曾夢(mèng)妮 李 磊 馬麗艷 王翠華 張 璇 黃冬梅 蔣 玫
菲在厚殼貽貝體內(nèi)的富集與釋放及其對(duì)HSP70 mRNA表達(dá)的影響*
曾夢(mèng)妮1,2李 磊2馬麗艷2王翠華2張 璇2黃冬梅2蔣 玫2①
(1. 上海海洋大學(xué)海洋生態(tài)與環(huán)境學(xué)院 上海 201306;2. 中國(guó)水產(chǎn)科學(xué)研究院東海水產(chǎn)研究所 上海 200090)
以厚殼貽貝()為研究對(duì)象,開(kāi)展不同暴露濃度(4、20和100 μg/L)菲(phenanthrene, PHE)的富集(10 d)和釋放(5 d)實(shí)驗(yàn),分別利用高效液相色譜法和熒光定量qPCR法分析了厚殼貽貝內(nèi)臟團(tuán)、外套膜、閉殼肌對(duì)PHE的富集和釋放實(shí)驗(yàn)及HSP70 mRNA表達(dá)量的變化。結(jié)果顯示,在10 d的富集階段,厚殼貽貝3個(gè)組織對(duì)PHE的富集能力大小表現(xiàn)為內(nèi)臟團(tuán)>外套膜>閉殼肌;3個(gè)組織對(duì)PHE的富集含量隨時(shí)間的增加而增加,同時(shí),也隨暴露濃度的增加而增加;在釋放實(shí)驗(yàn)階段,厚殼貽貝3個(gè)組織中PHE含量在釋放前期迅速下降,但在15 d時(shí),3個(gè)組織中PHE殘留量仍均高于對(duì)照組;PHE對(duì)厚殼貽貝體內(nèi)HSP70 mRNA誘導(dǎo)表達(dá)具有組織特異性,其中外套膜中HSP70 mRNA表達(dá)量最高。研究結(jié)果可為PHE在貝類(lèi)體內(nèi)的富集動(dòng)力學(xué)及致毒機(jī)制研究提供參考依據(jù)。
菲;厚殼貽貝;生物富集;HSP70
多環(huán)芳烴(polycyclic aromatic hydrocarbons, PAHs)是由2個(gè)及2個(gè)以上的苯環(huán)以稠環(huán)或非稠環(huán)的形式相互連接成的有機(jī)化合物,其主要通過(guò)高分子有機(jī)化合物的不完全燃燒而產(chǎn)生(賈雙琳等, 2020)。研究證明,PAHs具有致癌性、致突變性和致畸性,可以通過(guò)食物鏈作用在生物體內(nèi)累積,對(duì)環(huán)境造成嚴(yán)重污染的同時(shí),也對(duì)人類(lèi)的健康產(chǎn)生危害(楊帆等, 2013; Zheng, 2016; Yin, 2017)。
16種優(yōu)控多環(huán)芳烴一直受到廣泛關(guān)注,其中,菲(phenanthrene, PHE)是具有代表性的低分子量多環(huán)芳烴,是水生生態(tài)系統(tǒng)中含量最豐富的一種(Shirmohammadi, 2017),通常作為研究PAHs的模型(Rabodonirina, 2019; Sun, 2019a)。PHE的化學(xué)結(jié)構(gòu)穩(wěn)定,有較強(qiáng)的疏水性,常吸附在水中的沉積物和懸浮顆粒上,在水體中可長(zhǎng)距離遷移(Gu, 2016)。PHE對(duì)水生動(dòng)物包括貝類(lèi)、魚(yú)類(lèi)、水生昆蟲(chóng)等都具有潛在的毒性(武江越等, 2018)。李磊等(2015)、Yakan等(2013)、Mokkongpai等(2010)和Keshavarzifard等(2017)分別研
究了PHE在縊蟶()、地中海貽貝()、青口貝()、短頸蛤()等體內(nèi)的富集動(dòng)力學(xué)特征,均表明PHE在貝類(lèi)體內(nèi)有較強(qiáng)的富集能力,但關(guān)于比較單一多環(huán)芳烴在貝類(lèi)不同組織富集及釋放的特性和差異性的研究不多。PHE對(duì)水生生物基因表達(dá)也會(huì)產(chǎn)生影響,Peng等(2019)研究發(fā)現(xiàn),PHE對(duì)斑馬魚(yú)()雌魚(yú)下丘腦–垂體–性腺軸的GnRH2和CYP11A1等基因的轉(zhuǎn)錄造成了明顯的特異性改變,對(duì)斑馬魚(yú)繁殖造成不利的影響。Piazza等(2016)研究發(fā)現(xiàn),圓吻扇貝()暴露在PHE水溶液中,其體內(nèi)CYP2UI、CYP2D20和CYP3A11等基因的轉(zhuǎn)錄水平增加。Karami等(2016)將非洲鯰()幼仔三倍體暴露于76 mg/L PHE濃度水溶液中;結(jié)果顯示,魚(yú)體1()的mRNA水平增加。熱休克蛋白(heat shock proteins, HSPs)是一類(lèi)應(yīng)激蛋白,其中,HSP70是研究比較深入的一種HSPs,參與到各種保護(hù)機(jī)體和細(xì)胞機(jī)制中,通常作為環(huán)境應(yīng)激和毒性的生物標(biāo)志物(許高鵬等, 2015; Mayer, 2005; Voisine, 1999)。研究表明,HSP70在有機(jī)體受到環(huán)境、生理或病理脅迫時(shí)會(huì)被誘導(dǎo)表達(dá)(曲凌云, 2004; 周朝偉等, 2018; Sun, 2019b)。目前,已有許多學(xué)者選擇貝類(lèi)完成對(duì)水體中有機(jī)物的富集及對(duì)貝類(lèi)基因影響的研究,楊丹丹等(2019)利用高效液相色譜法檢測(cè)厚殼貽貝()體內(nèi)16種PAHs的含量。Murray等(1991)通過(guò)田間實(shí)驗(yàn)測(cè)定紫貽貝()中PAHs的生物富集因子。王淑紅等(2005)研究了翡翠貽貝外套膜、鰓、內(nèi)臟團(tuán)對(duì)16種PAHs的蓄積特征。劉娜(2012)研究了菲律賓蛤仔()在苯并[a]芘脅迫下3種(芳烴受體蛋白、芳烴受體核轉(zhuǎn)位因子和熱休克蛋白90)基因表達(dá)分析。盧瑋筱(2018)研究了在苯并[a]芘刺激下厚殼貽貝組織中RACK1基因的表達(dá)。
海洋雙殼貝類(lèi)分布廣泛,營(yíng)固著生活,是濾食性動(dòng)物,對(duì)水體中有機(jī)污染物的積累性強(qiáng),常作為監(jiān)測(cè)海洋環(huán)境污染的指示生物。目前,關(guān)于貝類(lèi)組織對(duì)PAHs蓄積規(guī)律的研究多集中于各組織對(duì)總PAHs的蓄積含量比較,如劉童(2015)比較了菲律賓蛤仔消化盲囊、鰓、閉殼肌、軟體部對(duì)PAHs的蓄積含量規(guī)律。李天云等(2007)比較了河蜆()鰓、內(nèi)臟團(tuán)、肌肉對(duì)PAHs的蓄積含量關(guān)系。關(guān)于貝類(lèi)體內(nèi)HSP70 mRNA誘導(dǎo)表達(dá)的研究,其研究的誘導(dǎo)因子多為鹽度、溫度、重金屬等,如Franzellitti等(2005)分別研究了熱休克和汞對(duì)地中海貽貝體內(nèi)HSP70 mRNA表達(dá)的影響,而對(duì)于單一多環(huán)芳烴PHE在貝類(lèi)組織的蓄積規(guī)律研究以及PHE對(duì)貝類(lèi)不同組織HSP70 mRNA表達(dá)影響的研究較少。
本研究選擇厚殼貽貝為對(duì)象,通過(guò)對(duì)厚殼貽貝進(jìn)行在不同濃度PHE溶液中的富集–釋放實(shí)驗(yàn),獲得厚殼貽貝內(nèi)臟團(tuán)、外套膜及閉殼肌對(duì)PHE的富集和釋放規(guī)律及HSP70 mRNA表達(dá)影響,為PHE在貝類(lèi)體內(nèi)的富集動(dòng)力學(xué)及致毒機(jī)制提供參考依據(jù)。
