張學(xué)軍,陳 勇,史增錄,靳 偉,張海濤,付 浩,王堆金
雙倉轉(zhuǎn)盤式棉花豎直圓盤穴播排種器設(shè)計與試驗
張學(xué)軍1,2,陳 勇1,史增錄1,2,靳 偉1,張海濤1,付 浩1,王堆金3
(1. 新疆農(nóng)業(yè)大學(xué)機電工程學(xué)院,烏魯木齊 830052;2. 新疆智能農(nóng)業(yè)裝備重點實驗室,烏魯木齊 830052;3. 新疆天誠農(nóng)機具制造有限公司,鐵門關(guān) 841007)
針對棉花豎直圓盤穴播排種器充種性能差、破損率高等問題,結(jié)合棉花穴播農(nóng)藝,設(shè)計了一種雙倉轉(zhuǎn)盤式棉花豎直圓盤穴播排種器。介紹了穴播排種器結(jié)構(gòu)組成及工作原理,設(shè)計計算了取種盤結(jié)構(gòu)參數(shù),對充種區(qū)和轉(zhuǎn)運區(qū)臨界狀態(tài)棉種進行受力分析,建立力學(xué)模型,分析說明了窩孔安置角和取種盤轉(zhuǎn)速對充種性能的影響,得出棉種臨界破損狀態(tài)時,取種盤和種子間隔圈的最小配合間隙為1.47 mm。以取種盤轉(zhuǎn)速、窩孔安置角、排種間隙為試驗因素,單粒率、破損率為響應(yīng)指標(biāo),利用穴播器試驗臺開展響應(yīng)面試驗,并利用Design-Expert8.0進行多目標(biāo)尋優(yōu)。結(jié)果表明,3個因素對單粒率的影響大小順序依次為窩孔安置角,排種間隙,取種盤轉(zhuǎn)速。對破損率影響的大小順序依次為取種盤轉(zhuǎn)速,排種間隙,窩孔安置角。最優(yōu)排種組合為取種盤轉(zhuǎn)速23.9 r/min,窩孔安置角31.7°,排種間隙2.08 mm。對最優(yōu)排種組合進行田間驗證試驗,分別將取種盤轉(zhuǎn)速、窩孔安置角、排種間隙修定為24 r/min、32°、2.0 mm,得到單粒率為94.3%,破損率0.09%,試驗指標(biāo)滿足國家標(biāo)準(zhǔn),該研究可為棉花雙倉轉(zhuǎn)盤式豎直圓盤穴播排種器的結(jié)構(gòu)設(shè)計、優(yōu)化提供參考。
農(nóng)業(yè)機械;試驗;優(yōu)化;穴播排種器;棉花;精量穴播
棉花機械化精量穴播可省工、節(jié)種、提高作業(yè)效率,是實現(xiàn)棉花機械化種植的重要途徑[1],排種器作為精量播種的核心部件[2],其排種性能是影響精量化播種的關(guān)鍵[3-5]。豎直圓盤排種器具有結(jié)構(gòu)緊湊,維護方便等特點[6],在國內(nèi)外精密排種器上廣泛使用[7-8],但豎直圓盤排種器存在充種性能差、破損率高等問題[9]。為提高排種器充種性能,降低破損率,尚家杰[10]設(shè)計了一種立式淺盆形排種盤,利用重力和離心力增加填充力,配合容納式護種板可有效地提高充種率,降低破損率。張翔等[11]針對清種區(qū)種子卡滯造成磕種問題,通過增設(shè)輔助充種塊,改用柔性橡膠護種板,將破損率降低了0.6%。Ryu等[12]研究發(fā)現(xiàn)軟毛刷清種可降低破損率。羅錫文等[13-14]針對固定護種板相對摩擦力大、易傷種問題,設(shè)計了一種同步彈性護種裝置,將破損率穩(wěn)定在0.3%。王業(yè)成等[15]設(shè)計了一種利用內(nèi)、外環(huán)摩擦力,增加種子法向填充力的摩擦型立式圓盤精密排種器,通過控制壓板阻力,降低了種子破損率。周勇等[16]針對排種階段出現(xiàn)剪切傷種問題,建立了剪切傷種模型,確定了剪切傷種區(qū)域,通過約束型孔長度,錯開剪切區(qū)域,將破損率控制在0.17%。王沖等[17-18]通過對柔性同步皮帶支撐力研究,得出同步臨界條件,避免了相對運動,將種子破損率降低0.5%。周建來等[19]針對清種刀傷種問題改進了一款立式圓盤排種器,在取種盤與清種刀配合清種一側(cè)設(shè)計了環(huán)狀容種凹槽,并通過調(diào)整清種刀位置,使種子破損率降到2%以下。上述研究表明,豎直圓盤排種器碎種的主要原因是取種盤轉(zhuǎn)動時產(chǎn)生的摩擦力與剪切力,通過改進取種盤與護種板結(jié)構(gòu)、添加柔性護種裝置等減小摩擦力的方法,對提高豎直圓盤排種器充種性能,降低種子破損率均有促進作用,但沒有從結(jié)構(gòu)設(shè)計上改變攜種方式。
借鑒以上研究,本文基于豎直圓盤排種器工作原理,結(jié)合棉花精量穴播農(nóng)藝要求,設(shè)計了一種雙倉轉(zhuǎn)盤式棉花豎直圓盤穴播排種器,采用雙倉分離設(shè)計,利用獨立倉室攜種代替摩擦攜種,減少作業(yè)過程中相對運動部件對棉種的損傷。依據(jù)單粒取種原則確定了取種方式,設(shè)計計算取種盤結(jié)構(gòu)參數(shù)。著重分析倉轉(zhuǎn)階段棉種受力情況,通過建立力學(xué)模型,得出理論最小排種間隙。根據(jù)理論設(shè)計試制了一臺穴播排種器樣機,通過臺架試驗與田間驗證試驗,以檢驗穴播排種器性能。
雙倉轉(zhuǎn)盤式棉花豎直圓盤穴播排種器主要由為動盤、取種盤、投種倉總成、種子間隔圈、芯盤、進種口等六大部分組成,其結(jié)構(gòu)示意圖如圖1。
六大部件通過配合又將雙倉轉(zhuǎn)盤式豎直圓盤穴播排種器分為雙倉室結(jié)構(gòu),其結(jié)構(gòu)示意圖如圖2所示,其中種子間隔圈和取種盤配合組成取種倉。動盤、間隔套和種子間隔圈組成輸種倉,輸種倉又由間隔套隔成獨立投種倉。雙倉由種子間隔圈隔開,取種盤窩孔與投種倉同步轉(zhuǎn)動,一一對應(yīng)。排種器工作流程根據(jù)倉室分為兩個部分。在取種倉內(nèi)有充種區(qū)、清種區(qū);在輸種倉內(nèi)有輸種區(qū)、投種區(qū);雙倉通過轉(zhuǎn)運區(qū)完成遞種。
1.種子間隔圈 2.清種刷 3.螺栓 4.取種倉 5.調(diào)節(jié)墊片 6.進種口 7.輸種倉 8.種孔 9.取種盤 10.動盤 11.間隔套 12.打穴器
1.Seed interval circle 2. Seed cleaning brush 3 Bolt 4.Seed extraction storage 5.Adjusting gasket 6.Seed inlet 7.Seed transportation storage 8. Hole 9. Seed extraction plate 10.Moving plate 11.Spacer sleeve 12.Hole punch
注:為取種盤角速度,rad·s-1。
Note:is angular velocity for seed extraction plate, rad·s-1.
