• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Bearing-based localization of multi-agent system with event-triggered strategy

    2022-01-08 12:26:06HUBinbinZHANGHaitao
    控制理論與應(yīng)用 2021年11期

    HU Bin-bin, ZHANG Hai-tao

    (Key Laboratory of Image Processing and Intelligent Control,School of Artificial Intelligence and Automation,Huazhong University of Science and Technology,Wuhan Hubei 430074,China;State Key Lab of Digital Manufacturing Equipment and Technology,Wuhan Hubei 430074,China)

    Abstract: This paper develops an event-based scheme to attain bearing-based localization of multi-agent system in arbitrary dimension.Essentially,an event-triggered localization law is designed accordingly to the bearing rigidity,which is to localize all the agents in a static network given the bearings of a subset of agents. The conditions guaranteeing asymptotically stability of the closed-loop MAS governed by the proposed controller are derived with the assistance of input-to-state stable (ISS) principle. Significantly, Zeno behavior is excluded as well. Finally, 2-D and 3-D numerical simulations are conducted to substantiate the effectiveness of the proposed event-triggered localization control scheme.

    Key words:localization;bearing rigidity;event-triggered control;multi-agent system

    1 Introduction

    In recent years,collective control of the multi-agent systems(MASs)has attracted more and more attention due to its extensive applications in multi-robot collaboration,multiple unmanned system localization,wireless sensor network optimization, and so on [1-14]. Taking the localization control of the networked system for example, the localization technology is indispensable for smuggling detection, contour mapping, environment surveillance,resources exploration,etc.

    The objective of MAS localization is to localize all the agents in a static network with the assistance of the locations of a subset agents and inter-neighbor relative measurements.According to the types of measurements utilized in the localization, the existing works can be classified into position-based[15-17],distancebased[18-21]and bearing-based strategies[22-25].

    Due to the associated theoretical challenges,initial efforts are devoted to the methods according to positions and distances[15-21],which are however heavily costly due to the high-accuracy binocular vision sensors and GPS devices.Moreover,in modern complex collective missions like aquatic resource exploration of multiunmanned surface vessels(USVs),efficient and precise position/distance sensors may not be always available,which intensifies the challenges in localization control.As a remedy,the bearing information(i.e.,bearing vectors or angles) only requires less costly onboard bearing sensors such as the pin-hole cameras and wireless sensor arrays[26], which is desirable in modern largescale applications to fulfill more and more complex marine missions.Therefore,it becomes an urgent tendency to develop a more practical and economic localization control scheme of the MASs merely based on relative bearing measurements.

    In localization control techniques with bearingbased measurements, one of the main challenges lies in the nonlinearity of the bearing controllers,and hence the early stage works only focused on subtended bearing angles.As one of the pioneer works,Basiri&Bishop[27]proposed a bearing-only control scheme which governs three mobile agents to form localization with evenly-distributed angular phases.Zhao&Lin[28]designed a bearing-only protocol to form a cyclic localization with angular constraints. Eren & Tolga [29]developed a pattern controller for the localization of robots and sensor networks. However, such subtended bearing-based control protocols[27-29]still lack flexibility due to the invariant angles in agent’s local coordinates, which thereby hinders their further applications.Afterwards,another research line of bearing rigidity emerged,which achieves a specified localization by setting desired bearing vectors with local calculation. In this pursuit,Franchi et al.[30]initially studied the concept of bearing rigidity. Zhao & Zelazo [31] designed a nonlinear distributed bearing-only controller without a global orientation. This scheme was afterwards [32]generalized to a protocol to form translational and scaling localizations considering external disturbances, input saturations, and collision avoidance, simultaneously. Following this research line, Tron & Thomas [33]developed a gradient-decent optimization control law to minimize the localization error and control cost of the bearing-only schemes.However,due to the increasingly pattern complexity to fulfill specific localization missions in real applications,more recent efforts have been devoted to bearing-only localization control for highorder MASs. As representive works, Zhao et al. firstly revealed necessary-sufficient conditions for network localizability with rigidity theoretic interpretations[34]and then designed a novel bearing-only control law to attain localization with a variety of agent dynamics including single-integrator, double-integrator, and unicycle models[35].

    So far, most of the existing bearing-only localization studies [22-35] just focused on the time-driven methods,which may not be suitable due to the widelyused embedded microprocessors with limited calculation resources. Moreover, data transmissions of currently available communication capability of bearing sensors further limit the applications to large-scale localization missions. As a remedy, event-triggered schemes [36-37] have attracted more and more attention, whose core idea is to trigger the controller only when a local measurement error exceeds a threshold.An event-triggered scheme basically consists of two elements, i.e., a distributed controller to govern each agent,and a triggering function determining what time to be updated[38-42].Compared with time-driven methods, event-triggered schemes could reduce calculation,communication and sampling cost whereas maintaining satisfactory control performances.However,due to the theoretical challenges in synthesizing the bearing input saturation constraints of bearing rigidity and eventbased dynamics, so far few efforts have been devoted to the event-triggered localization control with bearing rigidity. That naturally motivates us to develop a niche event-triggered bearing-only localization controller.