實(shí)驗(yàn)海水為海水晶人工配制的海水,鹽度為26,水溫為(23±2)℃。厚殼貽貝為浙江省枸杞島采集的人工養(yǎng)殖厚殼貽貝,平均殼長(zhǎng)為(84.6±5.2) cm,殼寬為(40.9±2.5) cm,體重為(40.2±6.2) g。實(shí)驗(yàn)前將厚殼貽貝暫養(yǎng)7 d,期間連續(xù)充氣,并投喂螺旋藻粉后選取健康個(gè)體進(jìn)行實(shí)驗(yàn),實(shí)驗(yàn)容器容積為20 L的玻璃缸體,裝入海水14 L。
1.2.1 富集和釋放實(shí)驗(yàn) 實(shí)驗(yàn)分為富集和清水恢復(fù)2個(gè)階段,分別進(jìn)行10 d和5 d。以丙酮作為助溶劑,在預(yù)實(shí)驗(yàn)的基礎(chǔ)上設(shè)置PHE分別為4、20、100 μg/L的實(shí)驗(yàn)組和人工海水對(duì)照組(加入0.01%丙酮),每組設(shè)3個(gè)平行。每組放入16只厚殼貽貝,每24 h換水1次,換水率100%,晝夜充氣,每天定時(shí)投喂螺旋藻粉。分別于1、3、6、10、12和15 d隨機(jī)取2只厚殼貽貝,分離其內(nèi)臟團(tuán)、外套膜、閉殼肌組織于–80℃保存,待檢測(cè)分析。
1.2.2 組織中的PHE含量測(cè)定 分別測(cè)定厚殼貽貝內(nèi)臟團(tuán)、外套膜和閉殼肌中的PHE含量,測(cè)定步驟如下:稱(chēng)取5.0 g濕樣加入5 mL超純水混合振搖,再加入15 mL乙腈劇烈振搖,以100 Hz 30℃超聲5 min后加入1.5 g無(wú)水乙酸鈉和6.0 g無(wú)水硫酸鎂劇烈振搖,以4000 r/min離心5 min,取上清液;先用5 mL乙腈預(yù)淋洗Florisil/C18層析柱,再移取5 mL上清液通過(guò)層析柱過(guò)濾,再用15 mL乙腈繼續(xù)洗脫,收集全部流出液于梨形瓶中,40℃旋轉(zhuǎn)蒸發(fā)至約0.5 mL,用乙腈定容至1 mL,13,000 r/min離心6 min,上清液過(guò)濾膜,移至進(jìn)樣瓶中,供高效液相色譜分析。
1.2.3 色譜條件 Thermo SCIENTIFIC HYPERSIL Green PAH色譜柱(4.6 mm×150.0 mm, 5 μm);柱溫位30℃;進(jìn)樣量為25 μL;流速為1.0 mL/min;紫外檢測(cè)波長(zhǎng)為245 nm;50%乙腈梯度洗脫。配制濃度分別為5、25、50、125和250 ng/mL的PHE標(biāo)準(zhǔn)液,繪制標(biāo)準(zhǔn)曲線。
1.3.1 樣本準(zhǔn)備及總RNA提取 每個(gè)實(shí)驗(yàn)組取50 mg的厚殼貽貝內(nèi)臟團(tuán)、外套膜和閉殼肌加入1 mL Trizol,使用勻漿器進(jìn)行勻漿處理;轉(zhuǎn)移至RNase-free的離心管中,進(jìn)行RNA的抽提。室溫放置5 min,向離心管中加入預(yù)冷的氯仿(200 μL氯仿/1 mL Trizol),劇烈振蕩15 s,室溫放置10 min,離心(4℃,12,000 r/min) 15 min;小心析出上層水相約500 μL,轉(zhuǎn)移至無(wú)RNA酶的離心管中,加入等體積(500 μL)的異丙醇,顛倒混勻6~8次,–20℃冰箱放置30 min;再以10,000 r/min低溫離心15 min,可見(jiàn)RNA沉淀;棄上清液,加入650 μL 75%乙醇(75%乙醇的配制:1倍的DEPC處理水加3倍的無(wú)水乙醇)洗滌沉淀,8000 r/min低溫離心5 min,棄上清液;重復(fù)上個(gè)步驟1遍,棄上清液,吸凈殘存乙醇,自然干燥5~10 min;加入適量的RNase-free H2O溶解RNA,–20℃冰箱,保存,待用。實(shí)驗(yàn)過(guò)程中,采用核酸蛋白測(cè)定儀檢測(cè)RNA的純度和濃度,以保證總RNA純度較高、完整性較好,可直接用于后續(xù)的反轉(zhuǎn)錄以及熒光定量的研究。
1.3.2 反轉(zhuǎn)錄cDNA 采用第一鏈cDNA合成試劑盒合成cDNA,配制逆轉(zhuǎn)錄反應(yīng)體系,0.2 mL PCR管中加入以下試劑,混勻逆轉(zhuǎn)錄反應(yīng)體系(總RNA、Random Primer p(dN)6、Rnase-free ddH2O、Reaction Buffer、dNTP Mix、Rnase inhibitor、AMV Reverse Transcriptase) (Thermo, #K1622)后37℃溫浴5 min;再以42℃溫浴60 min,最后70℃溫浴10 min,終止反應(yīng)。
1.3.3 Real-time PCR擴(kuò)增 根據(jù)Real-time PCR反應(yīng)體系配制反應(yīng)液。在PCR反應(yīng)管中分別加入ddH2O、SybrGreen qPCR Master Mix(Thermo, F-415XL)、Forward primer、Reverse primer、cDNA模板,充分混勻;反應(yīng)體系按照表1配制。擴(kuò)增條件:94℃10 min, (94℃20 s,55℃20 s,72℃20 s) 40個(gè)循環(huán)。
表1 熒光定量PCR分析基因表達(dá)所用到的引物
1.4.1 標(biāo)準(zhǔn)曲線和回收率 用乙腈稀釋PHE標(biāo)準(zhǔn)溶液,配制濃度分別為5、25、50、125和250 ng/mL的標(biāo)準(zhǔn)溶液,經(jīng)1.2.3的色譜條件進(jìn)行測(cè)定。PHE在0.2~20.0 ng/mL范圍內(nèi),標(biāo)準(zhǔn)曲線線性回歸方程為=1.405 7+0.443 8,相關(guān)系數(shù)=0.999 6;以信噪比S/N=3,求得PHE檢出限為0.1 μg/kg。
檢測(cè)貽貝體內(nèi)PHE含量為(4.040 3±0.596 0) μg/kg,用加標(biāo)后測(cè)得的含量扣除本底值,計(jì)算得平均回收率為103.03%,RSD為5.6%,符合本實(shí)驗(yàn)方法要求。
1.4.2 2–??Ct法 Real-time PCR數(shù)據(jù)處理采用2–??Ct法分析目的基因在對(duì)照組和各濃度組之間的表達(dá)差異,計(jì)算公式如下:?=目的基因–內(nèi)參,再求得對(duì)照組?對(duì)照平均,用各組的?分別減去?對(duì)照,求得??值,即??=?樣本–?對(duì)照平均,再計(jì)算各組2–??Ct值,即為各組中基因的相對(duì)表達(dá)量。
所有數(shù)據(jù)結(jié)果采用SPSS 24.0軟件進(jìn)行統(tǒng)計(jì)學(xué)處理,使用單因素方差分析(one-way ANOVA)和Duncan′s多重比較判斷組間差異的顯著性,顯著性水平為0.05。
