserved coarse subnet which still requires a dedicated memory of 217 632 bits to store templates.These parallel schemes although achieve obvious effect in calculation speed,troubles such as different size of depth blocks,large number of templates,and huge search space have not been effectively overcome.

    All in all,a practical wedge segmentation prediction needs to consider the realizability and cost in addition of precision.In this paper,a train of thought to simplify the wedge template set on the premise of ensuring quality is proposed.The approach is also motivated by the fact that different from texture map,there often exists large regions with nearly constant values and sharp edges at boundaries in depth map,most of them will choose the simple prediction direction.In the same view,the depth map and texture map depict the same scene.With this kind of characteristics,the direction of the wedge separation line is similar to the prediction direction.The main contribution of the solution lies in three aspects.Utilizing the analysis and statistics to the wedge search template used in depth map prediction of 3D-HEVC,10 kinds of 4×4 wedge templates with larger prediction probability are screened out.Furthermore,different from represented by piece wise linear functions for each region adopted in DMM-1,a method is proposed to extend the 4×4 wedge template to anyN×NPU,which makes the total number of templates reduced from 3765 to 10.The storage cost and search times of prediction are greatly reduced in turn.Based on the computing pattern of the array processor(DPR-CODEC)developed by project team,an efficient paralleling scheme is also detailed to optimization method mentioned above.The proposed simplified search template and parallel DMM-1 scheme are verified with test sequence in HTM16.1.The experiment results show that the proposed methods save 99.2%of the storage space and 63.94%of the encoding time,the average serial/parallel acceleration ratio of each template is 1.84.

    The remainder of this paper is organized as follows.The principle of wedge segmentation is introduced in Section 1.The details about templates simplifying rules and improving idea of DMM-1 are given in Section 2.The mentality of extending the 4×4 wedge template to anyN×NPU and parallelization are also analysed.In Section 3,the improved DMM-1 algorithm is parallelly designed.Experiments are conducted in Section 4.Finally,Section 5 draws some concluding remarks.

    1 Wedge segmentation algorithm

    As detailed in Refs[2,3],the wedgelet model of a depth block is obtained by partitioning the area of the block into two segments,labeled byP1 andP2 in Fig.1(a),separated by a straight line.For a depth block of sizeN×N,the separation line is defined by the sample positions of start pointSand end pointE.From this,the segmentation pattern is represented as an array of binary elements with sizeN×N,namely partition information table,which determines whether the corresponding sample belongs to segmentP1 orP2.According to the segmentation pattern,the constant depth valuesd1 andd2,namely constant partition value(CPV),are assigned to samples belonging toP1 andP2 respectively.The wedgelet model of a block is generated,as shown in Fig.1(b).Deriving the optimal wedgelet model for a given depth block means carrying out a minimum distortion search for all possible wedge segmentations.This includes two steps,coarse subnet and refinement around best wedgelet.In the first step,the minimum distortion wedgelet is searched for a coarse subset of segmentations,with a certain interval in all possible positions,shown as Fig.1(c).In the second step,the segmentation is refined by searching with 8 adjacent precisions around the best coarse wedgelet as the example shown in Fig.1(d).

    Fig.1 Wedge segmentation of a depth block

    2 Improvement of DMM-1

    2.1 Simplified wedge templates set

    According to the start and end position of separation line,the wedgelet models can be differentiated into two major categories,the adjacent edge partitions and the opposite edge partitions.For adjacent edge partitions,the starting and ending positions of separation line belong to adjacent vertical and horizontal boundary lines of the current PU,indicated with awedgeOriranging from0 to 3 as shown in Fig.2.While opposite edge partitions have start position and end position belonging to parallel boundary lines of the current PU,indicated with awedgeOriequal to 4 or 5 as shown in Fig.2.The line end position offset for refining the wedgelet partition can’t be predicted,but sought by iterating over a range of offset values and comparing the distortion of the different results.

    In addition,the depth map coding also uses the quadtree coding tree unit(CTU)recursion similarly consistent with HEVC.Four types of block size need to be segmented.But the resolution step size used for generating the wedgelet patterns depends on the block size.For 16×16 and 32×32 blocks,the possible start and end positions are restricted to locations with 2-sample accuracy.For 8×8 blocks,full-sample accuracy is used,and for 4×4 blocks,half-sample accuracy is used.From this,the number of coded block wedge templates of different sizes is different.The larger the size,the larger the number of corresponding templates.The exhaustive searches for the optimal wedge template from tens of thousands of templates bring about a huge amount of computation.At the same time the huge storage consumption is also a problem,as shown in Table 1.

    Table 1 Number of wedgelet patterns for different PU sizes

    Although DMM-1 improves the accuracy of intra prediction greatly,the new wedge segmentation also brings about greater computational complexity and storage consumption.All these designs are tolerable for software encoder,just a matter of coding performance.But it is disastrous for hardware implementation,due the limitation of resource conditions and fixed functional circuit on chip.This paper is to make the algorithm suitable for hardware,and not deviate from the original intention of original designer.Therefore,it is necessary to find a more simply way to acquire wedgelet and fewer templates.To this end,the simulation test is performed with various types of video test sequences,under full DMM-1 in HTM16.1.The results of statistical analysis are shown as Table 2.Six optimal candidate directions,horizontal mode,vertical mode,Ang-5,Ang-14,Ang-2,and Ang-30,can be obtained.The average probability of those reaches 80.19%.The average probability of rest 27 directions is less than 20%.This is the fact that there often exists large regions with almost constant and stationary samples,and sharp edges at boundaries in depth map.These regions often select the simple directions in intra-prediction.