    As an initial exploration of bearing-based MAS localization control with event-triggered techniques, the main contribution of this paper is to propose an eventtriggered bearing-only controller to localize all the agents in arbitrary dimensions, where the Zeno behaviors[36]are theoretically guaranteed to be excluded in the proposed framework.

    The remainder of this paper is organized as follows:Section 2 presents problem formulation. Section 3 develops an event-triggered scheme for bearing-based localization.Moreover,the conditions are derived to guarantee both the closed-loop stability and the Zeno-free feature in the same section.Afterwards,numerical simulation are conducted to substantiate the effectiveness of the proposed method in Section 4. Conclusions are finally drawn in Section 5.

    Throughout the paper,R,R+denote sets of the real and positive real numbers,respectively.Rndenotes then-dimensional Euclidean space.‖?‖is the Euclidean norms, 1m:= [1···1]T∈Rm,In ∈Rn×nis the identity matrix.?denotes the Kronecker product,(?)i,jrepresents the(i,j)-th entry of matrix?,λmin(?)denotes the smallest eigenvalue of symmetric matrix(?), and?(f) is the gradient of a functionf. GivenPk ∈Rq×qfork= 1,··· ,m, diag{Pk} ∈Rmq×mqrepresents a block-diagonal matrix with diagonal entriesP1toPm.

    2 Problem formulation

    Consider a leader-follower MAS with the firstlagents as the leaders, i.e., Il:={ν1,ν2,··· ,νl}and the reminderf:=n ?lagents as the followers,i.e., If:={νl+1,νl+2,··· ,νn}, defineG(ν,ε) as the undirected interaction topology among agents withν= [ν1ν2··· νn] = Il ∪Ifthe vertex set andε ?ν×νthe edge set.Ni={j ∈ν,(i,j)∈ ε}denotes the neighbors of agenti,where the connection(i,j)represents agentihas access to agentj.

    Letpi ∈Rdbe the positions of agentiwith the dynamics formulated as below,

    Before deriving the control law, it is necessary to give the following definitions concerning bearing rigidity.

    Definition 1 (oriented graph [43]) An oriented Graph is an undirected graphG(ν,ε) with an assignment of a direction to each edge.

    Letmbe the number of undirected edges inG, it can be deduced that the oriented graph containsmdirected edges. Suppose the edge (ki,kj),ki,kj ∈νinGcorresponds to thek-th directed edge in the oriented graph withk ∈M:={1,··· ,m},in other words,

    In accordance to the definition of leader-follower MAS(Il ∪If),the bearing LaplacianBcould be partitioned into

    withBll∈Rdl×dl,Blf∈Rdl×df,Bfl∈Rdl×df, andBff∈Rdf×df.

    To propose the main technical result,it is still necessary to provide a definition concerning the unique target localization.

    Definition 3 (unique target localization [35])The desired target localization (G,p?(t)) is unique ifBffin the bearing LaplacianBis nonsingular.

    With the above definitions,it is ready to propose the main technical problem addressed by this paper.

    Problem 1(event-triggered bearing-based localization).With the given anchors leaders(i.e.,ui= 0,i ∈Il),design a coordinative event-triggered control signal

    for the followers in MAS governed by Eq. (1) andG(ν,ε) to achieve a unique localization given in Definition 3. Here,s= 0,1,2,···, are the discrete event-triggering time constants.The triggering time sequencests,s= 0,1,2,··· ,are calculated with a trigger functionf(·)designed afterwards.

    Remark 1 Distinct from previous time-driven bearing-only control methods [27-35] and eventtriggered position-based control strategies [37-42],Problem 1 considers both natural nonlinear bounded bearing values (i.e.,‖gi,j‖≤1 in Eq. (7)) and eventtriggered techniques for technical issues, which brings challenges in controller design, stability analysis and Zeno exclusion.

    3 Main results

    In this section,the event-triggered bearing-only localization control scheme is proposed with a guaranteed Zeno-free feature.Before presenting the main technical results,it is necessary to introduce some preliminaries.

    Assumption 1 For ann-agent MAS with communication topologyG(ν,?),it is assumed that the target localization(G,p?)in Definition 3 is unique.

    Assumption 1 guarantees the uniqueness of the final localization via bearing-only measurements.