為了驗(yàn)證0.01%丙酮作為PHE的助溶劑的可行性,在實(shí)驗(yàn)過(guò)程中,對(duì)PHE的對(duì)照組和0.01%丙酮處理組中貽貝3種組織的PHE含量進(jìn)行統(tǒng)計(jì)學(xué)檢驗(yàn)。結(jié)果表明,對(duì)照組貽貝內(nèi)臟團(tuán)、外套膜和閉殼肌的PHE含量分別為(4.43±0.48)、(3.89±0.32)和(3.79±0.23) μg/kg,0.01%丙酮處理組貽貝內(nèi)臟團(tuán)、外套膜和閉殼肌的PHE含量分別為(4.43±0.54)、(3.97±0.27)和(3.92±0.22) μg/kg,二者相比無(wú)顯著性差異(>0.05),說(shuō)明0.01%丙酮作為PHE的助溶劑是可行的。
厚殼貽貝內(nèi)臟團(tuán)、外套膜和閉殼肌在4、20和 100 μg/L PHE海水溶液中對(duì)PHE的富集和釋放情況如圖1、圖2和圖3所示。厚殼貽貝3個(gè)組織對(duì)PHE的吸收速率和釋放速率如表2所示。在厚殼貽貝對(duì)PHE的富集階段,內(nèi)臟團(tuán)、外套膜和閉殼肌中PHE富集量隨時(shí)間的增加而增加。同時(shí),也隨PHE暴露濃度的增加而增加。內(nèi)臟團(tuán)在1、3、6和10 d時(shí),3個(gè)濃度組之間PHE含量變化呈顯著增加(<0.05)。
圖1 貽貝內(nèi)臟團(tuán)對(duì)PHE的富集和釋放情況
圖2 貽貝外套膜對(duì)PHE的富集和釋放情況
外套膜在1 d時(shí),4和20 μg/L濃度組PHE含量無(wú)顯著差異(>0.05);在3 d時(shí),3個(gè)濃度組PHE含量無(wú)顯著差異(>0.05);在6和10 d時(shí),3個(gè)濃度組PHE含量呈顯著增加的趨勢(shì)(<0.05)。閉殼肌在1、3、6和10 d時(shí),20和100 μg/L濃度組PHE含量無(wú)顯著差異(>0.05),同時(shí),4 μg/L濃度組PHE含量呈顯著增加的趨勢(shì)(<0.05)。厚殼貽貝3個(gè)組織對(duì)PHE的富集含量和富集速度表現(xiàn)為內(nèi)臟團(tuán)>外套膜>閉殼肌。
圖3 貽貝閉殼肌對(duì)PHE的富集和釋放情況
在5 d的釋放階段,厚殼貽貝3個(gè)組織對(duì)PHE的釋放速率規(guī)律不同。其中,內(nèi)臟團(tuán)對(duì)PHE的釋放速率隨暴露濃度變化不大,外套膜對(duì)PHE的釋放速率隨暴露濃度的增加而降低,閉殼肌對(duì)PHE的釋放速率隨暴露濃度的增加而升高。內(nèi)臟團(tuán)PHE釋放速率分別為58.72% (4 μg/L)、50.71%(20 μg/L)和54.60% (100 μg/L);外套膜PHE釋放速率分別為72.82% (4 μg/L)、68.35% (20 μg/L)和38.65% (100 μg/L);閉殼肌PHE釋放速率分別為56.41% (4 μg/L)、58.35% (20 μg/L)和66.11% (100 μg/L)。在釋放前期,厚殼貽貝3個(gè)組織內(nèi)的PHE含量急劇下降,在清水恢復(fù)的第4、5天,3個(gè)組織內(nèi)PHE濃度釋放速度減慢。
暴露在PHE濃度溶液中厚殼貽貝3種組織HSP70 mRNA水平變化如圖4、圖5和圖6所示。厚殼貽貝內(nèi)臟團(tuán)、外套膜和閉殼肌中HSP70 mRNA的表達(dá)均有變化。在富集階段,厚殼貽貝外套膜HSP70 mRNA表達(dá)量明顯高于內(nèi)臟團(tuán)和閉殼肌,其中,在PHE低、中和高濃度溶液暴露下,外套膜中HSP70 mRNA表達(dá)量均在第1天時(shí)達(dá)到最高值,分別是對(duì)照組的35.7倍 (4 μg/L)、47.8倍(20 μg/L)和70.1倍(100 μg/L);內(nèi)臟團(tuán)中HSP70 mRNA表達(dá)量分別在第3、6和1天時(shí)達(dá)到最高值,分別是對(duì)照組的26.3倍(4 μg/L)、10.9倍 (20 μg/L)和23倍(100 μg/L);閉殼肌中HSP70 mRNA表達(dá)量分別在第3、1和6天時(shí)達(dá)到最高值,分別是對(duì)照組的2.8倍(4 μg/L)、3.2倍(20 μg/L)和3.5倍 (100 μg/L)。
表2 厚殼貽貝3個(gè)組織對(duì)PHE的吸收速率和釋放速率
圖4 菲暴露及釋放下厚殼貽貝內(nèi)臟團(tuán)中HSP70的相對(duì)表達(dá)量
圖5 菲暴露及釋放下厚殼貽貝外套膜中HSP70的相對(duì)表達(dá)量
圖6 菲暴露及釋放下厚殼貽貝閉殼肌中HSP70的相對(duì)表達(dá)量
厚殼貽貝在PHE的整個(gè)富集釋放過(guò)程中,3個(gè)組織中HSP70 mRNA表達(dá)量的變化規(guī)律各不相同。從圖4可以看出,3個(gè)濃度PHE對(duì)厚殼貽貝內(nèi)臟團(tuán)中HSP70 mRNA誘導(dǎo)表達(dá),4 μg/L濃度組在1 d時(shí),HSP70 mRNA表達(dá)量較對(duì)照組顯著增加(<0.05);在3 d時(shí),HSP70 mRNA表達(dá)量達(dá)到最高值;隨后隨著時(shí)間增加,HSP70 mRNA表達(dá)量逐漸降低。20 μg/L濃度組在1 d時(shí),HSP70 mRNA表達(dá)量較對(duì)照組顯著增加(<0.05);在3 d時(shí),HSP70 mRNA表達(dá)量降低且較對(duì)照組無(wú)顯著差異(>0.05);在6 d時(shí),HSP70 mRNA表達(dá)量達(dá)到最高值;后隨時(shí)間的增加,HSP70 mRNA表達(dá)量逐漸降低。100 μg/L濃度組在1 d時(shí),HSP70 mRNA表達(dá)量為最高值;隨后隨時(shí)間的增加,HSP70 mRNA表達(dá)量逐漸降低,但都較對(duì)照組顯著增加(<0.05)。
從圖5可以看出,3個(gè)濃度PHE對(duì)厚殼貽貝外套膜HSP70 mRNA誘導(dǎo)表達(dá),4、20和100 μg/L濃度組在1 d時(shí),HSP70 mRNA表達(dá)量較對(duì)照組呈極顯著增加(<0.01);在3 d時(shí),各濃度組HSP70 mRNA表達(dá)量達(dá)到最高值;隨后隨時(shí)間的增加,各濃度組HSP70 mRNA表達(dá)量逐漸降低,但都較對(duì)照組顯著增加(<0.05)。
3個(gè)濃度PHE對(duì)厚殼貽貝閉殼肌HSP70 mRNA誘導(dǎo)表達(dá)情況見(jiàn)圖6。4 μg/L濃度組在1 d時(shí),HSP70 mRNA表達(dá)量較對(duì)照組顯著增加(<0.05);在3 d時(shí)HSP70 mRNA表達(dá)量達(dá)到最高值;后隨時(shí)間的增加,HSP70 mRNA表達(dá)量逐漸降低,在10和12 d時(shí),HSP70 mRNA表達(dá)量較對(duì)照組顯著降低(<0.05),呈抑制表達(dá)狀態(tài);在15 d時(shí),HSP70 mRNA表達(dá)量較對(duì)照組無(wú)顯著差異(>0.05)。20 μg/L濃度組在1 d時(shí),HSP70 mRNA表達(dá)量達(dá)最高值;后隨時(shí)間增加,HSP70 mRNA表達(dá)量逐漸降低,直至第6天時(shí),HSP70 mRNA表達(dá)量達(dá)最低值;之后HSP70 mRNA表達(dá)量又隨時(shí)間的增加而增加。100 μg/L濃度組在1 d時(shí),HSP70 mRNA表達(dá)量較對(duì)照組顯著增加(<0.05);在3 d時(shí),HSP70 mRNA表達(dá)量較對(duì)照組無(wú)顯著差異(>0.05);在6 d時(shí),HSP70 mRNA表達(dá)量增加至最高值;在10和12 d時(shí),HSP70表達(dá)量較對(duì)照組無(wú)顯著差異(>0.05);在15 d時(shí),HSP70 mRNA表達(dá)量較對(duì)照組顯著增加(<0.05)。