    Table 2 Statistical probabilities of the best prediction direction

    Referring to the conclusions in Ref.[8] and Ref.[9],based on 6 directions mentioned above and 6 types of wedge pattern in Fig.2,a wedge template set consisting of 10 4×4 templates is derived,shown as Fig.3.The horizontal and vertical directions only apply to opposite edge,by the centre line.The other 4 directions are applied to adjacent edge and opposite edge separately,employ angles defined in their candidate patterns.Verified by HTM16.1,this template set can work well.

    Fig.3 Wedge template set

    2.2 Template extension for N×N PU

    After analysis of the results of simulation test,it can be found that the matched best wedge block always appears in middle position of the coding depth.In view of the correlation between adjacent pixels,it is possible to generate a separation line from the basic 4×4 template,and skip the over-complicated optimal template search for theN×NPU.Take a wedge template of 8×8 PU as an example,shown as Fig.4.

    The dash line is the wedge separation line.Its function is derived by the starting position(X1,Y1)and the ending position(X2,Y2)of the wedge separation line of the middle basic wedge template.That is a linear function,Y=ax+b.aandbare calculated according to Eq.(1).

    Fig.4 Sketch of the wedge template extension

    On the basis of this separation line,the valuePi,jin binary mapping matrix is assigned according to Eq.(2).

    2.3 Minimum template set based wedge segmentation prediction

    According to above discussion,wedge segmentation prediction for any PU size only uses ten 4×4 templates given in Fig.3,which makes the total number of templates reduced from 3765 to 10.And total size of searching table is reduced from 1 947 360 to 160 bits.Combined with other steps detailed in DMM-1[13],the flow chart of new algorithm is given in Fig.5,8 steps are discussed in detail as follows.

    Step 1 Initialisation.Initialize the variables,which store the best matching template and the calculation results based on it,including the best template identifierNand its corresponding residual matrixA residual,BestSAD,BestCPVs.In the proposed algorithm,the coarse subnet and refinement for optimal template search is replaced with the most suitable template matching and extension in wedge segmentation procedure.So there only needs to deliver the identifier,instead of the binary mapping matrix of the best matching template.

    Step 2 Edge block checking.Load a PU by using corner detection operator to detect whether the current PU contains edge information with method in Ref.[13].If it is a flat block,the traditional HEVC intra prediction is applied.Otherwise,repeat Steps 3 to 7 for 10 templates in Fig.3.

    Step 3 Wedge separation line extracting.Select one of the templates from the wedge template set.Extract the starting position(X1,Y1)and the ending position(X2,Y2)of its wedge separation line.

    Step 4 Template extension.Judge whether the current PU size is 4×4.If it isn’t,using the method detailed in subsection 3.2 to extend the current template to PU size.Otherwise,use the current template directly.

    Step 5 CPVs calculating and reference block construction.Generating the binary mapping matrix according to the template,referring to Eq.(2).Calculating the CPVs according to it and the pixels of PU.Constructing the reference block matrix through CPVs filling.

    Step 6 Residual matrix and sum of absolute difference(SAD)value calculating.Calculate the residual matrix by pixels in PU and reference block.The SAD is used to evaluate the distortion predicted by the current template in this paper.It is calculated according to Eq.(3),where,kis the template identifier,PU(i,j)is the pixel value of theirow andjcolumn in the depth block PU,gk(i,j)is the value of theirow andjcolumn in the reference block matrix,Nis the size of PU.The smaller the SAD value,the lower the distortion.

    Step 7 The best prediction selection.Compare the current SAD value with theBestSAD,if it is smaller,record template identifier and its corresponding residual matrixA residual,BestSAD,BestCPVsby this calculation to the best matching variables.Otherwise,keep the best matching variables unchanged.

    Step 8 Output the best prediction results.

    Fig.5 Flowchart of minimum template set based wedge segmentation prediction algorithm

    3 Parallelization

    3.1 Hardware architecture

    As shown in Fig.5,the coarse subnet and refinement for optimal template search are replaced with the most suitable template matching and extension in wedge segmentation procedure.At the same time,the storage cost and search times are saved significantly for the new simplified strategy.It is possible to implement all PU size wedge segmentation on resource limited field programmable gate array(FPGA).Furthermore,only the original pixel value of PU and current wedge template are involved in during the template matching.The wedge segmentation operation and data calculations of different templates are no correlation.It means that the prediction process of different templates can be carried out in parallel for a depth PU.Furthermore,the prediction data for each template can be loaded at the same time,which can reduce the pretreatment time by 2/3.In this section,the improved DMM-1 for parallel processing is optimized by the dynamically programmable reconfigurable CODEC(DPR-CODEC),which is a dynamic reconfigurable array processor to cope with the special demand of HEVC.