圖2 排種器雙倉結(jié)構(gòu)示意圖
Fig.2 Structure diagram of double storage of seed metering device
穴播排種器工作原理如圖3所示。排種器在工作前,種子通過種口進入取種倉,堆積形成靜置種群。機具前進,取種盤隨穴播排種器旋轉(zhuǎn)至種群,導(dǎo)種槽在種群內(nèi)形成新的空白空間,種子在重力、種間作用力以及離心力共同作用下迅速填補空間,棉種沿導(dǎo)種槽涌向窩孔,與此同時進入充種區(qū)的窩孔開始攫取棉種;當(dāng)窩孔離開充種區(qū)后,未進入窩孔種子因重力掉落,等待下次充種,未掉落棉種在清種刷作用下滑落完成清種;窩孔進入轉(zhuǎn)運區(qū)后,窩孔內(nèi)種子沿窩孔內(nèi)壁滑入由取種盤和種子間隔圈組成的排種容腔內(nèi),棉種在種子間隔圈軸向支持力作用下保持靜止,待軸向支持力消失后,排種容腔內(nèi)棉種掉入對應(yīng)投種倉;投種倉進入投種區(qū)后,倉內(nèi)種子沿著間隔套滑入鴨嘴,待動嘴打開后,棉種掉入種穴完成排種。
1.清種刷 2.調(diào)節(jié)螺栓 3.取種盤 4.導(dǎo)種槽 5.輸種倉
1. Seed cleaning brush 2. Adjusting bolt 3. seed extraction plate 4. Seed guide slot 5. Seed transportation warehouse
注:為充種區(qū)的弧度,rad。
Note:is the arc of the seed filling region, rad.
圖3 排種器工作原理
Fig.3 The working principle of the seed metering device
取種盤結(jié)構(gòu)示意圖如圖4所示,其中取種盤直徑是穴播排種器基礎(chǔ)結(jié)構(gòu)參數(shù),其影響穴播排種器整體結(jié)構(gòu)尺寸,影響充種性能。在穴播排種器線速度一定條件下,取種盤直徑越大,取種窩孔劃過種層時間越長,窩孔取種機會越多,取種率越高。但在窩孔數(shù)一定條件下,取種盤直徑過大,穴播排種器無法滿足密植農(nóng)藝要求。
為研究取種盤各參數(shù)對取種時間影響,本文選取單個窩孔建立取種時間的方程。
整理可得取種時間為
其中=60/,穴播排種器前進速度,m/s;相鄰窩孔中心弧長,m;窩孔數(shù)量。
帶入式(2)整理可得
由式(3)可知,當(dāng)相鄰取種孔中心對應(yīng)圓心角度和穴播排種器前進速度一定時,取種時間只和窩孔數(shù)有關(guān)。相同窩孔數(shù),取種盤直徑越大,相鄰窩孔中心對應(yīng)弧長越大,取種時間越長,取種效果越好。但由圖3可知,取種盤直徑增大時,穴播器直徑(定嘴尖之間距離)也隨之增加,考慮穴播器與播種機機架適配性,穴播器直徑不宜過大。測量市場上穴播器結(jié)構(gòu)尺寸作為參考,測得穴播器直徑為420 mm,種圈內(nèi)徑為280 mm,因此取種盤直徑應(yīng)小于280 mm。查閱相關(guān)文獻可知型孔輪式取種盤直徑一般在80~260 mm[20],本文取種盤直徑設(shè)計為220 mm。
由式(3)可知,相同直徑的取種盤窩孔數(shù)目越少,取種窩孔在充種區(qū)內(nèi)取種時間越長,效果越好。但取種孔數(shù)過少,使單位面積株數(shù)小于密植農(nóng)藝要求[21],無法保證產(chǎn)量。因此,在取種盤直徑確定條件下,取種盤上窩孔數(shù)因滿足每單位面積播種數(shù)大于最小收獲單位面積株數(shù)要求。確定窩孔數(shù)量[22]為
整理得
根據(jù)窩孔中心對應(yīng)的直徑1為208 mm;拖拉機行進速度在0.5~1.5 m/s[16],此處取v為0.8 m/s;株距1取0.09 m(穴播株距在0.05~0.11 m之間變化);臺架試驗階段穴播器滑移系數(shù)取0%,取種輪轉(zhuǎn)速取33 r/min;得到窩孔數(shù)16。
取種是精量播種的第一步,對于取種窩孔設(shè)計是精量取種盤設(shè)計關(guān)鍵環(huán)節(jié)。取種窩孔形狀取決于種子形狀、種子尺寸、穴粒數(shù)要求等[23]。本次設(shè)計選用新疆地區(qū)廣泛種植“新陸早68”號,隨機選取1 000粒棉種測量三軸尺寸,測得平均長0、寬0、厚0尺寸為9.05 mm× 4.86 mm× 4.69 mm。以此作為窩孔設(shè)計依據(jù)。由文獻可知單粒穴播取種方式有側(cè)臥式和平置式兩種[24]。
平置式取種,棉種完全平躺進窩孔內(nèi),窩孔直徑大,易充種。但棉種寬度數(shù)值波動大,第二粒種子容易借助寬度方向間隙側(cè)躺進去,造成多粒取種。側(cè)臥式厚度數(shù)值波動小,單粒取種準(zhǔn)確性較高,故本文選用側(cè)臥式取種。設(shè)取種窩孔長度為、窩孔寬度為、窩孔高為,如圖4所示。
根據(jù)精量取種要求,窩孔結(jié)構(gòu)尺寸應(yīng)滿足
式中min為測量棉花種子最小厚度,4.75 mm;min為測量棉花種子最小寬度,4.62 mm;max為測量棉花種子最大長度,9.13 mm;Δ為窩孔長度間隙,mm;Δ為窩孔寬度間隙,mm;Δ為窩孔深度間隙,mm;