PHE作為低分子量PAHs的典型代表,在水中溶解度較大,且具有高親脂性、易滲透生物膜、在水生生物體內(nèi)快速富集的特點(diǎn)(Ademollo, 2017)。本研究表明,在同一時(shí)間、同一暴露濃度下,厚殼貽貝3個(gè)組織對(duì)PHE的富集含量規(guī)律為內(nèi)臟團(tuán)>外套膜>閉殼肌。3個(gè)組織對(duì)PHE的富集含量隨時(shí)間的增加而增加,同時(shí),也隨PHE暴露濃度的增加而增加。其原因主要有以下幾個(gè),首先,PHE自身具有較高的正辛醇/水分配系數(shù),脂溶性較強(qiáng),實(shí)驗(yàn)中使用丙酮作為助溶劑,提高了PHE的生物利用性,使PHE通過(guò)細(xì)胞的被動(dòng)擴(kuò)散作用與脂肪組織相結(jié)合,提高了厚殼貽貝的富集作用;其次,厚殼貽貝主要是通過(guò)過(guò)濾海水?dāng)z食,海水在經(jīng)過(guò)鰓的過(guò)濾后,較大顆粒物質(zhì)沉淀在外套膜上,較小顆粒物質(zhì)進(jìn)入內(nèi)臟團(tuán)的消化器 (王淑紅等, 2005)。本研究中,PHE隨水流進(jìn)入厚殼貽貝各組織并迅速溶于脂肪,由于PHE具有脂溶性,易在各組織中累積;最后,PAHs在生物組織內(nèi)的累積程度與脂肪含量有關(guān),脂肪含量高的組織更容易富集PAHs (Wang, 2011)。貝類(lèi)各濕樣組織脂肪含量比較,內(nèi)臟團(tuán)的脂肪含量最大(楊慧贊, 2008)。外套膜作為與水體直接接觸的組織,能吸附或吸收水體中的PHE。因此,比閉殼肌富集PHE的含量要高,這與宮向紅等(2017)報(bào)道PAHs在海灣扇貝不同組織中富集規(guī)律一致。
當(dāng)厚殼貽貝開(kāi)始處于清水釋放狀態(tài)時(shí),各組織對(duì)PHE的釋放主要受控于熱力學(xué)驅(qū)動(dòng)的擴(kuò)散、酶系統(tǒng)調(diào)控的新陳代謝活動(dòng)和排泄作用(Baussant, 2001),這2種作用使厚殼貽貝各組織內(nèi)的PHE含量在釋放階段前期開(kāi)始迅速降低,隨著釋放時(shí)間的延長(zhǎng),厚殼貽貝各組織內(nèi)PHE含量逐漸降低,經(jīng)過(guò)5 d的釋放,厚殼貽貝內(nèi)臟團(tuán)PHE釋放速率在50%~60%之間,外套膜PHE釋放速率隨暴露濃度的升高逐漸降低,閉殼肌PHE釋放速率隨暴露濃度的升高逐漸升高,這與組織特異性有關(guān)。與外套膜、閉殼肌相比,內(nèi)臟團(tuán)中存在大量酶系參與PHE的代謝過(guò)程,使3個(gè)濃度組內(nèi)臟團(tuán)的釋放速率相差不大;而外套膜中PHE的排出則主要是通過(guò)血細(xì)胞滲出,這種作用相對(duì)酶的作用來(lái)說(shuō)較弱,導(dǎo)致外套膜中PHE的釋放速率隨暴露濃度升高逐漸降低。
熱休克蛋白70 (HSP70)是一類(lèi)應(yīng)激蛋白,常在細(xì)胞受到外界環(huán)境脅迫時(shí)應(yīng)激表達(dá),與許多信號(hào)轉(zhuǎn)導(dǎo)途徑的關(guān)鍵調(diào)節(jié)因子相互作用,控制細(xì)胞的穩(wěn)態(tài)、增殖、分化和細(xì)胞死亡(Mayer, 2005)。從本研究可以看出,3個(gè)組織HSP70 mRNA表達(dá)的劑-效關(guān)系隨時(shí)間變化規(guī)律不同。本研究中,在PHE暴露初期,厚殼貽貝內(nèi)臟團(tuán)、外套膜和閉殼肌HSP70 mRNA表達(dá)量都較對(duì)照組顯著增加,這是由于機(jī)體受到PHE脅迫時(shí),為防止細(xì)胞內(nèi)蛋白凝聚或變性,維持細(xì)胞內(nèi)環(huán)境穩(wěn)定,HSP70 mRNA被誘導(dǎo)表達(dá)來(lái)增強(qiáng)機(jī)體抗刺激及生存能力。隨著暴露在PHE水溶液中時(shí)間的增加,厚殼貽貝體內(nèi)對(duì)PHE的富集量逐漸增加,內(nèi)臟團(tuán)、外套膜及閉殼肌中HSP70 mRNA表達(dá)量在1、3或6 d時(shí)達(dá)到最高值,這可能是因?yàn)椴煌M織其HSP70 mRNA表達(dá)具有差異性。內(nèi)臟團(tuán)和外套膜中HSP70 mRNA表達(dá)量達(dá)最高值后,HSP70 mRNA表達(dá)量開(kāi)始逐漸降低,可能是由于細(xì)胞中PHE濃度超過(guò)閾值時(shí),機(jī)體細(xì)胞的生物合成能力遭到破壞,HSP70 mRNA的表達(dá)量將會(huì)降低或者被抑制,說(shuō)明熱休克蛋白70的表達(dá)對(duì)細(xì)胞的保護(hù)是有一定范圍的(Eckwert, 1997)。這與荊圓圓等(2019)研究不同鹽度下,鎘對(duì)太平洋牡蠣()不同組織HSP70 mRNA表達(dá)影響結(jié)果一致。而閉殼肌中,HSP70 mRNA在6、10和12 d受到抑制表達(dá)后,在第15天時(shí)仍能恢復(fù)正常表達(dá)量,這可能是因?yàn)殚]殼肌中,HSP70 mRNA表達(dá)量隨PHE含量降低至一定值后,將不受抑制表達(dá)。由于HSP70 mRNA在厚殼貽貝內(nèi)臟團(tuán)、外套膜和閉殼肌中是組成性表達(dá)(程培周等, 2007),PHE對(duì)厚殼貽貝3個(gè)組織中HSP70誘導(dǎo)表達(dá)量高低排序?yàn)橥馓啄?內(nèi)臟團(tuán)>閉殼肌。
在富集階段,厚殼貽貝3個(gè)組織對(duì)PHE的富集能力大小表現(xiàn)為內(nèi)臟團(tuán)>外套膜>閉殼肌。同時(shí),3個(gè)組織對(duì)PHE的富集含量隨時(shí)間的增加而增加,也隨PHE暴露濃度的增加而增加。在清水恢復(fù)前期,厚殼貽貝3個(gè)組織中PHE含量迅速下降;在第15天時(shí),厚殼貽貝內(nèi)臟團(tuán)3個(gè)濃度組PHE釋放速率在50%~ 60%之間,外套膜PHE釋放速率隨暴露濃度的升高逐漸降低,閉殼肌PHE釋放速率隨暴露濃度的升高逐漸升高。PHE對(duì)厚殼貽貝內(nèi)臟團(tuán)、外套膜和閉殼肌的HSP70 mRNA誘導(dǎo)表達(dá)具有組織特異性,其中,外套膜中HSP70 mRNA表達(dá)量最高。
ADEMOLLO N, PATROLECCO L, MATOZZO V,. Clam bioaccumulation of alkylphenols and polyciclic aromatic hydrocarbons in the Venice lagoon under different pressures. Marine Pollution Bulletin, 2017, 124(1): 121–129