    Lemma 1[35] Suppose no agents coincide in desired localizationp?or during the localization forming process,one has

    Remark 2 Due to the anchors or stationary leaders(i.e.,ui= 0,i ∈Il)and the unique target localization in Definition 3, it can be deduced that the desired positionp?is stationary, which implies that the center of all the desired positions ˉp?keeps stationary as well(i.e.,a constant)in Lemma 1.

    Assumption 2 [35] Under Assumption 1, it is assumed that the initial values of position errorsδpin Eq.(11)satisfy

    withβ>0 being a positive constant.

    Assumption 2 is a sufficient condition for initial noncoincidence of agents, which is indispensable for the exclusion of the Zeno behavior afterwards.

    Analogously, in accordance to the stationary anchor leaders i.e.,pi(t) =pi(0), i ∈Il, ?t> 0 in Problem 1,the proposed event-triggered control lawui, i ∈If,is formulated as,

    whereγi ∈R+,i ∈If,is the control gain, ands=0,1,2,···, are the discrete event-triggering time constants. The triggering time sequencests,s= 0,1,2,··· ,are designed as

    Now, the main technical result concerning Problem 1 is provided as below.

    Me: How s the salmon2?Server: Fantastic!Me: Does it come with rice?Server: Absolutely!Would a good and a yes have been sufficient? Undeniably!At Starbucks, the smallest coffee you can order is a Tall

    Theorem 1 For the leader-follower MAS governed by Eqs.(1)(12),and(14),Problem 1 is solved under Assumptions 1, 2. Moreover, the inter-event times satisfyts+1?ts≥τwithτ ∈R+being the threshold.

    Proof See Appendix.

    Remark 3 In the previous event-triggered control strategies [37-42], the input is generally designed based on the relative position, which implies that at least two kinds of sensors are required (distance measurement and bearing angle measurement) with high cost.However,the proposed controller in Eq.(12)is designed based on bearing-only information,which could measure bearings via only low-cost pin-hole cameras or wireless sensor arrays,and is hence more applicable in practice.Moreover,since the relative bearing is nonlinear and bounded,it brings challenging issues in the convergence analysis and exclusion of Zeno behavior when combining it with event-triggered technique.

    4 Numerical simulation

    In this section, we consider two kinds of localizations to validate the feasibility of Theorem 1. One is a 3-D localization,another is a sophisticated localization in a 2-D configuration space.

    For a 3-D localization scenario, we consider a leader-follower MAS consisting of 2 leaders and 10 followers,whose inter-agent interaction topologyGof the MAS is illustrated in Fig. 1(a) under Assumption 1.Moreover,with an arbitrary oriented graph of the topologyG, the target localization is set with the constant bearingg?and prescribed relative distance, as shown in Fig.1(a).The initial positions of the leader-follower MAS are set as

    Fig.1 MAS prescribed structure and trajectories evolution in 3-D localization

    with Assumption 2. In accordance to Theorem 1, the parameters for controller(12)are set asγi=10,i ∈Ifandσin Eq.(a6)is set as 0.5 satisfying 0<σ<1.

    The trajectories of the event-triggered bearing-only localization are illustrated in Fig.1(b),where the black circles denote the positions of followers and the red rectangles the positions of leaders. It is observed that the prescribed target 3-D localization is finally achieved by the followers in Fig.1(b).Compared with the timedriven bearing localization method [35], the evolution of bearing vector errorsg ?g?in Fig. 2 converge to zeros as well and hence the prescribed target localization is finally achieved, which substantiates the feasibility of Theorem 1. As shown in Fig. 3(a), with substantial reduction of the calculation,sampling and communication cost,there is nearly no control performance degradation of the tracking errors‖δp‖, which still converge asymptotically with the event-triggered controller. Moreover, as shown in Fig. 3(b), the temporal evolution of the event-triggered timests+1?tsimplies that there exists a minimum inter-event time interval ofτ= 0.02 s, which further verifies the feasibility and effectiveness of the control scheme Eq. (12) and Theorem 1.Fig.4 depicts the event-triggered phenomenon by the switching of the trigger functionf(r,δp).

    Fig.2 Temporal evolution of the bearing vector errors g ?g?in 3-D localization

    Fig.3 Performance evolution of MAS localization with event-triggered schemes in 3-D localization

    Fig.4 Temporal evolution of the triggering function f(r,δp)in 3-D localization

    For the scenario of 2-D localization case, we consider a leader-follower MAS consisting of 2 leaders and 14 followers,whose inter-agent interaction topologyGof the MAS is illustrated in Fig. 5(a) under Assumption 1.Meanwhile,the target localization is set with the constant bearingg?and prescribed relative distance,as shown in Fig. 5(a) as well. The initial positions of the leader-follower MAS are set as

    with Assumption 2. The parametersγi= 10,i ∈Ifandσin Eq.(a6)for controller(12)are the same as the 3-D case.