    The DPR-CODEC is composed of 1024 PEs in the form of adjacent interconnection.Only 4×4 PEs are assigned to the DMM-1 for this paper,clearly demonstrated in Fig.6.The size of each PE instruction and data sharing storage can be adjusted dynamically.Data input memory(DIM)is a data buffer for caching coding block.Data output memory(DOM)is a data buffer for caching reference block and reconstructed image.The global controller decides the operating mode and chooses the appropriate functions for the PE or PEs.Each PE contains 16 registers,including 12 local registers and 4 shared registers.The shared registers distribute in east,south,west,and north directions,named RE,RW,RS,and RN respectively.PE can access each other through shared register.There are two ways of data interaction between PEs.Mode 1 is shown in the dashed arrow,and mode 2 is shown in the solid arrow.Mode 1 is used to send data from the local registers(R3,R4,R5 and R6)directly to the execution units of the neighboring PE as the source operations.Mode 2 can transfer data from local PE to adjacent registers through shared register,and the data can be operated in the subsequent processing.One of the data interaction method is using the adjacency interconnection structure.Another is the distributed shared storage structure under unified addressing mode,it can also be realized through the high-speed switching unit.

    Fig.6 Hardware architecture for proposed algorithm

    3.2 Parallel design scheme

    The function allocation of the proposed algorithm on DPR-CODEC is shown in Fig.7.The depth map is loaded into DIM in advance.PE00 is used for depth PU loaded and transmitted to other PEs.PE01 is for edge block checking.PE03 is for SAD comparison and output the results.PE10 to PE33 are assigned to perform Step 3 to Step 6 in parallel mode,detailed in the algorithm designed in sub section 2.3.

    In DPR-CODEC,the dynamically programmable and reconfigurable mechanism can issue different instructions and data to each PE through globe controller and H-tree network.The adjacent interconnection and data sharing storage make data access among PEs within one hop but cascade,which makes different data loading to each PE faster and much easier.Although filling modes of each template is different,it can be operated by different PE at the same time.Because the template for every PU size is same in the proposed algorithm,the PU size can be changed randomly from4×4,8×8,16×16,to32×32,which is more in line with the needs of the HEVC standard.The specific is introduced by taking a 8×8 PU as an example.

    Fig.7 Mapping flow chart of proposed algorithm

    Step 1 Data loading.PE00 accesses the DIM through the adjacent interconnect mode in register R10,reads the corresponding pixels of current PU.

    Step 2 Data distribution.PE01,PE10,PE20 and PE30 read original pixels from PE00 via shared registers at the same time,controlled by handshakes.As soon as they receive the data,each PE forwards the data to the appropriate PE in the same way.The order of data spreading is from PE10 to PE11,and PE12,from PE20 to PE21,and PE22,from PE30 to PE31,PE32 and PE33.PE01 does edge detection instead of spreading.If edge detection result is flat then trigger intra-prediction handshake,or else wedge matching.

    Step 3 Parallel template expansion.If it is needed,PE 10 to PE 33 start the template expansion after getting the pixels data,according to the data loading condition.The block size had been judged out while loading.Ten templates had been loaded to each PE while arraying initial configuration,which benefits from fixed template.

    Step 4 CPV sencoding and SAD solving.PE10 to PE33 perform Step 3 to Step 6 in parallel mode,detailed in the algorithm designed in Section 2.3,obtaining their correspondingA residual,SAD,andCPVs.

    Step 5 The best prediction result obtaining and output.The predicted results calculated by each PE are sequentially sent to PE03.PE03 obtains the optimal template through comparing each SAD,reads its corresponding identifier,Aresidual,SAD,andCPVsvia shared registers,and outputs them.

    These are achievable by the dynamically reconfigurable mechanism.DPR-CODEC is a dynamic reconfigurable array processor,it can change instructions at runtime.The instructions in PEs are issued and stored while initial configuration.The global controller decides the operating modes,and distributes different call instructions for the PE or PEs.

    4 Experiment results and discussion

    This section presents the results for the proposed wedge segmentation DMM scheme.To evaluate the feasibility of the proposed algorithm,software simulation results present the coding quality and time consumer.Several sequences recommended by the JCT-3V group are encoded,including Kendo,Newspaper1,and Balloons with resolution of 1024×768,as well as Undo_Dancer,Poznan _Hall2,and Poznan_Street(1920×1088),which are tested under the common test conditions(CTC)specified in Ref.[14].In order to verify the performance of the parallel scheme,verification method is used as follows.Firstly,modify the configuration file of the test model HTM16.1,obtain test data and block partition information,and store it in the offchip memory.And then,use QuestaSim to map the reconfigurable scheme to the dynamic reconfigurable array.The instructions of the parallel program are initialized to instruction memory.The structure of the reconfigurable array is verified by QuestaSim-64 10.1.d.After functional simulation,the design is synthesized through the Xilinx virtex-6 FPGA with BEE4 XC6VLX365T-1FF1156 with speed grade-1.

    4.1 Effect of improved algorithm

    Since the proposed techniques focus on wedge segmentation in depth intra coding,all test sequences are encoded using the intra-only structure.The objective evaluation of availability is calculated by the peak signal-to-noise ratio(PSNR)loss,and depth coding time savingΔT.ΔTrepresents depth coding time change compared with the benchmarking algorithms,which is defined as

    where,Thtm.originalis the intra-only depth coding time in HTM16.1 software,Tproposedis the depth coding time of the proposed DMM-1 algorithm.Positive and negative values denote increments and decrements,respectively.The simulations are conducted on a 64 bits MS Windows 10 OSrunning on an Intel(R)Core(TM)i7-8565U CPU of 1.80 GHz and 8.0 GB RAM.