由式(6)可知,窩孔的寬度即棉種平均厚度0與寬度間隙Δ之和應(yīng)大于棉種最小寬度min,同時小于棉種最小厚度的二倍,避免第二粒種子借助寬度方向進入。對于窩孔高度,應(yīng)滿足棉種重心能夠完全進入窩孔,查閱資料[25]可知棉花種子質(zhì)心位于大徑底端向上三分之一處,因此窩孔高度應(yīng)大于測量棉種最大長度max的三分之一,同時小于測量棉種最小厚度的二倍,保證棉種單粒直立進入,避免雙粒平躺進入。
結(jié)合棉種三軸平均尺寸帶入公式后最終確定窩孔尺寸長、寬、高為9.2、5.1、4.7 mm。
取種盤旋轉(zhuǎn)到轉(zhuǎn)運區(qū)時,窩孔內(nèi)種子沿排種內(nèi)壁滑入由取種盤和種子間隔圈組成的排種容腔內(nèi),為確保種子能夠快速滑入排種容腔,防止棉種破損,需對窩孔內(nèi)壁排種角進行設(shè)計計算。
選取容腔內(nèi)棉種作為研究對象,建立如圖5a所示的空間坐標(biāo)系。分析棉種在平面內(nèi)滑落軌跡,建立如圖5b所示棉種滑落示意圖,運用最速降線原理[26],求解窩孔內(nèi)壁排種角。假設(shè)種子開始下滑速度為1,種子脫離窩孔前速度為2,下落高度為,下落過程摩擦力始終存在,將下落軌跡簡化為=2拋物線,如圖5b所示。
對平面內(nèi)棉種滑落狀態(tài)進行分析,則有
式中為棉種與取種盤間摩擦力,;F為排種內(nèi)壁對棉種支持力,;為種子與內(nèi)壁摩擦角,(°);為棉種質(zhì)量,g;為重力加速度,m/s2。
根據(jù)能量守恒定理可得
整理(8)、(9)式得
整理(10)式后將=2代入可得
由上式可知內(nèi)壁角與初始速度成反比;與內(nèi)壁摩擦角成正比,代入?yún)?shù)、1、2、可確定角。在實際排種過程中棉種滑落至排種容腔時為靜止?fàn)顟B(tài),因此1=0,摩擦角取棉種在尼龍塑料上自流角。拖拉機前進速度為0.5~1.5 m/s,轉(zhuǎn)換為穴播排種器轉(zhuǎn)速為18~50 r/min,轉(zhuǎn)換為窩孔中心線速度為0.063π~0.174π m/s。參考已有研究可知圓盤上一點的初速度近似等于1/4線速度[27],2取最小值0.063π m/s、取7 mm、取4代入(11)式得最小值為29.2°,當(dāng)初速度取最小值,內(nèi)壁摩擦角取值大于棉種在尼龍盤上滑動摩擦角最大值時,值大于48.7°。為確保棉種及時滑落,內(nèi)壁角取大值較好,本文取內(nèi)壁角為48°。
棉種在向下運動過程中回轉(zhuǎn)半徑逐漸變小,摩擦力變大,棉種在摩擦力和擠壓力共同作用下容易發(fā)生碎裂。為探究取種盤和種子間隔圈之間的排種間隙與棉種破損的關(guān)系,在平面內(nèi)對棉種進行受力分析,轉(zhuǎn)運區(qū)棉種受力示意圖,如圖6所示。
由于種子間隔圈的擠壓,滑落棉種會產(chǎn)生一定變形,依據(jù)胡克定律,棉種變形壓力為
式中Δ為棉種形變后徑向伸長量,mm;為棉種變形壓力,N;為棉種彈性模量,MPa;為棉種橫截面積,mm2。
1.種子間隔圈 2.取種盤 3.棉種未受壓狀態(tài) 4.棉種受壓狀態(tài)
1.Seed interval circle 2. Seed extraction plate 3.Uncompressed state of cotton seed 4.Compressed state of cotton seed
注:1為間隔圈對種子施加壓力,N;1為種子間隔圈與棉種間摩擦力,N;為棉種和種子間隔圈接觸點到軸負(fù)方向棉種頂點處水平距離,mm;為棉種受力后徑向壓縮量,mm;為棉種直徑,mm;為取種盤和種子間隔圈之間的間隙,mm;為棉種受力前后與隔種圈接觸點夾角,(°);1為取種盤運動方向;2為種子間隔圈運動方向。
Note:1put pressure on the seed for the seed interval circle, N;1is the friction between the seed interval circle and the cotton seed, N;is the horizontal distance between the contact point of the cotton seed and the seed interval circle to the apex of the cotton seed in the negative direction of the-axis, mm;is the radial compression of the cotton seed after being stressed, mm;is the diameter of cotton seed, mm;is the gap between the seed extraction plate and the seed interval circle, mm;is the angle between the cotton seed and the contact point of the seed interval circle before and after the force is applied, (°);1is the direction of movement of the seed extraction plate;2is the movement direction of the seed interval circle.
