• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Chemical Mechanical Polishing of Glass Substrate with α-Alumina-g-Polystyrene Sulfonic Acid Composite Abrasive

    2010-03-01 01:47:24LEIHongBUNaijingZHANGZefangandCHENRuling
    關(guān)鍵詞:根本性興盛基礎(chǔ)性

    LEI Hong, BU Naijing, ZHANG Zefang, and CHEN Ruling

    Research Center of Nano-science and Nano-technology, Shanghai University, Shanghai 200444, China

    1 Introduction

    Chemical mechanical polishing(CMP) as the only technology to provide global planarization has been widely used in the manufacturing of semiconductor and digital compact disc(CD) glass substrate[1–3]. In CMP, abrasive is one of key influencing factors on the polished surface quality. The size and distribution, dispersibility, hardness and species of abrasive are crucial for a desired CMP performances[4–5]. Large particles resulted from particles agglomeration in CMP slurries, are believed to be main factor to cause polishing scratch and the increasing of surface roughness[6], and hence must be eliminated.

    In CMP slurries, two types of abrasives are adopted: the traditional inorganic particles and the composite particles[6].Traditional inorganic abrasives, such as silica[2–3],alumina[8–9], ceria[10–11], have been widely studied and used in the commercial slurries, but just one kind of inorganic abrasives used in slurries often leads to undesired CMP performance. It has been proved that the nanoparticle impacts during CMP can lead to nano-deformation or damages in sub-surface layer of the polished surfaces[12–15].Recently, with the increasing demand of improving the polishing performances while minimizing roughness and defects of the polished surface, composite particles as abrasives in slurry have been paid much attentions[7,16–24].It is thought that the coating on the surface of particles with harder substance can improve the removal rate while keeping the density of defects constant, however the hard particles coated with a softer material can reduce CMP defects[17]. YANO, et al[18], developed a kind of slurry with inorganic/resin abrasive for the Al/low-k damascene wiring CMP. The slurry resulted in less scratching and better planarity. In SiO2CMP, it was found that composite abrasive slurry exhibited the reduction of the dishing and erosion depth, which was reduced to less than 80 nm after the first step CMP and less than 70 nm after the second step CMP[19]. KAWAHASHI, et al[20], presented composite particles consisting of polymer core covered with inorganic composition such as SiO2and Al2O3. The Cu-CMP slurry with these composite particles gave excellent dishing,erosion, and the over-polish-margin performances.Particularly these composite particles were useful to prevent increasing scratch on the tetraethyl orthosilicate and low-k dielectric materials surfaces in the second step CMP process[20]. Composite abrasives with polymer core and ceramic shell have been extensively published in Refs. [18, 21–22].

    At present, α-Al2O3particles as a kind of abrasive has been widely used in CMP slurries[8–9], but its high hardness and poor dispersion stability often lead to more surface defects.

    In the present paper, a novel α-alumina-g-polystyrene sulfonic acid (α-Al2O3-g-PSS) composite abrasive was prepared by surface graft polymerization in section 2.Subsequently, in section 3, its composition, structure and morphology were characterized and its CMP performances on glass substrate were investigated, followed by conclusions.

    2 Experimental Methods

    2.1 Preparation of α-Al2O3-g-PSS composite abrasive

    2.1.1 Silylation

    Prior to silylation, α-Al2O3powder was dried in an oven at 110 ℃ under vacuum for 12 h to get rid of the absorbed moisture. Subsequently, 50 g dried α-Al2O3powder (crystal particle diameter of about 50 nm) and 25 g KH570 silane couple agent (γ-methacryloxypropyl trimethoxy silane) in 500 mL anhydrous ethanol were charged into a 1 000 mL three-necked flask equipped with a reflux condenser. After dispersed with ultrasonic for 0.5 h, the mixture was refluxed at the boiling temperature of ethanol for 5 h under continuously stirring. Then the mixture was separated by centrifugation and the precipitate was washed by anhydrous ethanol for 6 times to remove excess KH570. In the end, the precipitate was dried at 80 ℃ in a vacuum oven for 24 h to remove the remaining solvent.