    Analogously,the trajectories of the event-triggered bearing-only localization are illustrated in Fig.5(b).It is observed that the prescribed target localization is finally achieved by the followers as well. The evolution of bearing vector errorsg ?g?in Fig.6 converge to zeros as well, which implies that the prescribed target localization is finally achieved. As shown in Fig. 7(a), the tracking errors‖δp‖still converge asymptotically with event-triggered controller,which is similar to Fig.4(a).Moreover, as shown in Fig. 7(b), the temporal evolution of the event-triggered timests+1?tsclearly imply that there exists a minimum inter-event time interval ofτ= 0.02 s, which verifies the feasibility and effectiveness of the control scheme (12) and Theorem 1 as well. In Fig. 8, it is observed that the event-triggered phenomenon implicitly exists by the switching of the trigger functionf(r,δp).

    Fig.5 MAS prescribed structure and trajectories evolution in 2-D localization

    Fig.7 Performance evolution of MAS localization with event-triggered schemes in 2-D localization

    Fig.8 Temporal evolution of the triggering function f(r,δp)in 2-D localization

    5 Conclusion

    In this paper, we propose an event-triggered bearing-only localization method for networked MASs.With such a localization protocol,the entire group forms a prescribed localization merely according to eventbased bearing-only measurements in arbitrary dimension. Essentially, the conditions are derived guaranteeing both the asymptotical stability of the proposed protocol and the exclusion of Zeno behavior. Numerical simulations are conducted to substantiate the effectiveness of the proposed method. Such an event-based bearing-only method has application potential in collective patrolling, reconnaissance, resource explorations,environmental monitoring,etc.,with abundant industrial multiple unmanned systems,mobile robots and vehicles.

    Appendix Proof of Theorem 1

    The proof consists of two claims,where the convergence of bearing-based localization and exclusion of the Zeno behavior are proved sequentially.

    Claim 1 Convergence of bearing-based localization.

    With the assistance of the incidence matrix ˉHin Eq. (9),rewrite the controller Eq.(12)in a compact form as

    According to the monotonically increasing property ofφ1,φ2in Eq.(a14),there exists a lower time boundaryτsuch that{ts+1?ts}≥τwith a parameter 0<σ< 1.The proof is thus completed.