BAUSSANT T, SANNI S, JONSSON G,. Bioaccumulation of polycyclic aromatic compounds: 1. Bioconcentration in two marine species and in semipermeable membrane devices during chronic exposure to dispersed crude oil. Environmental Toxicology and Chemistry, 2001, 20(6): 1175–1184
CHENG P Z, LIU X, ZHANG G F,. Fluorescence quantitative PCR analysis of HSP70 expression inIno under temperature stress. Marine Sciences, 2007, 31(10): 77–81 [程培周, 劉曉, 張國(guó)范, 等. 熒光定量PCR方法分析皺紋盤(pán)鮑HSP70在溫度脅迫下的表達(dá). 海洋科學(xué), 2007, 31(10): 77–81]
ECKWERT H, ALBERTI G, KOHLER H R. The induction of stress proteins (hsp) in(Isopoda) as a molecular marker of multiple heavy metal exposure: I. Principles and toxicological assessment. Ecotoxicology, 1997, 6(5): 249– 262
FRANZELLITTI S, FABBRI E. Differential HSP70 gene expression in the Mediterranean mussel exposed to various stressors. Biochemical and Biophysical Research Communications,2005, 336(4): 1157–1163
GONG X H, SUN S, LIU X J,. Accumulation and elimination of diesel in scallop. Journal of Fishery Sciences of China, 2017, 24(4): 811–823 [宮向紅, 孫珊, 劉小靜, 等. 海灣扇貝對(duì)柴油的富集與消除規(guī)律. 中國(guó)水產(chǎn)科學(xué), 2017, 24(4): 811–823]
GU Y G, KE C L, LIU Q,. Polycyclic aromatic hydrocarbons (PAHs) in sediments of Zhelin Bay, the largest mariculture baseon the eastern Guangdong coast, South China: Characterization and risk implications. Marine Pollution Bulletin, 2016, 110(1): 603–608
JIA S L, ZHENG S, LONG J Q,. Research progress on polycyclic aromatic hydrocarbons in water. Guizhou Science, 2020, 38(2): 21–30 [賈雙琳, 鄭松, 龍紀(jì)群, 等. 水中多環(huán)芳烴分析技術(shù)研究進(jìn)展. 貴州科學(xué), 2020, 38(2): 21–30]
JING Y Y, ZHANG T W, LIU E F,. Effects of cadmium on heat shock protein 70 gene expression in different tissues ofunder different salinity. Journal of Guangxi Academy of Sciences, 2019, 35(4): 332–336 [荊圓圓, 張?zhí)煳? 劉恩孚, 等. 不同鹽度下鎘對(duì)太平洋牡蠣不同組織熱休克蛋白70基因表達(dá)的影響. 廣西科學(xué)院學(xué)報(bào), 2019, 35(4): 332–336]
KARAMI A, ROMANO N, HAMZAH H,. Acute phenanthrene toxicity to juvenile diploid and triploid African catfish (): Molecular, biochemical, and histopathological alterations. Environmental Pollution, 2016, 212(55): 155–165
KESHAVARZIFARD M, ZAKARIA M P, SHARIFI R. Ecotoxicological and health risk assessment of polycyclic aromatic hydrocarbons (PAHs) in short-neck clam () and contaminated sediments in Malacca Strait, Malaysia. Archives of Environmental Contamination and Toxicology, 2017, 73(3): 474–487
LI L, SHENG X Q, LI C,Bioaccumulation-depuration kinetics of benzo [a] pyrene and phenanthrene in. Journal of Fisheries of China, 2015, 39(7): 998–1004 [李磊, 沈新強(qiáng), 李超, 等. 苯并[a]芘、菲在縊蟶體內(nèi)的生物富集與釋放. 水產(chǎn)學(xué)報(bào), 2015, 39(7): 998– 1004]
LI T Y, SUN F, HUANG S B,. The concentration and tissues accumulation of polycyclic aromatic hydrocarbons (PAHs) and organochlorine pesticides (OCPs) inof Minjiang River. Journal of Southwest China Normal University (Natural Science), 2007, 32(6): 72–77 [李天云, 孫凡, 黃圣彪, 等. 閩江某河段河蜆組織中多環(huán)芳烴和有機(jī)氯農(nóng)藥的蓄積特征. 西南師范大學(xué)學(xué)報(bào)(自然科學(xué)版), 2007, 32(6): 72–77]
LIU N. Selection of differential expression genes and study of molecular biomarkers of clamexposed to Benzo (a) pyrene. Master′s Thesis of Ocean University of China, 2012 [劉娜. 菲律賓蛤仔()在苯并(a)芘脅迫下差異基因的篩選與分子生物標(biāo)志物的研究. 中國(guó)海洋大學(xué)碩士研究生學(xué)位論文, 2012]