    2.1.2 Graft polymerization

    The graft polymerization reactions for styrene monomer were performed in a flask equipped with a condenser at 80 ℃ under vacuum. 25 g of the above prepared α-Al2O3powder, 8 mL 3% polyvinyl alcohol(PVA), and 492 mL deionized(DI) water were added into the flask. The mixture was dispersed with ultrasonic for half an hour. After deoxygenating by taking out air with a vacuum pump and filling nitrogen gas alternately for four times, the flask containing the mixture was heated up to 80 ℃. Then,0.25 g benzoyl peroxide(BPO) as initiator and 25 g styrene as monomer were added simultaneously into the mixture.The polymerization reaction would last 5 h under the protection of nitrogen gas and continuously stirring at the temperature of 80 ℃. Afterwards, the resultant suspension was treated by vacuum filtration, the precipitate was purified in a centrifuge by dispersing in toluene and following centrifugal separation for six times to eliminate homopolymer. Finally, the precipitate was dried under vacuum at 50℃ for 12 h to obtain α-alumina-gpolystyrene(α-Al2O3-g-PS) powder with 27.6% grafting ratio. By adopting different weight percent of styrene versus α-Al2O3, α-Al2O3-g-PS composite particles with different grafting ratio were prepared.

    2.1.3 Sulfonation

    3 g Ag2SO4and 500 mL sulfuric acid were charged into a 1 000 mL three-necked flask, and then heated up to 98?99 ℃. Subsequently, the prepared α-Al2O3-g-PS powder was added into it slowly. The reaction would last 4 h under the protection of drier and continuously stirring at the above temperature. After the solution cooled to room temperature, it was poured into DI water under incessant stirring to precipitate, and the precipitate was washed with DI water for six times to remove remanent sulfuric acid.Finally, the precipitate was dried under vacuum at 80 ℃to obtain α-Al2O3-g-PSS powder.

    2.1.4 Preparation of the slurry

    2.5 wt.% α-Al2O3-g-PSS particles and 1 wt.%polyoxyethylene carboxyl acid as dispersant were added into DI water in a container under continuously stirring.Then the mixture was milled for 2 h in a vibrator containing ZrO2balls as abrasives. Finally, the mixture was filtrated with a 30.8 μm pore strainer to obtain slurry containing α-Al2O3-g-PSS abrasive.

    2.2 Characterization of α-Al2O3-g-PSS abrasive

    The purifiedα-Al2O3-g-PSS composite particle was characterized by Fourier transform infrared spectroscopy(FTIR), X-ray photoelectron spectroscopy(XPS), time-offlight secondary ion mass spectroscopy(TOF-SIMS), and scanning electron microscopy(SEM), respectively.

    FTIR spectra were obtained on a Nicolet AVATAR 370 FTIR spectrometer. Samples for measurements were mixed with carefully dried KBr solid, and the solid mixture was then made into pellets using a 13 mm die and a hydraulic press.

    從提出增強(qiáng)文化自信、價(jià)值觀自信〔2〕到將文化自信同道路自信、理論自信和制度自信并列構(gòu)成“四個(gè)自信”,〔3〕再到十九大報(bào)告中強(qiáng)調(diào)文化自信基礎(chǔ)性、根本性的地位和作用,指出文化自信是更基本、更深沉、更持久的力量?!?〕并將文化自信提升到國(guó)家發(fā)展戰(zhàn)略的高度,明確指出堅(jiān)定文化自信,推動(dòng)社會(huì)主義文化繁榮興盛?!?〕在習(xí)近平總書(shū)記的講話中,能夠感受到他對(duì)中華文化的自信與堅(jiān)定,感受到他對(duì)人民堅(jiān)定文化自信的期望?,F(xiàn)有研究成果表明,文化自信的提出具有歷史必然性,同時(shí)具有深刻的現(xiàn)實(shí)依據(jù)。

    XPS spectrum was obtained on a KRATOS XSAM 800 electron spectrometer by using the Mg Kα line with pass energy of 12.5 kV×18 mA. The binding energy of C1s(284.6 eV) was used as reference.