    To reveal the quality of the proposed algorithm,7 groups of video sequences with different moving intensity and resolution are evaluated.The simulations are carried on Matlab with 50 frames for each kind of video,and the results are shown in Fig.8.It is possible to note that the PSNR loss is 7.31 dB in average,that is slightly higher.Because the planner is applied only for flat block after corner detection to shield the interference of intra-prediction parts,which is much lower on whole intra-prediction of depth map.But that is not the focus of this paper.So,PSNR loss is up to 10.55 dB for Poznan_Hall2 with more flat blocks.However,the PSNR loss is down to 3.78 dB for GT_fly which has fewer flat blocks.These results are expressive for the coding quality of proposed algorithm,which is acceptable.

    Fig.8 PSNR of proposed algorithm for CTC evaluation compared with DMM-1 benchmarking

    From Table 3,it is obvious to note that the improvement achieves a depth coding time saving of 63.94 % in average. Compared with Ref.[4] and Ref.[5],the optimization effect is more significant,whether it is 1024×768 or 1920×1088 resolution.The improvement measures in Ref.[4]are mainly concentrated on simplifying the rate distortion cost(RDcost)computational complexity of intra-mode selection for flat.That is why it is more effective for gentle sequence,such as Kendo and Poznan _Hall2,compared with violent changes form,like Balloons and Poznan_Street.In Ref.[5],it only skipped DMM-1 process for flat block,number of mode selection and calculation method are not involved.Its time saving effect is less obvious.This paper focuses on flat and edge block at the same time.The corner detection is used to judge the type of block,and directly apply the planar pattern for flat one based on the texture characteristic of depth map.In addition,there are only 10 wedge templates for the edge block,the template selection process is greatly simplified.That is why the time saving is stable around 64%whether it is edge or not.

    Table 3___Depth coding time comparison un___________der_CTC

    4.2 Performance of parallelization

    Based on BEE Cube’s BEE4 hardware experimental platform,the team paralleled the improved DMM-1 based on DPR-CODECarray processor,synthesized with Xilinx ISE14.7.In order to improve the efficiency of DMM-1,the H-tree network and adjacency interconnection structure are fully utilized in data loading.It makes video data loading parallelized and save the data loaded time.As shown in Table 4,it saves about 50% time on data loading.The parallel data loading speed-up ratio reaches 2.169 compared with sequential manner.

    Table 4 Sequential/parallel data load time comparison____________(unit:__________________________________clock_cycle)

    The complexity of each wedge-shaped templates is different,time consumption is also different.Table 5 accesses the coding time for 8 different templates.The parallel coding time elapsed from the beginning of parallel computing to the time when the last processor produces output results.The serial encoding time is collected from serial algorithm performed on a single PE.The speed-up ratiosp(n)is used to evaluate the degree of improvement in running time caused by the parallelism of the algorithm,which is defined as

    where,ts(n)is the running time of the fastest serial algorithm,tp(n)is the running time of parallel solving the same problem.As shown in Table 5,the speed-up ratio of paralleled implementation of wedge segmentation proposed in this paper is 1.84 in average.

    Letpdenote the number of processors.Whensp(n)=p,it is called linear acceleration.Take 16×16 as an example.In the experiment,sp(n)=2.103,p=12,sp(n)≤pis caused by the difficulty of decomposing a computing problem into some parallel subproblems,or by the fact that too much communication is involved in the computation of various sub-problems.In terms of the number of processors,costc(n)is the total number of execution steps when solving a problem,which is the product of run timet(n)and number of processorsp(n),which is defined as

    EfficiencyEp(n)reflects the utilization of processors in parallel systems,which is defined as

    wherep(n)denotes the function of the processor with respect to the problem sizen.Ep(n)=0.159 in the experiment accords with the theoretical value of 0

    In Table 6,the comparison of the synthesizing results with Ref.[10],Ref.[11]and Ref.[12]is given.For this work,it only spends 210K equivalent gates.The hardware resource cut down is apparent.That benefits from number of wedgelets reducing.Moreover,it only performs 23 cycles for 4×4 PU,because no template extension operation is involved.But thedisadvantageof executiontimeexistsin16×16 PU,especially in 32×32,for template extension operation.This is to offset the cost of storage space.There only needs 160 bits to all wedgelets, saving reaches 99.2%.Although Ref.[10]retrenched some wedgelets by skipped refinement stage and resulted in a lower gate count,it still requires a dedicated memory of 217 632 bits to store coarse templates.Ref.[11]paralleled DMM-1 by 5 levels pipeline architecture,decreasing the PU handle time at the costs of 4895 gates.And it only treats PU,unable to cope with flexible PU size.Ref.[12]treated 32×32 PU at only 119 cycles through storing all wedge templates form lookup table.So,it requires a dedicated memory of 1 947 360 bits,and its hardware resource consumption is 2.54 times of the method proposed in this paper.

    Table 5 Parallel template performance assessment(unit:clock cycle)

    Table 6 Comparison of the synthesizing results with related work

    5 Conclusion

    Aiming at the huge data processing problem in the process of 3D-video coding,a simple wedge segmentation prediction method is proposed,considering the realizability and cost.The main contribution of the solution is three aspects.Utilizing the analysis and statistics to the wedge search template used in depth map prediction of 3D-HEVC,10 kinds of 4×4 wedge templates are screened out with larger prediction probability.Furthermore,a method is proposed to extend the 4×4 wedge template to anyN×NPU,which makes the total number of templates reduced from 3765 to 10.The storage cost and search time are reduced.Based on the computing pattern of the array processor(DPRCODEC)developed by project team,an efficient paralleling scheme is also detailed.The proposed simplified search template and parallel DMM-1 scheme are verified with HTM16.1 under CTC.The experiment results show that,the proposed methods save 99.2%of the storage space and 63.94%of the encoding time,the data loading time saves about 50%,and serial/parallel acceleration ratio of each template is 1.84 in average.It not only guarantees the coding quality,but also solves the complexity in the encoding process and improves the operation efficiency.In the future,the coding quality enhancing by optimizing intra process of flat block will be considered.