LIU T. Biological monitoring technology research of offshore PAHs in the clam. Doctoral Dissertation of Ocean University of China, 2015 [劉童. 基于菲律賓蛤仔的近海多環(huán)芳烴生物監(jiān)測(cè)技術(shù)的研究. 中國(guó)海洋大學(xué)博士研究生學(xué)位論文, 2015]
LU W X. Effects of unialgal diets on the biological characteristics ofand transcriptome analysis. Master′s Thesis of Zhejiang Ocean University, 2018 [盧瑋筱. 厚殼貽貝RACK1基因在脂多糖、銅離子、苯并芘刺激下的表達(dá). 浙江海洋大學(xué)碩士研究生學(xué)位論文, 2018]
MAYER M P, BUKAU B. Hsp70 chaperones: Cellular functions and molecular mechanism. Cellular and Molecular Life Sciences, 2005, 62(6): 670–684
MOKKONGPAI P, KANCHANOPAS-BARNETT P, SAWANGWONG P. Accumulation of polycyclic aromatic hydrocarbons (PAHs) in green mussels () collected from the east coast of Chon Buri Province, Thailand. Journal of Science Technology and Humanities, 2010, 8(1): 13–23
MURRAY A P, RICHARDSON B J, GIBBS C F. Bioconcentration factors for petroleum hydrocarbons, PAHs, LABs and biogenic hydrocarbons in the blue mussel. Marine Pollution Bulletin, 1991, 22(12): 595–603
PENG X D, SUN X X, YU M,. Chronic exposure to environmental concentrations of phenanthrene impairs zebrafish reproduction. Ecotoxicology and Environmental Safety, 2019, 182: 109376
PIAZZA R S, TREVISAN R, FLORES-NUNES F,. Exposure to phenanthrene and depuration: Changes on gene transcription, enzymatic activity and lipid peroxidation in gill of scallops. Aquatic Toxicology, 2016, 177(25): 146–155
QU L Y. Expression under adversity and cloning analysis of a heat shock protein70 (HSP70) in three species of cultured scallop. Doctoral Dissertation of Institute of Oceanology, Chinese Academy of Sciences, 2004 [曲凌云. 三種養(yǎng)殖扇貝熱休克蛋白HSP70在逆境因子下的表達(dá)和相關(guān)基因的克隆. 中國(guó)科學(xué)院海洋研究所博士研究生學(xué)位論文, 2004]
RABODONIRINA S, RASOLOMAMPIANINA R, KRIER F,. Degradation of fluorene and phenanthrene in PAHs-contaminated soil usingandstrains isolated from oil spill sites. Journal of Environmental Management, 2019, 232(5): 1–7
SHIRMOHAMMADI M, CHUPANI L, SALAMAT N. Responses of immuneorgans after single-dose exposure to phenanthrene in yellowfin seabream (): CYP1A induction and oxidative stress. Chemosphere, 2017, 186(51): 686–694
SUN M, LIU G, LIN H,. Effect of feeding strategies on molecular responses of biotransformation genes inexposed to cadmium. Journal of Ocean University of China, 2019a, 18(4): 883–888
SUN T, WANG D, TANG Y,. Fabric-phase sorptive extraction coupled with ion mobility spectrometry for on-site rapid detection of PAHs in aquatic environment. Talanta, 2019b, 195(18): 109–116
VOISINE C, CRAIG E A, ZUFALL N,. The protein import motor of mitochondria: Unfolding and trapping of preproteins are distinct and separable functions of matrix Hsp70. Cell, 1999, 97(5): 565–574
WANG L, PAN L Q, LIU N,. Biomarkers and bioaccumulation of clamin response to combined cadmium and benzo[a]pyrene exposure. Food and Chemical Toxicology, 2011, 49(12): 3407–3417
WANG S H, WANG X H, HONG H S. Specific characteristic of tissue bioaccumulation of PAHs in green lipped mussels () at different growth stages. Marine Environmental Science, 2005, 24(3): 29–32 [王淑紅, 王新紅, 洪華生. 不同生長(zhǎng)期翡翠貽貝()體內(nèi)多環(huán)芳烴富集的組織特異性研究. 海洋環(huán)境科學(xué), 2005, 24(3):29–32]