    丰满人妻一区二区三区视频av | 精品乱码久久久久久99久播| 久久精品亚洲精品国产色婷小说| 日韩欧美国产在线观看| 啦啦啦免费观看视频1| www.999成人在线观看| 91av网一区二区| 一区二区三区高清视频在线| 网址你懂的国产日韩在线| 香蕉久久夜色| 丁香六月欧美| 国产aⅴ精品一区二区三区波| 特大巨黑吊av在线直播| 性欧美人与动物交配| 精品无人区乱码1区二区| tocl精华| 麻豆av在线久日| а√天堂www在线а√下载| 国产伦人伦偷精品视频| 国产精品女同一区二区软件 | 丝袜人妻中文字幕| 天天躁日日操中文字幕| cao死你这个sao货| 欧美成人性av电影在线观看| 琪琪午夜伦伦电影理论片6080| 99热只有精品国产| 97超视频在线观看视频| 十八禁网站免费在线| 国产精品一区二区三区四区久久| 久久久久久久久久黄片| 国产精品久久久久久精品电影| 国内揄拍国产精品人妻在线| 亚洲国产看品久久| 99re在线观看精品视频| 国产一区二区在线观看日韩 | 又紧又爽又黄一区二区| 欧美日韩精品网址| 老司机在亚洲福利影院| 国产黄片美女视频| 亚洲色图av天堂| 老司机在亚洲福利影院| 国产精品一区二区精品视频观看| 老熟妇乱子伦视频在线观看| 欧美日韩精品网址| 又紧又爽又黄一区二区| 三级国产精品欧美在线观看 | 久久久久性生活片| 桃色一区二区三区在线观看| 亚洲欧美精品综合久久99| 国产久久久一区二区三区| 男女那种视频在线观看| 欧美最黄视频在线播放免费| 黑人操中国人逼视频| 婷婷亚洲欧美| 日本黄色视频三级网站网址| 99久久久亚洲精品蜜臀av| 国产精品久久久久久亚洲av鲁大| 亚洲自拍偷在线| 国产一区在线观看成人免费| 久久精品夜夜夜夜夜久久蜜豆| 草草在线视频免费看| 久久久成人免费电影| 他把我摸到了高潮在线观看| 在线免费观看的www视频| 国产欧美日韩精品亚洲av| 国产三级黄色录像| 90打野战视频偷拍视频| 久久中文字幕人妻熟女| 亚洲欧美一区二区三区黑人| 欧美日韩乱码在线| 亚洲aⅴ乱码一区二区在线播放| 日本 欧美在线| 丝袜人妻中文字幕| 亚洲成av人片免费观看| 国产成人aa在线观看| 99久久国产精品久久久| 欧美黄色淫秽网站| 色av中文字幕| 中出人妻视频一区二区| 欧美另类亚洲清纯唯美| 亚洲国产精品久久男人天堂| 日韩欧美在线二视频| 中文字幕最新亚洲高清| 天堂网av新在线| 少妇的逼水好多| 欧美高清成人免费视频www| 欧美高清成人免费视频www| 搞女人的毛片| av天堂中文字幕网| 女同久久另类99精品国产91| 国产精品久久久久久久电影 | 国产精品综合久久久久久久免费| 神马国产精品三级电影在线观看| 日韩欧美精品v在线| 97人妻精品一区二区三区麻豆| 亚洲国产看品久久| 国产蜜桃级精品一区二区三区| 久久天堂一区二区三区四区| 美女高潮喷水抽搐中文字幕| 欧美日韩中文字幕国产精品一区二区三区| 免费在线观看日本一区| 中文字幕久久专区| 国产伦一二天堂av在线观看| 全区人妻精品视频| 欧美在线黄色| 淫秽高清视频在线观看| 桃红色精品国产亚洲av| 亚洲欧美精品综合久久99| 午夜日韩欧美国产| 亚洲一区二区三区色噜噜| 草草在线视频免费看| 日本免费a在线| 99精品久久久久人妻精品| av黄色大香蕉| 日本熟妇午夜| 男人舔女人的私密视频| 宅男免费午夜| 日韩av在线大香蕉| 精品无人区乱码1区二区| 亚洲av成人精品一区久久| 免费无遮挡裸体视频| 此物有八面人人有两片| 亚洲精品色激情综合| 嫩草影院入口| 欧美中文日本在线观看视频| 国产精品野战在线观看| 国产精品久久久久久久电影 | 国产午夜精品久久久久久| 久久久久九九精品影院| 国产久久久一区二区三区| 99国产精品一区二区三区| 人人妻,人人澡人人爽秒播| 亚洲国产欧洲综合997久久,| 欧美黑人巨大hd| 无人区码免费观看不卡| 99riav亚洲国产免费| 黄色片一级片一级黄色片| 久久久久国产一级毛片高清牌| 伦理电影免费视频| 一级毛片精品| 亚洲欧美日韩东京热| 三级男女做爰猛烈吃奶摸视频| 国产精品综合久久久久久久免费| 男女午夜视频在线观看| 婷婷六月久久综合丁香| 国产成年人精品一区二区| 一进一出抽搐gif免费好疼| 最好的美女福利视频网| 99国产极品粉嫩在线观看| 美女午夜性视频免费| 国产精品,欧美在线| 国产一区二区激情短视频| 久久中文字幕一级| 91久久精品国产一区二区成人 | 