圖6 棉花種子轉(zhuǎn)運區(qū)受力分析圖
Fig.6 The force analysis diagram of the cotton seed storage and transfer area
由圖6可知,影響棉種徑向變形參數(shù)為
豎直方向上,忽略重力作用,種子間隔圈和取種盤坡壁對棉種壓力1和摩擦力為
為保證種子間隔圈不碾傷棉種,種子間隔圈對棉種正壓力應(yīng)滿足
式中1max為棉種徑向破損壓力,N;max為棉種破壞剪切力,N。
整理式(14)、(15)可得
取棉種直徑為4.52 mm,查閱文獻[27]可得彈性模量為9.15 MPa;擠壓破壞力1取值范圍46.52~48.51 N;剪切破壞力為取值范圍為36.6~37.68 N;帶入式(16)后得間隙為1.47 mm??紤]間隙過大使窩孔長度增加,導(dǎo)致第二粒種子質(zhì)心進入窩孔,給后續(xù)清種帶來麻煩,因此間隙取值小于3 mm。結(jié)合間隙實際調(diào)控方法最終排種間隙調(diào)整范圍為1.5~2.5 mm。
2.5.1 窩孔安置角設(shè)計
窩孔從種群中攫取種子是一個復(fù)雜過程[28-29],因此研究窩孔充種過程,分析填充機理對于提高充種性能尤為重要。由于窩孔隨取種盤轉(zhuǎn)動,窩孔時刻處于運動狀態(tài),孔口棉種受重力、摩擦力、慣性力的合力作用,故選取孔口棉種進行受力分析。將棉種視為材質(zhì)均勻剛體,以幾何質(zhì)心為中心建立平面直角坐標(biāo)系,以取種盤中心指向棉種質(zhì)心方向為軸,過中心垂直軸建立軸,輔助坐標(biāo)系如圖7所示。
對孔口棉種受力分析,y軸方向棉種受力應(yīng)滿足受力平衡,如下式所示:
式中1為孔口內(nèi)壁對棉種支持力,N;p為孔口棉種對質(zhì)心側(cè)壓力,;F為孔口側(cè)壁與棉種間摩擦力,N;為窩孔安置角,(°);為起始充種角,(°)。
注:F為種子所受離心力,N;1為孔口內(nèi)壁對棉種支持力,N;p為孔口棉種對質(zhì)心側(cè)壓力,;F為孔口側(cè)壁與棉種間摩擦力,N;為窩孔安置角,(°);為起始充種角,(°)。
Note:Fis the centrifugal force of the seed,N;1is the support force of the inner wall of the orifice to the cotton seed, N;pis the side pressure of the orifice cotton seed on the center of mass, N;Fis the frictional force between the side wall of the orifice and the cotton seed, N;is the Fossa hole placement angle, (°);is the initial filling angle, (°).
圖7 孔口棉種受力分析圖
Fig.7 Force analysis diagram of orifice cotton seed
軸方向,棉種若不被甩出,應(yīng)滿足下式
根據(jù)式(17)、式(18)整理得出
2.5.2 取種盤極限轉(zhuǎn)速確定
根據(jù)臺架試驗觀察發(fā)現(xiàn),當(dāng)取種盤工作轉(zhuǎn)速過高,窩孔進入清種區(qū)后存在“飛種”現(xiàn)象。為保證取種穩(wěn)定性,對即將拋出窩孔的棉種進行受力分析,以幾何質(zhì)心為中心研究臨界狀態(tài)棉種受力情況,建立受力方程。
式中max為最大充填角,(°);max為取種盤最大角速度,rad/s;Fmax為最大慣性力,N;max為取種盤最大轉(zhuǎn)速,r/min。
整理后得
由式(21)可知,取種盤臨界轉(zhuǎn)速max與取種盤直徑、充種角有關(guān)。由資料可知取種盤實際達到轉(zhuǎn)速為理論臨界轉(zhuǎn)速的70%~80%[30],即取種盤轉(zhuǎn)速達48.86~55.84 r/min時,存在“飛種”現(xiàn)象,因此取種盤轉(zhuǎn)速因小于48 r/min。
試制了一臺雙倉轉(zhuǎn)盤式豎直圓盤穴播排種器,并開展臺架驗證試驗。試驗選用新疆地區(qū)普遍種植品種“新陸早68號”為試驗材料,其千粒質(zhì)量為97 g,含水率為6.5%。試驗在穴播器試驗臺上進行,如圖8所示。
根據(jù)棉花精量穴播農(nóng)藝要求,每穴一粒即為合格。因此,試驗評價標(biāo)準(zhǔn)參照行業(yè)標(biāo)準(zhǔn)NY/Y1143-2006[31]和國家標(biāo)準(zhǔn)GB/T6973-2005[32],選取單粒率1和破損率作為評價指標(biāo)。計算公式如下:
式中1為單粒穴數(shù);為總共檢測穴數(shù);w為集種箱中破損樣本質(zhì)量,g;w為集種箱中樣本質(zhì)量,g。
試驗前對脫絨棉種進行種衣劑漂染,漂染后棉種呈現(xiàn)紫紅色。對出現(xiàn)塌陷、露白、斷裂的棉種均統(tǒng)計為破損。臺架試驗?zāi)M機具前進50 m,檢出穴播器與集種箱中破損種子稱量統(tǒng)計。
根據(jù)取種盤結(jié)構(gòu)設(shè)計,結(jié)合前期實地試驗,選取取種盤轉(zhuǎn)速1、窩孔安置角2、排種間隙3為試驗因素,每個因素預(yù)設(shè)3個考察水平,如表1所示。
表1 試驗因素和水平
1)取種盤轉(zhuǎn)速
取種盤通過螺栓緊固在穴播排種器動盤上,取種盤轉(zhuǎn)速隨機具前進速度變化而變化。此次試驗以約翰迪爾804快一檔小油門速度(約2 km/h)作為基礎(chǔ)轉(zhuǎn)速,轉(zhuǎn)化為穴播器轉(zhuǎn)速約為25 r/min,通過調(diào)節(jié)電機控制轉(zhuǎn)度,轉(zhuǎn)速分別為20、25、30 r/min。
2)窩孔安置角
雙倉轉(zhuǎn)盤式豎直圓盤穴播器為一側(cè)取種,異側(cè)排種。為避免窩孔內(nèi)棉種提前進入排種容腔,窩孔安置角與排種內(nèi)壁保持一定角度,試驗使用取種盤在3D打印時,按等角度預(yù)設(shè)25°、30°、35°三種不同偏置角的取種盤。
3)排種間隙