    高清在线国产一区| 18+在线观看网站| 在现免费观看毛片| 亚洲经典国产精华液单 | 小蜜桃在线观看免费完整版高清| 两人在一起打扑克的视频| 少妇裸体淫交视频免费看高清| 国产免费av片在线观看野外av| 自拍偷自拍亚洲精品老妇| 最近最新中文字幕大全电影3| bbb黄色大片| 综合色av麻豆| 色吧在线观看| 亚洲精品在线美女| 精品久久久久久久人妻蜜臀av| 欧美日韩亚洲国产一区二区在线观看| 国产精华一区二区三区| a级毛片免费高清观看在线播放| 天堂动漫精品| 又粗又爽又猛毛片免费看| 小蜜桃在线观看免费完整版高清| 成年女人毛片免费观看观看9| 亚洲欧美日韩高清专用| 深爱激情五月婷婷| 91字幕亚洲| 免费一级毛片在线播放高清视频| 欧美成人一区二区免费高清观看| 久久国产乱子免费精品| h日本视频在线播放| 国产在线精品亚洲第一网站| 亚洲av成人精品一区久久| 久久久国产成人精品二区| 亚洲国产精品久久男人天堂| 国产又黄又爽又无遮挡在线| 久久人妻av系列| 国内精品久久久久精免费| 国产av麻豆久久久久久久| 好看av亚洲va欧美ⅴa在| 欧美日韩国产亚洲二区| 国产免费男女视频| 看十八女毛片水多多多| 亚洲 欧美 日韩 在线 免费| 亚洲成人久久性| 国产乱人伦免费视频| 亚洲无线观看免费| 国产探花在线观看一区二区| 日本撒尿小便嘘嘘汇集6| 欧美xxxx黑人xx丫x性爽| or卡值多少钱| 久久精品久久久久久噜噜老黄 | 亚洲欧美日韩卡通动漫| 国产91精品成人一区二区三区| 97碰自拍视频| 国产黄片美女视频| 久久久精品大字幕| 欧美成人免费av一区二区三区| 亚洲成人久久爱视频| 最近中文字幕高清免费大全6 | 又黄又爽又免费观看的视频| 国产成人a区在线观看| 亚洲一区高清亚洲精品| 日本一二三区视频观看| 午夜亚洲福利在线播放| 精品乱码久久久久久99久播| 色噜噜av男人的天堂激情| 国产欧美日韩精品一区二区| 怎么达到女性高潮| 蜜桃亚洲精品一区二区三区| 国产人妻一区二区三区在| 日本一二三区视频观看| 中国美女看黄片| 日韩欧美免费精品| 十八禁网站免费在线| 婷婷精品国产亚洲av在线| 国产精品1区2区在线观看.| 天堂av国产一区二区熟女人妻| 看黄色毛片网站| 高清在线国产一区| 国产69精品久久久久777片| 国产麻豆成人av免费视频| 国产精品久久视频播放| 亚洲性夜色夜夜综合| 日韩欧美三级三区| 丁香欧美五月| 一级a爱片免费观看的视频| av天堂中文字幕网| 免费在线观看日本一区| 人妻久久中文字幕网| 亚洲人成伊人成综合网2020| 老司机午夜十八禁免费视频| 国产黄色小视频在线观看| 亚洲熟妇中文字幕五十中出| 村上凉子中文字幕在线| 又紧又爽又黄一区二区| 午夜精品一区二区三区免费看| 国产成人av教育| 欧美成狂野欧美在线观看| 欧美成人一区二区免费高清观看| 狠狠狠狠99中文字幕| 国产成人福利小说| 久久久久久国产a免费观看| 久久国产乱子免费精品| 久久久久亚洲av毛片大全| 国产三级在线视频| 91字幕亚洲| 亚洲专区中文字幕在线| 又黄又爽又免费观看的视频| 国产探花极品一区二区| 在线观看舔阴道视频| 欧美精品啪啪一区二区三区| av专区在线播放| 麻豆一二三区av精品| 国产精品人妻久久久久久| 亚洲av中文字字幕乱码综合| 亚洲欧美日韩高清在线视频| 国产精品野战在线观看| 99久久99久久久精品蜜桃| 老司机福利观看| 1024手机看黄色片| 亚洲人成伊人成综合网2020| 日本黄色片子视频| 国产成人影院久久av| 中亚洲国语对白在线视频| 偷拍熟女少妇极品色| 乱人视频在线观看| АⅤ资源中文在线天堂| 亚洲av.av天堂| 香蕉av资源在线| 黄片小视频在线播放| 久久精品人妻少妇| 一级黄色大片毛片| 99久久成人亚洲精品观看| 麻豆av噜噜一区二区三区| 毛片一级片免费看久久久久 | 欧美日韩综合久久久久久 | 色播亚洲综合网| 国产亚洲av嫩草精品影院| 一区二区三区四区激情视频 | 精品一区二区三区视频在线| 一卡2卡三卡四卡精品乱码亚洲| 亚洲欧美日韩高清在线视频| 亚洲专区国产一区二区| 嫩草影视91久久| 国产精品免费一区二区三区在线| 嫩草影院精品99| 俄罗斯特黄特色一大片| 久久亚洲真实| 能在线免费观看的黄片| 在线看三级毛片| 久久精品国产亚洲av天美| 日本在线视频免费播放| 成熟少妇高潮喷水视频| 国产中年淑女户外野战色| 麻豆成人午夜福利视频| 