色噜噜av男人的天堂激情| 午夜亚洲福利在线播放| 男人的好看免费观看在线视频| 热99re8久久精品国产| 亚洲男人的天堂狠狠| 免费一级毛片在线播放高清视频| 手机成人av网站| 日本与韩国留学比较| 亚洲av免费在线观看| 久久久精品欧美日韩精品| 99riav亚洲国产免费| 成人性生交大片免费视频hd| 国产综合懂色| 国产亚洲精品一区二区www| 变态另类成人亚洲欧美熟女| 国产av在哪里看| 日韩成人在线观看一区二区三区| 在线观看一区二区三区| 五月玫瑰六月丁香| 91在线精品国自产拍蜜月 | 欧美zozozo另类| 给我免费播放毛片高清在线观看| 两人在一起打扑克的视频| 免费一级毛片在线播放高清视频| 成人国产综合亚洲| 麻豆久久精品国产亚洲av| 天天躁狠狠躁夜夜躁狠狠躁| 国产成年人精品一区二区| 国产精品精品国产色婷婷| 18美女黄网站色大片免费观看| 中文字幕精品亚洲无线码一区| 亚洲精品乱码久久久v下载方式 | 亚洲 欧美一区二区三区| 熟妇人妻久久中文字幕3abv| 人人妻人人澡欧美一区二区| 欧美午夜高清在线| 亚洲av电影在线进入| 欧美成人一区二区免费高清观看 | 婷婷亚洲欧美| 91字幕亚洲| 黄色 视频免费看| 丰满人妻一区二区三区视频av | 色综合站精品国产| www.www免费av| 国产综合懂色| 欧美日韩瑟瑟在线播放| 午夜福利高清视频| 亚洲国产看品久久| 午夜福利免费观看在线| 中亚洲国语对白在线视频| 亚洲欧美激情综合另类| 亚洲在线自拍视频| 欧美丝袜亚洲另类 | 色播亚洲综合网| tocl精华| 成熟少妇高潮喷水视频| 亚洲国产日韩欧美精品在线观看 | 日日摸夜夜添夜夜添小说| 免费无遮挡裸体视频| 国产三级在线视频| 亚洲精品美女久久久久99蜜臀| 亚洲熟妇中文字幕五十中出| 欧美zozozo另类| 在线看三级毛片| 久久精品国产99精品国产亚洲性色| 日本三级黄在线观看| 亚洲欧美日韩高清在线视频| 欧美日韩瑟瑟在线播放| 亚洲色图av天堂| 日韩欧美 国产精品| 国产免费av片在线观看野外av| 久久香蕉国产精品| 日本 欧美在线| av片东京热男人的天堂| 久久国产精品人妻蜜桃| 日韩国内少妇激情av| 国产视频一区二区在线看| 少妇人妻一区二区三区视频| 美女高潮喷水抽搐中文字幕| 免费人成视频x8x8入口观看| bbb黄色大片| av黄色大香蕉| 免费无遮挡裸体视频| 女人高潮潮喷娇喘18禁视频| 男女床上黄色一级片免费看| 国产成人精品无人区| x7x7x7水蜜桃| 怎么达到女性高潮| 国产视频一区二区在线看| 精品国产三级普通话版| 亚洲狠狠婷婷综合久久图片| 青草久久国产| 精品久久久久久成人av| 人妻丰满熟妇av一区二区三区| av天堂中文字幕网| 99国产极品粉嫩在线观看| 长腿黑丝高跟| www.www免费av| 婷婷丁香在线五月| 少妇的逼水好多| 身体一侧抽搐| 久久精品国产亚洲av香蕉五月| 国产高清视频在线观看网站| 国产成人精品久久二区二区91| 男人和女人高潮做爰伦理| 欧美国产日韩亚洲一区| 无限看片的www在线观看| 大型黄色视频在线免费观看| 91麻豆精品激情在线观看国产| 午夜亚洲福利在线播放| 青草久久国产| 精品久久蜜臀av无| 看免费av毛片| 婷婷亚洲欧美| 天天躁狠狠躁夜夜躁狠狠躁| 舔av片在线| tocl精华| 中文在线观看免费www的网站| 日韩国内少妇激情av| 黄色日韩在线| 久久精品人妻少妇| 国产精品影院久久| 女生性感内裤真人,穿戴方法视频| 天天躁日日操中文字幕| 久久精品国产99精品国产亚洲性色| 淫妇啪啪啪对白视频| 黄色成人免费大全| 国产又色又爽无遮挡免费看| 精品国产乱码久久久久久男人| 99热6这里只有精品| 欧美大码av| 欧美日韩瑟瑟在线播放| 午夜免费成人在线视频| 女生性感内裤真人,穿戴方法视频| 久久九九热精品免费| 国产av一区在线观看免费| 欧美日韩瑟瑟在线播放| 色在线成人网| 露出奶头的视频| 欧美日韩一级在线毛片| 国产成人av激情在线播放| 熟女电影av网| 1024香蕉在线观看| 99久久无色码亚洲精品果冻| 久久久久性生活片| www.精华液| 欧美日韩国产亚洲二区| 国产精品1区2区在线观看.