WU J Y, XU G D, LIN Y F,. Development of freshwater aquatic life water quality criteria for phenanthrene in China. Acta Scientiae Circumstantiae , 2018, 38(1): 399–406 [武江越, 許國(guó)棟, 林雨霏, 等. 我國(guó)淡水生物菲水質(zhì)基準(zhǔn)研究. 環(huán)境科學(xué)學(xué)報(bào), 2018, 38(1): 399–406]
XU G P, JIANG M, LI L,. Effect of benzo [a] pyrene on the P4501A1, P-glycoprotein and HSP70 expression in. Marine Environmental Science, 2015, 34(5): 647–653 [許高鵬, 蔣玫, 李磊, 等. 苯并[a]芘(BaP)暴露對(duì)三疣梭子蟹() P4501A1, P-gp, HSP70基因表達(dá)的影響. 海洋環(huán)境科學(xué), 2015, 34(5): 647–653]
YAKAN S D, HENKELMANN B, SCHRAMM K W,. Bioaccumulation-depuration kinetics and effects of phenanthrene on Mediterranean mussel (). Journal of Environmental Science and Health, 2013, 48(9): 1037–1046
YANG D D, HAN F, SHI Y F,. Determination of 16 polycyclic aromatic hydrocarbons in shellfish by high performance liquid chromatography with UV/fluorescence detection. Chinese Journal of Analysis Laboratory, 2019, 38(7): 828–833 [楊丹丹, 韓峰, 史永富, 等. 高效液相色譜-紫外/熒光測(cè)定貝類(lèi)體內(nèi)16種多環(huán)芳烴. 分析試驗(yàn)室, 2019, 38(7): 828–833]
YANG F, ZHAI Y X, REN D D,. Determination of sixteen polycyclic aromatic hydrocarbons in marine sediments by high performance liquid chromatography with fluorescence and ultraviolet detection. Progress in Fishery Sciences, 2013, 34(5): 104–111 [楊帆, 翟毓秀, 任丹丹, 等. 高效液相色譜–熒光/紫外串聯(lián)測(cè)定海洋沉積物16種多環(huán)芳烴. 漁業(yè)科學(xué)進(jìn)展, 2013, 34(5): 104–111]
YANG H Z. Toxicokinetics and toxicodynamics for benzo[a]pyrene in. Master′s Thesis of Ocean University of China, 2008 [楊慧贊. 苯并[a]芘在櫛孔扇貝()體內(nèi)的毒代與毒效動(dòng)力學(xué)研究. 中國(guó)海洋大學(xué)碩士研究生學(xué)位論文, 2008]
YIN S S, TANG M L, CHEN F F,Environmental exposure to polycyclic aromatic hydrocarbons (PAHs): The correlation with and impact on reproductive hormones in umbilical cord serum. Environmental Pollution, 2017, 220(90): 1429–1437
ZHENG B H, WANG L P, LEI K,. Distribution and ecological risk assessment of polycyclic aromatic hydrocarbons in water, suspended particulate matter and sediment from Daliao River estuary and the adjacent area, China. Chemosphere, 2016, 149(39): 91–100
ZHOU C W, HU X W, LEI L,. Effects of heat stress on biochemical indices andmRNA expression in gibel carp (). Progress in Fishery Sciences, 2018, 39(6): 65–71 [周朝偉, 胡續(xù)雯, 雷駱, 等. 熱應(yīng)激對(duì)銀鯽生化指標(biāo)和mRNA表達(dá)的影響. 漁業(yè)科學(xué)進(jìn)展, 2018, 39(6): 65–71]
Enrichment and Release of Phenanthrene in Mussels () and Its Effect on HSP70 mRNA Expression
ZENG Mengni1,2, LI Lei2, MA Liyan2, WANG Cuihua2, ZHANG Xuan2, HUANG Dongmei2, JIANG Mei2①
(1. School of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China; 2. East China Sea Fisheries Research Institute, Shanghai 200090, China)