国产精品美女特级片免费视频播放器| 亚洲成av人片免费观看| 麻豆成人午夜福利视频| 最近在线观看免费完整版| 一本一本综合久久| 欧美色视频一区免费| 国产亚洲精品久久久com| 国产美女午夜福利| 国产成人av教育| 国产精品伦人一区二区| 欧美丝袜亚洲另类 | 69人妻影院| 久久精品影院6| 精品久久久久久久久av| 精品人妻视频免费看| 国产视频一区二区在线看| 免费无遮挡裸体视频| 日韩免费av在线播放| 男人舔奶头视频| 黄色女人牲交| 亚洲av免费在线观看| 精品午夜福利在线看| 十八禁网站免费在线| 听说在线观看完整版免费高清| 一区二区三区四区激情视频 | 国产精品,欧美在线| 国产精品一区二区三区四区久久| 国产av不卡久久| 变态另类丝袜制服| 国产蜜桃级精品一区二区三区| 身体一侧抽搐| 自拍偷自拍亚洲精品老妇| 国产高清激情床上av| 男女做爰动态图高潮gif福利片| 国产精品久久久久久精品电影| 成人无遮挡网站| 观看免费一级毛片| 欧美日韩综合久久久久久 | 成人国产一区最新在线观看| 亚洲电影在线观看av| 国内精品美女久久久久久| 国产视频一区二区在线看| 99国产极品粉嫩在线观看| 精品久久久久久久久亚洲 | 91麻豆精品激情在线观看国产| 国产av不卡久久| 亚洲欧美日韩卡通动漫| 中国美女看黄片| 一本久久中文字幕| 亚洲av熟女| 一进一出好大好爽视频| 国产三级中文精品| 免费看光身美女| 久久精品夜夜夜夜夜久久蜜豆| 欧美bdsm另类| 精品久久久久久久久av| 久久6这里有精品| 国产欧美日韩一区二区精品| 国产视频内射| 天堂网av新在线| 搞女人的毛片| 女同久久另类99精品国产91| 神马国产精品三级电影在线观看| 日本a在线网址| 精品人妻一区二区三区麻豆 | 真实男女啪啪啪动态图| 国产高清视频在线播放一区| 日本免费a在线| 99热这里只有精品一区| 一进一出抽搐gif免费好疼| 露出奶头的视频| 亚洲欧美激情综合另类| 成人永久免费在线观看视频| 我的女老师完整版在线观看| 精品无人区乱码1区二区| 亚洲国产精品合色在线| 国产一区二区在线av高清观看| 日本黄色片子视频| 九九在线视频观看精品| 亚洲内射少妇av| 非洲黑人性xxxx精品又粗又长| 欧美日韩瑟瑟在线播放| 少妇的逼好多水| 色视频www国产| 在线a可以看的网站| 久久精品影院6| 国产日本99.免费观看| 日韩国内少妇激情av| 国产91精品成人一区二区三区| 51国产日韩欧美| 99久久九九国产精品国产免费| 五月玫瑰六月丁香| 欧美日韩亚洲国产一区二区在线观看| 中文亚洲av片在线观看爽| 综合色av麻豆| 一本精品99久久精品77| 午夜影院日韩av| 亚洲精品久久国产高清桃花| 国产激情偷乱视频一区二区| 色噜噜av男人的天堂激情| 午夜福利视频1000在线观看| 熟妇人妻久久中文字幕3abv| 国产黄a三级三级三级人| 久久精品国产99精品国产亚洲性色| 成人特级黄色片久久久久久久| a级毛片免费高清观看在线播放| 人妻久久中文字幕网| 欧美三级亚洲精品| 欧美日韩乱码在线| 精品久久久久久久久久免费视频| 婷婷色综合大香蕉| 99在线视频只有这里精品首页| 国产熟女xx| 久久婷婷人人爽人人干人人爱| 能在线免费观看的黄片| 精品一区二区三区视频在线观看免费| 国产黄色小视频在线观看| 乱码一卡2卡4卡精品| 人人妻人人澡欧美一区二区| 国产亚洲精品久久久com| 国产亚洲精品av在线| 亚洲综合色惰| 国产日本99.免费观看| 亚洲 欧美 日韩 在线 免费| 亚洲av熟女| 欧美高清成人免费视频www| av在线蜜桃| 欧美日本亚洲视频在线播放| 亚洲av美国av| 日本a在线网址| 美女高潮的动态| 级片在线观看| 免费在线观看日本一区| 日本一本二区三区精品| 亚洲男人的天堂狠狠| 精品国内亚洲2022精品成人| 又紧又爽又黄一区二区| 精品久久久久久久久亚洲 | 日韩欧美免费精品| 欧美日韩福利视频一区二区| 最近最新中文字幕大全电影3| 欧美日韩瑟瑟在线播放| 97人妻精品一区二区三区麻豆| 一个人免费在线观看的高清视频| 99热6这里只有精品| 久久久久久久久中文| 成人毛片a级毛片在线播放| 久久久久久久午夜电影| 国产 一区 欧美 日韩| 久久人人精品亚洲av| 给我免费播放毛片高清在线观看| 国产乱人伦免费视频| 乱人视频在线观看| 看片在线看免费视频| 国产91精品成人一区二区三区| 国产精品久久久久久久久免 | 男插女下体视频免费在线播放| 伊人久久精品亚洲午夜| 一个人免费在线观看的高清视频| 美女被艹到高潮喷水动态| 久久久久久久久久黄片| 日本三级黄在线观看| 最好的美女福利视频网| 午夜激情福利司机影院| 精品人妻偷拍中文字幕| 久9热在线精品视频| 又紧又爽又黄一区二区| 18美女黄网站色大片免费观看| 国产成+人综合+亚洲专区| 有码 亚洲区| 久久国产精品人妻蜜桃| 他把我摸到了高潮在线观看| 亚洲av不卡在线观看| 国产三级中文精品| 最近在线观看免费完整版| 婷婷精品国产亚洲av| 偷拍熟女少妇极品色| 国产欧美日韩精品一区二区| 欧美精品国产亚洲| 成人美女网站在线观看视频| 美女黄网站色视频| 级片在线观看| 宅男免费午夜| 国产大屁股一区二区在线视频| 久久精品国产自在天天线| 久久精品国产99精品国产亚洲性色| 日韩国内少妇激情av| 12—13女人毛片做爰片一| 亚洲片人在线观看| 99热只有精品国产| 欧美色欧美亚洲另类二区| 国产一区二区三区视频了| 亚洲精华国产精华精| 欧美+日韩+精品| 国产精品精品国产色婷婷| 啦啦啦韩国在线观看视频| 国产精品av视频在线免费观看| 首页视频小说图片口味搜索| 午夜影院日韩av| 99久久精品国产亚洲精品| 国内少妇人妻偷人精品xxx网站| 久久久色成人| 精品一区二区三区视频在线观看免费| 男人和女人高潮做爰伦理| 在线观看免费视频日本深夜| 97热精品久久久久久| 婷婷亚洲欧美| 啪啪无遮挡十八禁网站| 网址你懂的国产日韩在线| 国产高清有码在线观看视频| 人妻制服诱惑在线中文字幕| 最近中文字幕高清免费大全6 | 成年版毛片免费区| www.www免费av| av天堂中文字幕网| 最后的刺客免费高清国语| 欧美区成人在线视频| 日韩高清综合在线| 女同久久另类99精品国产91| a在线观看视频网站| 夜夜看夜夜爽夜夜摸| 毛片一级片免费看久久久久 | 三级国产精品欧美在线观看| 国产欧美日韩一区二区精品| 嫩草影视91久久| 国产中年淑女户外野战色| 国产乱人视频| 成人性生交大片免费视频hd| 成人国产综合亚洲| 女生性感内裤真人,穿戴方法视频| 欧美中文日本在线观看视频| 一个人看的www免费观看视频| 午夜福利欧美成人| 51国产日韩欧美| 久久久久久九九精品二区国产| 一级作爱视频免费观看| 成人国产一区最新在线观看| 成人鲁丝片一二三区免费| 村上凉子中文字幕在线| 老司机福利观看| 亚洲片人在线观看| av在线老鸭窝| 亚洲熟妇熟女久久| 久久久久久久久中文| 听说在线观看完整版免费高清| 国产伦在线观看视频一区| 免费看美女性在线毛片视频| 少妇熟女aⅴ在线视频| 啪啪无遮挡十八禁网站| 亚洲 欧美 日韩 在线 免费| 国产美女午夜福利| 精品久久久久久,| 色综合欧美亚洲国产小说| 国产高清激情床上av| 久久伊人香网站| 国产免费av片在线观看野外av| 国产又黄又爽又无遮挡在线| 有码 亚洲区| 99久久99久久久精品蜜桃| 我要搜黄色片| 激情在线观看视频在线高清| 国模一区二区三区四区视频| 我的老师免费观看完整版| 狂野欧美白嫩少妇大欣赏| 人人妻人人澡欧美一区二区| 精品久久久久久成人av| 亚洲av免费在线观看| 日韩大尺度精品在线看网址| 亚洲av日韩精品久久久久久密| 亚洲无线观看免费| 欧美激情在线99| 在线a可以看的网站| 成年人黄色毛片网站| 国产免费一级a男人的天堂| 无人区码免费观看不卡| 国产真实伦视频高清在线观看 | 精品福利观看| 男人的好看免费观看在线视频| 每晚都被弄得嗷嗷叫到高潮| 很黄的视频免费| 一级a爱片免费观看的视频| 校园春色视频在线观看| 我的女老师完整版在线观看| 看片在线看免费视频| 国产精品女同一区二区软件 | avwww免费| 高清在线国产一区| 亚洲国产欧洲综合997久久,| 在线观看舔阴道视频| 一夜夜www| 国产乱人伦免费视频| 日本一二三区视频观看| 在线观看av片永久免费下载| 国产69精品久久久久777片| 亚洲片人在线观看| 日韩大尺度精品在线看网址| 久久久精品欧美日韩精品| 久久久久久久久久成人| 亚洲精品久久国产高清桃花| 51国产日韩欧美| 国产精品影院久久| 中文字幕免费在线视频6| 色吧在线观看| 色综合婷婷激情| 欧美成人性av电影在线观看| 小说图片视频综合网站| 亚洲欧美清纯卡通| 黄色日韩在线| 亚洲熟妇熟女久久| 99国产精品一区二区蜜桃av| 9191精品国产免费久久| 亚洲国产欧美人成| 