    TOF-SIMS analyses were performed with a Physical Electronics TRIFT II instrument using a pulsed gallium ion beam with the energy of 15 kV. The analytical region was 200 μm×200 μm, and post acceleration was 5 kV/5 kV(+/?).

    SEM analyses were accomplished by using a JEOL JSM-6700F field emission scanning electron microscope with voltage of 10 kV.

    The graft ratio was determined by calcination under 700 ℃ for 6 h, grafted organic compounds could be decomposed into gases (CO2, H2O, etc) and volatilized away while inorganic α-Al2O3particles remained and didn't change. The weight loss after calcining divided by initial sample weight gave graft ratio.

    2.3 Polishing tests

    Polishing tests were conducted with a SPEEDFAM-16B-4M CMP equipment (SPEEDFAM Co. LTD) by using the following polishing conditions: down force of 7 kPa,rotating speed of 23 r/min and slurry supplying rate of 1 L/min. Workpieces were φ170 mm sodium-calcium glass substrates with an average roughness (Ra) of about 520 nm. The polishing pad was a Rodel porous polyurethane pad.

    After being polished, the substrates were washed with ultrasonic in a cleaning solution containing 0.5 wt.%surfactant in DI water. Finally, they were dried by a multi-functional drying system.

    2.4 Examination of the polished surfaces

    The polished surface roughness (Ra) was measured to evaluate the polishing effects of different slurries. Rawas measured by using a Wyko optical profiler (WYKO NT 9800, VEECO) with scan area of 480 μm×736 μm. The polished surface topography was measured by using a DI D-300 atomic force microscope (Digital Instrument Corp.,USA) with the resolution of 0.01 nm in vertical direction and 0.1 nm in horizontal direction. The AFM operating mode was tapping mode with scan area of 5 μm×5 μm.

    3 Results and Discussions

    3.1 Structure and dispersibility of α-Al2O3-g-PSS composite abrasive

    Fig. 1. FTIR spectra of α-Al2O3 particles before and after modification

    Further, XPS and TOF-SIMS analyses were conducted to confirm the structure of α-Al2O3-g-PSS particles. In XPS analysis, it is found that element S appears on the surface of the composite particles. As shown in Fig. 2, the binding energy of S2p occurs at 175.3 eV, which should be attributed to the sulfur in sulfonated polystyrene.TOF-SIMS is an effective means for element analysis because of its high sensitivity, mass and space resolution[25].Fig. 3 shows the TOF-SIMS analysis of the composite particles. Horizontal axis is ion mass, and vertical axis is number of ions counted. It is found that the peaks of S and Al ions appear in the anions and cations spectra,respectively. The introduction of element S on the alumina surface indicates that sulfonated polystyrene was successfully grafted on the surface of α-Al2O3particles,which is consistent with the result of XPS. Based on the above results, the structure of the prepared composite particles may be deduced: a core/shell structure with α-Al2O3as core and sulfonated polystyrene chain as shell.

    Fig. 2. S2p XPS spectrum of α-Al2O3-g-PSS particles with graft ratio of 11.4 wt.%

    Fig. 3. TOF-SIMS spectra of α-Al2O3-g-PSS particles with graft ratio of 11.4 wt.%

    In order to analyze the dispersibility of alumina particles before and after surface modification, the morphology of the α-Al2O3particles before and after surface modification was analyzed by SEM, and the results are shown in Fig. 4.It is found that the α-Al2O3-PSS composite particles have better dispersibility while obvious agglomeration is observed for pure α-Al2O3particles. The improvement of the dispersibility of the composite particles can be attributed to the presence of polystyrene sulfonic acid chain.The water-solubility of sulfonated polystyrene chain may endue the composite particles with better hydrophilicity and solvability in aqueous medium, and the sulfonated polystyrene long chain can provide the composite particles with stronger steric hindrance effect, which in turn prevents the agglomeration among the α-Al2O3particles. In order to investigate the dispersion mechanism, zeta potential was measured. As shown in Table 1, negative surface charge of alumina particles was increased through grafting with polystyrene sulfonic acid(PSS) chain. The higher zeta potential is, the better thermodynamic dispersion stability will be. In other words, the thermodynamic dispersion stability of alumina particles was improved by coating PSS on the surfaces. The increasing of zeta potential may account for why the α-Al2O3-PSS particles have better dispersibility than pure α-Al2O3particles.