由上文可知排種間隙為配合間隙,排種間隙小,排種容腔回轉(zhuǎn)半徑小,破損率高。排種間隙大,不滿足精量播種要求。在排種間隙圓整取1.5 mm基礎(chǔ)上,通過在芯盤和動盤間添加厚度為0.5 mm墊片對間隙進行調(diào)控,間隙分別為1.5、2.0、2.5 mm。
利用排種器試驗臺,開展響應(yīng)面(Box-Behenken design)臺架試驗,每次進行17組,每組取250穴,重復(fù)5次取均值,根據(jù)式(22)、(23)計算穴粒數(shù)單粒率、破損率。試驗結(jié)果見表2。
表2 試驗方案及結(jié)果
注:1、2、3分別為1、2、3的水平值。
Note:1,2and3are the level values of1,2and3, respectively.
由表2可知各組試驗中單粒合格率均大于85%、破損率均小于5%,雙倉轉(zhuǎn)盤式豎直圓盤穴播排種器性能滿足行業(yè)標(biāo)準(zhǔn)NY/Y1143-2006中對穴播作物的要求。利用Design-expert8.0軟件對表2數(shù)據(jù)進行分析,得出單粒率、破損率與取種盤轉(zhuǎn)速、窩孔安置角和排種間隙的回歸模型,對回歸模型進行方差分析,結(jié)果如表3所示。
為直觀反映各交互因素對單粒率和破損率的影響,運用Design-Expert8.0軟件繪制各交互因素對單粒率、破損率的響應(yīng)曲面圖,如圖9所示。
表3 多因素試驗結(jié)果和方差分析
注:<0.01(極顯著,**);<0.05(顯著,*)。
Note:<0.01 (highly significant, **);<0.05 (significant, *).
圖9a為窩孔偏置設(shè)置角度為中心水平(30°)時,排種盤轉(zhuǎn)速和排種間隙對單粒率交互作用的響應(yīng)面圖。由圖9a可知,當(dāng)窩孔安置角設(shè)置在30°,排種盤轉(zhuǎn)速在低水平(20 r/min)時,排種間隙由1.5 mm增加到2.0 mm,單粒率緩慢增加,但當(dāng)排種間隙繼續(xù)增加時,單粒率迅速降低。這是由于排種間隙大于2 mm以后,窩孔長度增加,棉種更容易從長度方向進入,棉種質(zhì)心進入窩孔后,清種裝置無法有效清除多余棉種,從而影響單粒率;當(dāng)排種間隙取低水平(1.5 mm)時,單粒率隨排種盤轉(zhuǎn)速增加而增加,但當(dāng)排種盤轉(zhuǎn)速大于25 r/min后,單粒率急劇降低。這主要是由于排種盤轉(zhuǎn)速增加后,棉種與窩孔相對速度變大,單位窩孔在充種區(qū)取種時間減少影響窩孔攫取棉種,最終導(dǎo)致單粒率急劇降低。
圖9b反映當(dāng)取種盤轉(zhuǎn)速取中間水平(25 r/min)時,排種間隙與窩孔安置角對破損率交互作用的響應(yīng)圖。由圖9b可知,當(dāng)取種盤轉(zhuǎn)速取中間水平,窩孔安置角取高水平(35°),排種間隙由1.5 mm增加到2.0 mm,破損率逐漸降低,但當(dāng)排種間隙繼續(xù)增加時,破損率開始緩慢增加。這是由于開始排種間隙小,棉種在排種容腔內(nèi)回轉(zhuǎn)半徑小,摩擦力增大,棉種受種子間隔圈擠壓力大,棉種易碎,從而破損率高。當(dāng)排種間隙增大后,回轉(zhuǎn)半徑大,摩擦力小,棉種破損率降低,但排種間隙大于2.0 mm,造成排種容腔體積變大,回轉(zhuǎn)半徑過大,棉種在容腔內(nèi)不受摩擦力約束,運動不規(guī)律,破損率開始上升,同時容腔體積開始影響取種精確性,由圖9a也可得到佐證,并大致確定排種間隙在2.0 mm時,總體性能最好。
為得到豎直圓盤穴播排種器最佳參數(shù)組合,以提高單粒率、降低破損率為目標(biāo),結(jié)合試驗因素的邊界條件,利用軟件Design-Expert8.0進行多目標(biāo)尋優(yōu)求解[33]。得到優(yōu)化模型為
優(yōu)化排種參數(shù)時,將單粒率和破損率的權(quán)重均設(shè)置為0.5,以同等加權(quán)值評價響應(yīng)指標(biāo)。對單粒率函數(shù)值設(shè)置為越大越好,對破損率越小越好。利用軟件Design-Expert8.0進行多目標(biāo)尋優(yōu)求解。得出排種性能最優(yōu)參數(shù)組合為:取種盤轉(zhuǎn)速23.9 r/min,窩孔安置角31.7°,排種間隙2.08 mm,此時單粒率為96%,破損率為0.13%。考慮到拖拉機速度的控制、窩孔機加工精度限制以及間隙調(diào)節(jié)片規(guī)格約束,將理論最優(yōu)參數(shù)組合調(diào)整為:取種盤轉(zhuǎn)速24 r/min,窩孔安置角32°,排種間隙2.0 mm
為檢驗雙倉轉(zhuǎn)盤式豎直圓盤穴播排種器的田間作業(yè)效果,于2021年4月18日在新疆鐵門關(guān)市開展驗證試驗,如圖10所示。試驗前測量得到土地堅實度為466 kPa,含水率9.8%,將土地平整,平整后耕地上實下虛適合棉花穴播作業(yè)。試驗以本課題組研發(fā)項目特寬膜鋪膜播種機為試驗平臺,該機型作業(yè)幅寬4.4 m,鋪設(shè)一膜穴播12行,重1 300 kg,搭載穴播排種器。拖拉機行進速度約為2.0 km/h,速度平穩(wěn)后,連續(xù)統(tǒng)計250穴。將穴內(nèi)棉種粒數(shù)與碎裂棉種分別統(tǒng)計,重復(fù)5次取均值,可得單粒率為94.3%,破損率為0.09%,均達到了行業(yè)國家標(biāo)準(zhǔn)要求。
1)設(shè)計了雙倉轉(zhuǎn)盤式豎直圓盤穴播精量排種器,選擇側(cè)臥式取種,通過理論計算確定了窩孔的尺寸參數(shù),建立了充種時間的方程,探究充種時間與取種盤直徑關(guān)系,確定取種盤直徑為220 mm、取種窩孔數(shù)16。
2)設(shè)計了一種立式取種盤,運用最速降線原理,對窩孔內(nèi)壁角進行設(shè)計計算,確定取值范圍29.2°~48°。建立力學(xué)方程,分析了棉種在排種容腔內(nèi)受力情況,以減小棉種碎裂為目標(biāo),確定了間隙取值范圍1.5~2.5 mm。為提高取種性能對孔口棉種運動狀態(tài)進行分析,得到了窩孔安置角不大于42.82°。