| 久久国产乱子伦精品免费另类| 国产精品一区二区三区四区久久| 俺也久久电影网| 欧美国产日韩亚洲一区| 国产黄片美女视频| 草草在线视频免费看| 日韩av在线大香蕉| 老司机福利观看| 亚洲欧美日韩东京热| 亚洲国产精品sss在线观看| 国产成人福利小说| 国产欧美日韩一区二区精品| 久久久久久久久免费视频了| 午夜两性在线视频| 男人舔奶头视频| 国产一区二区在线av高清观看| 亚洲欧美日韩高清专用| 99热这里只有是精品50| 精品不卡国产一区二区三区| 国产又色又爽无遮挡免费看| 变态另类丝袜制服| 一个人观看的视频www高清免费观看 | 两性午夜刺激爽爽歪歪视频在线观看| 久久久国产欧美日韩av| 中文字幕熟女人妻在线| 成年免费大片在线观看| 国产熟女xx| 神马国产精品三级电影在线观看| 麻豆国产97在线/欧美| 久9热在线精品视频| 亚洲在线自拍视频| 国产精品久久久久久久电影 | 日韩精品青青久久久久久| 久久久久久久午夜电影| 可以在线观看的亚洲视频| 成人精品一区二区免费| 老熟妇仑乱视频hdxx| www.999成人在线观看| 嫁个100分男人电影在线观看| 国产又黄又爽又无遮挡在线| h日本视频在线播放| 国产一区在线观看成人免费| 两个人视频免费观看高清| 久久久久国产一级毛片高清牌| 国内精品一区二区在线观看| 国产99白浆流出| 热99在线观看视频| 久久中文字幕人妻熟女| 亚洲欧美激情综合另类| 在线国产一区二区在线| 国产三级在线视频| 国产精品女同一区二区软件 | 国产午夜精品久久久久久| 在线免费观看不下载黄p国产 | 成人18禁在线播放| 国产精品99久久99久久久不卡| 少妇丰满av| 亚洲av日韩精品久久久久久密| 国产精品久久电影中文字幕| 国产毛片a区久久久久| 色噜噜av男人的天堂激情| 欧美激情在线99| 国产欧美日韩一区二区精品| 欧美中文综合在线视频| 国产毛片a区久久久久| 国产精品av视频在线免费观看| 99riav亚洲国产免费| 国产在线精品亚洲第一网站| 老熟妇乱子伦视频在线观看| 久久精品国产亚洲av香蕉五月| 欧美xxxx黑人xx丫x性爽| 中文在线观看免费www的网站| 变态另类成人亚洲欧美熟女| 国产成年人精品一区二区| 久久久久国内视频| 国内精品久久久久精免费| ponron亚洲| 国产一区二区三区在线臀色熟女| 免费在线观看成人毛片| 91九色精品人成在线观看| 亚洲国产精品sss在线观看| 欧美日韩中文字幕国产精品一区二区三区| 久99久视频精品免费| 免费一级毛片在线播放高清视频| 日韩欧美国产一区二区入口| 久久久精品欧美日韩精品| 欧美黄色淫秽网站| 757午夜福利合集在线观看| 少妇丰满av| 日本一二三区视频观看| 欧美另类亚洲清纯唯美| 变态另类成人亚洲欧美熟女| 午夜a级毛片| 国产精品 国内视频| 国产av一区在线观看免费| 黑人巨大精品欧美一区二区mp4| 亚洲av成人av| 久久久久性生活片| 日本熟妇午夜| 久久久成人免费电影| av女优亚洲男人天堂 | 久久精品国产清高在天天线| 欧美乱妇无乱码| 脱女人内裤的视频| 日韩精品青青久久久久久| АⅤ资源中文在线天堂| 国产成人一区二区三区免费视频网站| 久久久久免费精品人妻一区二区| 亚洲国产精品sss在线观看| 午夜免费激情av| 国产av麻豆久久久久久久| 国产野战对白在线观看| 91久久精品国产一区二区成人 | 免费av毛片视频| 国产亚洲精品久久久com| 中文字幕高清在线视频| 亚洲精品一区av在线观看| 国产高清有码在线观看视频| 久久午夜综合久久蜜桃| 九九在线视频观看精品| 在线观看一区二区三区| 国产成人影院久久av| 日韩欧美在线乱码| 国产三级在线视频| 69av精品久久久久久| 精品久久久久久久久久久久久| 国产一级毛片七仙女欲春2| 88av欧美| 女警被强在线播放| 亚洲专区字幕在线| 他把我摸到了高潮在线观看| 国产真实乱freesex| 欧美高清成人免费视频www| 婷婷六月久久综合丁香| а√天堂www在线а√下载| 午夜久久久久精精品| 精品电影一区二区在线| 最近最新中文字幕大全免费视频| 欧美国产日韩亚洲一区| 亚洲中文字幕日韩| 国产亚洲欧美在线一区二区| 亚洲色图 男人天堂 中文字幕| 成人一区二区视频在线观看| 亚洲自拍偷在线| 十八禁人妻一区二区| 久久精品影院6| 亚洲人成伊人成综合网2020| 久久久久国产精品人妻aⅴ院| 丰满人妻一区二区三区视频av | 亚洲五月婷婷丁香| 中出人妻视频一区二区| 国产精品一区二区精品视频观看| 19禁男女啪啪无遮挡网站| 亚洲一区高清亚洲精品| 欧美日韩精品网址| 老汉色av国产亚洲站长工具| 青草久久国产| 亚洲国产欧美网| 国产高清激情床上av| 国产淫片久久久久久久久 | 国产精品一区二区免费欧美| 大型黄色视频在线免费观看| 两个人视频免费观看高清| 两个人看的免费小视频| 波多野结衣高清无吗| 90打野战视频偷拍视频| 久久伊人香网站| 成人av一区二区三区在线看| 午夜亚洲福利在线播放| 最近最新中文字幕大全电影3| 人人妻,人人澡人人爽秒播| 欧美成人性av电影在线观看| 在线播放国产精品三级| 亚洲专区中文字幕在线| 啪啪无遮挡十八禁网站| 真实男女啪啪啪动态图| 好男人电影高清在线观看| 视频区欧美日本亚洲| 欧美国产日韩亚洲一区| 国产精品久久久久久亚洲av鲁大| 日韩欧美免费精品| av黄色大香蕉| 亚洲乱码一区二区免费版| 亚洲精品久久国产高清桃花| 亚洲av中文字字幕乱码综合| 中文字幕人成人乱码亚洲影| 1024手机看黄色片| 免费看光身美女| 中文字幕人妻丝袜一区二区| 首页视频小说图片口味搜索| 国产精品99久久久久久久久| 亚洲精品色激情综合| 最新在线观看一区二区三区| 中文亚洲av片在线观看爽| 偷拍熟女少妇极品色| 国产精品永久免费网站| 亚洲av成人不卡在线观看播放网| 亚洲国产精品成人综合色| av黄色大香蕉| 伊人久久大香线蕉亚洲五| 十八禁人妻一区二区| 国产熟女xx| 九九久久精品国产亚洲av麻豆 | 国产精品亚洲av一区麻豆| 国产一级毛片七仙女欲春2| 狠狠狠狠99中文字幕| 亚洲欧美日韩高清在线视频| 97人妻精品一区二区三区麻豆| 国产淫片久久久久久久久 | 午夜精品一区二区三区免费看| 欧美日韩福利视频一区二区| 一个人看的www免费观看视频| 淫秽高清视频在线观看| e午夜精品久久久久久久| 日韩欧美在线乱码| 宅男免费午夜| 国产单亲对白刺激| 一区二区三区高清视频在线| 色精品久久人妻99蜜桃| 午夜免费观看网址| 亚洲在线自拍视频| 亚洲精品国产精品久久久不卡| 色综合婷婷激情| 欧美性猛交╳xxx乱大交人| 无限看片的www在线观看| 欧美zozozo另类| 亚洲专区国产一区二区| 在线观看午夜福利视频| 精品一区二区三区视频在线观看免费| 精品欧美国产一区二区三| 91字幕亚洲| 亚洲一区高清亚洲精品| 欧美在线黄色| 亚洲第一电影网av| 在线免费观看的www视频| 国内精品久久久久精免费| 国产精品日韩av在线免费观看| 在线国产一区二区在线| 我要搜黄色片| 亚洲午夜精品一区,二区,三区| 国模一区二区三区四区视频 | or卡值多少钱| 两个人看的免费小视频| 亚洲自拍偷在线| 亚洲人与动物交配视频| 亚洲中文字幕日韩| 狠狠狠狠99中文字幕| 久久精品国产综合久久久| 在线观看一区二区三区| 99久久精品国产亚洲精品| 亚洲中文字幕一区二区三区有码在线看 | 久久久精品欧美日韩精品| 欧美一级a爱片免费观看看| 亚洲国产看品久久| 日韩高清综合在线| 久久久久国产精品人妻aⅴ院| 嫩草影院精品99| 欧美最黄视频在线播放免费| 色吧在线观看| 一卡2卡三卡四卡精品乱码亚洲| 在线a可以看的网站| 男女床上黄色一级片免费看| 日韩欧美国产在线观看| 国产又色又爽无遮挡免费看| 两人在一起打扑克的视频| 国内少妇人妻偷人精品xxx网站 | 97超级碰碰碰精品色视频在线观看| 国产精品亚洲一级av第二区| 国产精品爽爽va在线观看网站| 高潮久久久久久久久久久不卡| 久久精品夜夜夜夜夜久久蜜豆| 国产成人欧美在线观看| 嫩草影视91久久| 精品熟女少妇八av免费久了| 亚洲人成网站在线播放欧美日韩| 男女之事视频高清在线观看| 黑人操中国人逼视频| 亚洲中文av在线| 国产成人av激情在线播放| 草草在线视频免费看| 俺也久久电影网| 国内精品久久久久精免费| 91麻豆精品激情在线观看国产| 国内精品久久久久久久电影| 一二三四在线观看免费中文在| 亚洲九九香蕉| 中文字幕高清在线视频| 久久久国产精品麻豆| 脱女人内裤的视频| 亚洲精品色激情综合| 久久午夜综合久久蜜桃| 婷婷六月久久综合丁香| 老司机福利观看| 巨乳人妻的诱惑在线观看| e午夜精品久久久久久久| 久久久久久九九精品二区国产| 久久性视频一级片| 婷婷精品国产亚洲av| 搡老妇女老女人老熟妇| 亚洲av成人一区二区三| 午夜福利免费观看在线| 淫妇啪啪啪对白视频| 黄片小视频在线播放| 亚洲欧美精品综合久久99| 在线视频色国产色| 美女高潮的动态| 国产av在哪里看| 在线免费观看不下载黄p国产 | 黄片大片在线免费观看| 精品福利观看| 麻豆av在线久日| 亚洲专区国产一区二区| 中亚洲国语对白在线视频|