窝窝影院91人妻| 日韩欧美三级三区| 日本在线视频免费播放| 男人舔女人下体高潮全视频| 久久久国产成人精品二区| 99久久久亚洲精品蜜臀av| 日韩欧美精品免费久久 | 免费高清视频大片| 亚洲一区二区三区不卡视频| 嫩草影院入口| 1000部很黄的大片| 蜜桃亚洲精品一区二区三区| 在线免费观看的www视频| 国产av麻豆久久久久久久| 在线观看美女被高潮喷水网站 | 在线观看美女被高潮喷水网站 | 欧美激情在线99| 亚洲第一区二区三区不卡| 亚洲人成伊人成综合网2020| 国产主播在线观看一区二区| 日日夜夜操网爽| 超碰av人人做人人爽久久| 在线a可以看的网站| 可以在线观看的亚洲视频| 18禁黄网站禁片免费观看直播| www.熟女人妻精品国产| 丰满乱子伦码专区| 黄色配什么色好看| 久久性视频一级片| 亚洲精品在线观看二区| 欧美高清性xxxxhd video| 亚洲精品色激情综合| 午夜日韩欧美国产| 一个人观看的视频www高清免费观看| 亚洲国产高清在线一区二区三| 亚洲人与动物交配视频| 欧美bdsm另类| 可以在线观看毛片的网站| 国产高清有码在线观看视频| 国产精品一区二区性色av| 女人被狂操c到高潮| 国产精品久久久久久精品电影| a级一级毛片免费在线观看| 亚洲av第一区精品v没综合| 天天一区二区日本电影三级| 国产精品女同一区二区软件 | 欧美性猛交╳xxx乱大交人| 国产色爽女视频免费观看| 国内揄拍国产精品人妻在线| 99热精品在线国产| 精品免费久久久久久久清纯| 亚洲一区二区三区色噜噜| 性欧美人与动物交配| 日韩欧美三级三区| 国产伦一二天堂av在线观看| 青草久久国产| 久久人人精品亚洲av| 蜜桃久久精品国产亚洲av| 亚洲av成人av| 老司机深夜福利视频在线观看| 性色avwww在线观看| 精品人妻1区二区| 午夜久久久久精精品| 亚洲性夜色夜夜综合| 亚洲专区国产一区二区| 亚洲欧美激情综合另类| 久久精品国产清高在天天线| 在线国产一区二区在线| 午夜老司机福利剧场| 嫩草影视91久久| 国产精品永久免费网站| 噜噜噜噜噜久久久久久91| 一个人看的www免费观看视频| bbb黄色大片| 黄色女人牲交| 欧美日本视频| 日韩欧美精品免费久久 | 欧美高清性xxxxhd video| 亚洲国产欧美人成| 亚洲av二区三区四区| 久99久视频精品免费| 国产主播在线观看一区二区| 久久国产精品人妻蜜桃| 性色av乱码一区二区三区2| 精品一区二区三区人妻视频| 女人被狂操c到高潮| 国产精品一区二区三区四区久久| 内射极品少妇av片p| 久久九九热精品免费| 亚洲精品成人久久久久久| 高潮久久久久久久久久久不卡| 天美传媒精品一区二区| 99久久久亚洲精品蜜臀av| 内地一区二区视频在线| 色综合站精品国产| 亚洲经典国产精华液单 | 亚洲片人在线观看| 18+在线观看网站| 18美女黄网站色大片免费观看| av中文乱码字幕在线| 国产综合懂色| а√天堂www在线а√下载| 精品一区二区三区人妻视频| 精品99又大又爽又粗少妇毛片 | 国产亚洲欧美在线一区二区| 成人精品一区二区免费| 最近视频中文字幕2019在线8| 内射极品少妇av片p| 丝袜美腿在线中文| av福利片在线观看| 一边摸一边抽搐一进一小说| 中文亚洲av片在线观看爽| 国产淫片久久久久久久久 | 成年女人永久免费观看视频| 免费一级毛片在线播放高清视频| 国产一区二区亚洲精品在线观看| 色综合婷婷激情| 亚洲av第一区精品v没综合| 欧美最新免费一区二区三区 | 怎么达到女性高潮| 精品久久久久久久久av| 中文资源天堂在线| 日日干狠狠操夜夜爽| 婷婷精品国产亚洲av| 国产精品嫩草影院av在线观看 | 在线观看舔阴道视频| 99国产精品一区二区蜜桃av| 成人特级黄色片久久久久久久| 日韩有码中文字幕| 午夜福利18| 日本在线视频免费播放| 黄色视频,在线免费观看| 我的老师免费观看完整版| 色尼玛亚洲综合影院| 免费观看人在逋| 在线观看av片永久免费下载| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 老女人水多毛片| av视频在线观看入口| 神马国产精品三级电影在线观看| 亚洲在线自拍视频| 性插视频无遮挡在线免费观看| 人人妻人人澡欧美一区二区| 脱女人内裤的视频| 久久久久国内视频| 国产一区二区在线观看日韩| 欧美日本视频| 成人av在线播放网站| 久久久成人免费电影|