Phenanthrene (PHE) is one of the most abundant polycyclic aromatic hydrocarbons (PAHs) in aquatic ecosystems. It has strong hydrophobicity and is often adsorbed on sediment and suspended particles in water, which has potential toxicity to aquatic organisms. Mussels () are widely distributed in the ocean and live in a fixed environment. They are filter feeders and have a strong accumulation of organic pollutants in water. They are often used as indicator organisms in monitoring marine environmental pollution. In this study, enrichment (10 d) and release (5 d) tests of PHE with different exposure concentrations were carried out. Three groups of PHE (4 μg/L, 20 μg/L, and 100 μg/L) and artificial seawater group (control group: 0.01% acetone) were set up. Three parallel experimental replicates were set up in each group, and 16 mussels were placed in each group. Two mussels were randomly selected on the 1st, 3rd, 6th, 10th, 12th, and 15th day. Their visceral mass, outer membrane, and closed shell muscle tissue were separated and stored at –80℃ for identification and analysis. Enrichment and release of PHE and the change in HSP70 gene expression in visceral mass, outer membrane, and closed shell muscle tissue were analyzed using HPLC and qPCR, respectively. Results showed that the concentration of PHE in the three tissues of mussels was in this order: visceral mass > outer membrane > closed shell muscle at the same time and concentration. The enrichment content of PHE in the three tissues increased with an increase in time and concentration, owing to the higher-octanol/water partition coefficient and fat solubility of PHE, filter feeding life of mussels, and the fact that tissues with high fat content are more likely to enrich PHE. For the release test, the PHE content in the three tissues of mussels decreased rapidly in the early stage of release; however, on the 15th day, the residual amount of PHE in the three tissues was still higher than that in the control group. This is because the release of PHE in different tissues was mainly controlled by diffusion driven by thermodynamics, metabolic activity regulated by enzyme system, and excretion when mussels were in the state of water release. In addition, PHE content in mussel tissues began to decrease rapidly in the early stage of release and gradually decreased with the extension of release time. Furthermore, HSP70 was induced to enhance the anti-stimulation and survival ability of the organism under PHE stress; the expression of HSP70 mRNA in mussels was tissue-specific, and the expression level of HSP70 in the outer membrane was the highest. These results provide a reference for the study of enrichment kinetics and toxic mechanisms of PHE in shellfish.
Phenanthrene;; Bioconcentration; HSP70
JIANG Mei, E-mail: jiangrose73@163.com
S968
A
2095-9869(2021)06-0093-09
10.19663/j.issn2095-9869.20200811002
http://www.yykxjz.cn/
曾夢(mèng)妮, 李磊, 馬麗艷, 王翠華, 張璇, 黃冬梅, 蔣玫. 菲在厚殼貽貝體內(nèi)的富集與釋放及其對(duì)HSP70 mRNA表達(dá)的影響. 漁業(yè)科學(xué)進(jìn)展, 2021, 42(6): 93–101
ZENG M N, LI L, MA L Y, WANG C H, ZHANG X, HUANG D M, JIANG M. Enrichment and release of phenanthrene in mussels () and its effect on HSP70 mRNA expression. Progress in Fishery Sciences, 2021, 42(6): 93–101
蔣 玫,研究員,E-mail: jiangrose73@163.com
2020-08-11,
2020-09-07
*國(guó)家重點(diǎn)研發(fā)科技計(jì)劃項(xiàng)目(2017YFC1600705)、中央公益科研機(jī)構(gòu)基礎(chǔ)研究基金(2020TD14)和國(guó)家貝類(lèi)產(chǎn)業(yè)體系建設(shè)項(xiàng)目(CARS-49)共同資助[This work was supported by National Key Research and Development Project (2017YFC1600705), the Earmarked Fund for CARS (CARS-49), and Central Public-Interest Scientific Institution Basal Research Fund, CAFS (2020TD14)].曾夢(mèng)妮,E-mail: 2731238959@qq.com
(編輯 陳 輝)