3)通過雙倉轉(zhuǎn)盤式豎直圓盤穴播精量排種器臺架試驗可知,棉種破損率最高為0.49%低于國家標(biāo)準(zhǔn);通過多因素試驗確定了最優(yōu)排種參數(shù)組合:取種盤轉(zhuǎn)速23.9 r/min,窩孔安置角為31.7°,排種間隙為2.08 mm。對最優(yōu)排種組合進行田間試驗驗證,穴播器轉(zhuǎn)速控制在24 r/min,窩孔安置角為32°,排種間隙為2 mm,得到單粒率為94.3%,破損率為0.09%,滿足棉花精量播種農(nóng)藝要求。
[1] 康施為,倪向東,齊慶征,等. 氣吸滾筒式棉花精密排種器的設(shè)計與試驗[J]. 農(nóng)機化研究,2020,42(6):136-141.
Kang Shiwei, Ni Xiangdong, Qi Qingzheng,et al. Design and experiment of a suction drum type cotton precision seed metering device[J]. Journal of Agricultural Mechanization Research, 2020, 42(6): 136-141. (in Chinese with English abstract)
[2] 李兆東,雷小龍,曹秀英,等. 油菜精量氣壓式集排器的設(shè)計與試驗[J]. 農(nóng)業(yè)工程學(xué)報,2015,31(7):9-17.
Li Zhaodong, Lei Xiaolong, Cao Xiuying, et al. Design and experiment of precision air pressure collector for rape[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(7): 9-17. (in Chinese with English abstract)
[3] 廖慶喜. 油菜生產(chǎn)機械化技術(shù)[M]. 北京:科學(xué)出版社,2018.
[4] 李寶閥. 農(nóng)業(yè)機械學(xué)[M]. 北京:中國農(nóng)業(yè)出版社,2009.
[5] 叢錦玲,廖慶喜,曹秀英,等. 油菜小麥兼用排種盤的排種器充種性能[J]. 農(nóng)業(yè)工程學(xué)報,2014,30(8):30-39.
Cong Jinling, Liao Qingxi, Cao Xiuying, et al. Seed filling performance of seed metering device for dual purpose seed metering tray for rape and wheat[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(8): 30-39. (in Chinese with English abstract)
[6] 劉宏新,王福林,楊廣林,等. 新型立式復(fù)合圓盤大豆精密排種器研究[J]. 農(nóng)業(yè)工程學(xué)報,2007,23(10):112-116.
Liu Hongxin, Wang Fulin, Yang Guanglin, et al. Study on a new type vertical composite disc soybean precision seed metering device[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2007, 23(10): 112-116. (in Chinese with English abstract)
[7] Liu H X, Guo L F, Fu L L, et al. Study on multi size seed meteringdevice for vertical plate soybean precision planter[J]. International Journal of Agricultural and Biological Engineering, 2015, 8(1): 1-8.
[8] Ess D. R, Hawkins S. E, Young J. C, et al. Evaluation of the performance of abelt metering system for soybeans planted with a grain drill[J]. Applied Engineering in Agriculture, 2005, 21(6): 965-969.
[9] 劉宏新,徐曉萌,郭麗峰,等. 具有復(fù)合充填力的立式淺盆型排種器充種機理[J]. 農(nóng)業(yè)工程學(xué)報,2014,30(21):9-16.
Liu Hongxin, Xu Xiaomeng, Guo Lifeng, et al. Research on seed~filling mechanism of vertical shallow basin type seed~metering device with composite filling force[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(21): 9-16. (in Chinese with English abstract)
[10] 尚家杰. 可利用重力與離心力充種的立式圓盤排種器研究[D]. 哈爾濱:東北農(nóng)業(yè)大學(xué),2013.
Shang Jiajie. Study on Vertical Disk Seed-metering Device of Using Gravity and Centrifugal Force to Fill Seeds[D]. Harbin: Northeast Agricultural University, 2013. (in Chinese with English abstract)
[11] 張翔,楊然兵,尚書旗.內(nèi)側(cè)充種圓盤排種器防傷種裝置的設(shè)計[J]. 農(nóng)機化研究,2014,36(10):75-78,83.
Zhang Xiang, Yang Ranbing, Shang Shuqi. Design on inside filling disk metering device for peanut seeder[J]. Journal of Agricultural Mechanization Research, 2014, 36(10): 75-78, 83. (in Chinese with English abstract)
[12] Ryu I H, Kim K U. Design of roller type metering for precision planting[J]. Transactions of the American Society of Agricultural Engineers, 1988, 41(4): 923-930.
[13] 羅錫文,劉濤,蔣恩臣,等. 水稻精量穴直播排種輪的設(shè)計與試驗[J]. 農(nóng)業(yè)工程學(xué)報,2007,23(3):108-112.
Luo Xiwen, Liu Tao, Jiang Enchen, et al. Design and experiment of hill sowing wheel of precision rice direct~seeder[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2007, 23(3): 108-112. (in Chinese with English abstract)
[14] 羅錫文,王在滿,蔣恩臣,等. 型孔輪式排種器彈性隨動護種帶裝置設(shè)計[J]. 農(nóng)業(yè)機械學(xué)報,2008,39(12):60-63.
Luo Xiwen, Wang Zaiman, Jiang Enchen, et al. Design of disassemble rubber guard device for cell wheel feed[J]. Transactions of the Chinese Society for Agricultural Machinery, 2008, 39(12): 60-63. (in Chinese with English abstract)
[15] 王業(yè)成,邱立春,張文嬌,等. 摩擦型立式圓盤精密排種器的設(shè)計與試驗[J]. 農(nóng)業(yè)工程學(xué)報,2012,28(1):22-26.
Wang Yecheng, Qiu Lichun, Zhang Wenjiao, et al. Design and experiment of friction type vertical disc precision seed metering device[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(1): 22-26. (in Chinese with English abstract)
[16] 周勇,胡夢杰,夏俊芳,等. 內(nèi)充種組合型孔式播量可調(diào)棉花精量排種器設(shè)計與試驗[J]. 農(nóng)業(yè)工程學(xué)報,2018,34(18):59-67.
Zhou Yong, Hu Mengjie, Xia Junfang, et al. Design and experiment of cotton precision metering device with combined hole type seeding rate and adjustable inner filling[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(18): 59-67. (in Chinese with English abstract)
[17] 王沖,宋建農(nóng),王繼承,等. 機械式排種器同步柔性皮帶護種器的設(shè)計[J]. 農(nóng)業(yè)工程學(xué)報,2009,25(10):107-111.
Wang Chong, Song Jiannong, Wang Jicheng, et al. Design of synchronization flexible belt protecting device for metering device[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2009, 25(10): 107-111. (in Chinese with English abstract)
[18] 宋建農(nóng). 同步柔性皮帶護種器:中國專利,CN201142838[P]. 2008-11-05.
[19] 周建來,榮彥波,金艷. 組合立式圓盤排種器的研究[J]. 農(nóng)機化研究,2000(1):58-59.
Zhou Jianlai, Rong Yanbo, Jin Yan. Research on the combined vertical disc seed metering device[J]. Agricultural Mechanization Research, 2000(1): 58-59. (in Chinese with English abstract)
[20] 中國農(nóng)業(yè)機械化科學(xué)研究院. 農(nóng)業(yè)機械設(shè)計手冊[M]. 北京:中國農(nóng)業(yè)科學(xué)技術(shù)出版社,2007.
[21] 韓煥勇,王方永,余渝,等. 新疆早熟機采棉膜下滴灌等行距密植栽培技術(shù)[J]. 中國棉花,2016,43(10):39-40.
Han Huanyong, Wang Fangyong, Yu Yu, et al. Drip irrigation under mulch for early-maturing machine-picked cotton in Xinjiang[J]. China Cotton, 2016, 43(10): 39-40. (in Chinese with English abstract)
[22] 張德文. 精密播種機械[M]. 北京:農(nóng)業(yè)出版社,1982.
[23] 譚斌. 淺談精量播種技術(shù)在棉花高產(chǎn)栽培技術(shù)中的應(yīng)用[A].中國農(nóng)業(yè)機械學(xué)會,2012中國農(nóng)業(yè)機械學(xué)會國際學(xué)術(shù)年會論文集[C]//北京:中國農(nóng)業(yè)機械學(xué)會,2012:3.
[24] 張波屏. 播種機械設(shè)計原理[M]. 北京:機械工業(yè)出版社,1982.
[25] 胡夢杰,周勇,湯智超,等. 脫絨包衣棉花種子的力學(xué)特性[J]. 安徽農(nóng)業(yè)大學(xué)學(xué)報,2018,45(1):175-180.
Hu Mengjie, Zhou Yong, Tang Zhichao, et al. Mechanical properties of cotton seeds with velvet coating[J]. Journal of Anhui Agricultural University, 2018, 45(1): 175-180. (in Chinese with English abstract)
[26] 趙淑紅,陳君執(zhí),王加一,等. 精量播種機V型凹槽撥輪式導(dǎo)種部件設(shè)計與試驗[J]. 農(nóng)業(yè)機械學(xué)報,2018,49(6):146-158.
Zhao Shuhong, Chen Junzhi, Wang Jiayi, et al. Design and test of Vgroove dial type seed Chinese Society of gricultural Machinery[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(6): 146-158. (in Chinese with English abstract)
[27] 曹成茂,秦寬,王安民,等. 水稻直播機氣吹輔助勺輪式排種器設(shè)計與試驗[J]. 農(nóng)業(yè)機械學(xué)報,2015,46(1):66-72.
Cao Chengmao, Qin Kuan, Wang Anmin, et al. Design and experiment of the air blowing auxiliary scoop wheel seed metering device for rice direct seeding machine[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(1): 66-72 (in Chinese with English abstract)
[28] 雷小龍,楊文浩,劉禮陽,等. 雜交稻氣送式集排器成穴供種裝置設(shè)計與試驗[J]. 農(nóng)業(yè)機械學(xué)報,2018,49(11):58-67.
Lei Xiaolong, Yang Wenhao, Liu Liyang, et al. Design and experiment of the cavitation and seed supply device of hybrid rice air feeding collector[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(11): 58-67. (in Chinese with English abstract)
[29] 耿端陽,張明源,何珂,等. 傾斜雙圓環(huán)型孔圓盤式玉米排種器設(shè)計與試驗[J]. 農(nóng)業(yè)機械學(xué)報,2018,49(1):68-76.
Geng Duanyang, Zhang Mingyuan, He Ke, et al. The design and experiment of the oblique double ring hole disc type corn metering device[J]. Journal for Agricultural Machinery, 2018, 49(1): 68-76. (in Chinese with English abstract)
[30] 張青松,余琦,王磊,等. 油菜勺式精量穴播排種器設(shè)計與試驗[J]. 農(nóng)業(yè)機械學(xué)報,2020,51(6):47-54,64.
Zhang Qingsong, Yu Qi, Wang Lei, et al. Design and experiment of a spoon type precision hole seeding and metering device for rape[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(6): 47-54, 64. (in Chinese with English abstract)
[31] 中華人民共和國農(nóng)業(yè)部,播種機質(zhì)量評價技術(shù)規(guī)范:NY/Y1143-2006[S]. 北京:中國標(biāo)準(zhǔn)出版社,2005:
[32] 中國國家標(biāo)準(zhǔn)化管理委員會,單粒(精密)播種機試驗方法:GB/T 6973-2005[S]. 北京:中國標(biāo)準(zhǔn)出版社,2005
[33] 李云雁. 試驗設(shè)計與數(shù)據(jù)處理[M]. 北京:化學(xué)工工業(yè)出版社,2008.
Design and experiment of double-storage turntable cotton vertical disc hole seeding and metering device
Zhang Xuejun1,2, Chen Yong1, Shi Zenglu1,2, Jin Wei1, Zhang Haitao1, Fu Hao1, Wang Duijin3
(1.,,830052,; 2.,830052,; 3.,841007,)
Current vertical disc hole seed-metering device has been limited to the low seed picking performance and high damage rate in recent years. In this study, a double-chamber turntable and vertical disc-hole seed-metering device was designed to combine the cotton precision hole sowing. First of all, the silo structure of seed picking and seeding was introduced to clarify the different work processes in the double warehouse, namely the completion of seed filling and clearing in the seed taking warehouse, then passing the cotton seed to the seeding warehouse through the warehouse transfer area, finally realizing the whole workflow of seeding in the seeding area. A double-bin separated structure was also designed for seed-carrying to reduce the damage of cotton seed. Secondly, a new equation was established for the time in a single seeding unit, thereby determining the way to take the side lying during precision hole-sowing. Specifically, the diameter of the seed disk was 220 mm, the length, width, and height of the seed hole was 9.2 mm×5.2 mm×4.7 mm, as well as the number of seed holes was 16. The seed tray was adopted the working mode of seeding from one side and different sides, in order to ensure that the seeding chamber was not interfering with the precision of seeding during the seed extraction stage. As such, the placement angles of the seed metering cavity and seed holes were staggered by a certain angle during design. Correspondingly, the cotton seeds were slid into the seeding chamber in time during the warehouse transfer stage, where the damage rate of cotton seeds was reduced significantly. Specifically, the steepest drop line was selected to calculate the falling angle of seeds, where the falling angle was determined to be 48°. Further, a mechanical model for the injury to the seed was established to analyze the force and movement state of cotton seeds in the warehouse transfer area, where the minimum seeding gap was 1.47 mm. As such, the optimal matching parameters of relevant components were determined to reduce the damage rate in the warehouse transfer stage. A mechanical model was also established to clarify the effect of seed hole offset angle and disc rotation speed on the seed picking performance in the seed collection area. Finally, Design Expert 8.0 software was used for the Box Benhnken design, where the rotating speed of the seed disk, the offset angle of the socket hole, and the seeding gap were the influencing factors. Subsequently, a three-factor three-level quadratic regression orthogonal test was carried out to optimize the single grain rate and the broken rate. Experiments show that the primary and secondary influencing factors of single-grain rate in the process of seeding were the offset angle of seed hole, the seeding gap, and the speed of seed disk. The better seeding performance was achieved in the combination of the seed disk rotation speed 23.9 r/min, seed hole offset angle of 31.7°, seed metering gap of 2.08 mm, At this time, the single-grain rate was 96%, and the damage rate was 0.13%. Field experiments were also performed to verify the optimal combination. Correspondingly, the single-grain rate was 94.3% and the breakage rate was 0.09%, fully meeting the agronomic requirement of cotton precision sowing. This finding can provide a strong reference for the structural design of vertical disc hole seeding and metering device for cotton.
agricultural machinery; experiment; optimization; hole seeding device; cotton; precision hole seeding
張學(xué)軍,陳勇,史增錄,等. 雙倉轉(zhuǎn)盤式棉花豎直圓盤穴播排種器設(shè)計與試驗[J]. 農(nóng)業(yè)工程學(xué)報,2021,37(19):27-36.doi:10.11975/j.issn.1002-6819.2021.19.004 http://www.tcsae.org
Zhang Xuejun, Chen Yong, Shi Zenglu, et al. Design and experiment of double-storage turntable cotton vertical disc hole seeding and metering device[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(19): 27-36. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2021.19.004 http://www.tcsae.org
2021-07-11
2021-09-24
自治區(qū)區(qū)域協(xié)同創(chuàng)新專項(科技援疆計劃)項目(2021E02055);自治區(qū)“天山青年計劃”項目(2020Q015);國家自然科學(xué)基金(52105278;52005425)
張學(xué)軍,博士,教授,研究方向為農(nóng)業(yè)機械化裝備研究。Email:tuec@163.com
10.11975/j.issn.1002-6819.2021.19.004
S223.2
A
1002-6819(2021)-19-0027-10