    Fig. 4. SEM images of α-Al2O3 particles before and after grafting

    Table 1. Zeta potential of Al2O3-g-PSS composite abrasive with different grafting ratio

    3.2 CMP behavior of α-Al2O3-g-PSS composite abrasive

    Fig. 5 shows the influence of polishing time on Rawith α-Al2O3-PSS composite abrasive of 27.6 wt.% grafting ratio. With the increase of polishing time, the number of rough peaks on the surface decreases, which leads to the surface roughness to decrease. The surface average roughness shows almost no change when polishing time is from 60 min to 180 min. In other words, polishing time of 60 min is enough for glass polishing with the prepared abrasive. Prolonging the polishing time cannot improve surface quality any more.

    Fig. 5. Influence of polishing time on Ra(measured by WYKO profiler)

    Table 2 shows the effect of grafting ratio on Raof the polished surface (polishing time is 60 min). It is indicated that the prepared α-Al2O3-g-PSS abrasives give lower Ra values than pure α-Al2O3abrasive. And with the increasing of grafting ratio, the Ravalue decreases. In other words, the high grafting ratio helps to reach the high surface planarization.

    Table 2. Effect of the grafted PSS content on Ra(measured by WYKO profiler)

    Further, in order to investigate the difference in polishing performances between the prepared α-Al2O3-g-PSS abrasive and pure α-Al2O3abrasive, the topographical micrographs of polished glass substrate surfaces were analyzed by AFM, and the result is shown in Fig. 6. By comparison with pure α-Al2O3abrasive, the prepared α-Al2O3-g-PSS core-shell abrasive gives lower topographical variations as well as less and shallower scratches.And it is also found that the prepared α-Al2O3-g-PSS core-shell abrasive gives Raof 0.583 nm while pure α-Al2O3abrasive gives Raof 0.835 nm. The lower Ravalue means the higher surface planarization. In other words, the prepared α-Al2O3-g-PSS abrasive possesses higher surface planarization than pure alumina abrasive.

    Fig. 6. Surface profiles of glass substrates polished in slurries containing different abrasives

    The improvement in CMP performances of the α-Al2O3-g-PSS abrasive may be attributed to its core-shell structure. The grafted polystyrene sulfonic acid chain as shell on the hard α-Al2O3core is softer than α-Al2O3substrate, which can reduce the hardness of α-Al2O3particles and smooth the appearance of sharp particles.Thus polystyrene sulfonic acid shell may behave as a cushion during CMP, which can decrease the hard impacts and excessive mechanical damage caused by α-Al2O3particles, and accordingly the scratching level and surface roughness were reduced.

    In addition, through the grafting of water-soluble polystyrene sulfonic acid chain on the α-Al2O3surface, the dispersibility of α-Al2O3particles in aqueous medium was improved and large particles were eliminated. The elimination of the agglomeration of α-Al2O3particles may in turn lead to the reduction of surface scratch and the improvement of surface planarization.

    4 Conclusions

    (1) Novel α-Al2O3-g-PSS core-shell abrasive was prepared via a three-step process: surface activation,followed by graft polymerization and sulfonation,respectively.

    (2) FTIR, XPS, TOF-SIMS and SEM analyses indicate that modified α-Al2O3abrasive has better dispersion stability than pure α-Al2O3.

    (3) The slurry containing α-Al2O3-g-PSS composition abrasive exhibits better surface planarization and less scratch in the CMP of glass substrate surface. The improvement of surface qualities may be attributed to the cushioning effect of its core-shell structure and the elimination of the agglomeration among the α-Al2O3particles.

    [1] PATRICK W J, GUTHRIE W L, STANDLEY C L. Application of chemical mechanical polishing to the fabrication of VLSI circuit interconnections[J]. Journal of the Electrochemical Society, 1991,138(6): 1 778–1 784.

    [2] LEI Hong, LUO Jianbin. CMP of hard disk substrate using a colloidal SiO2slurry: preliminary experimental investigation[J].Wear, 2004, 257(5–6): 461–470.

    [3] LEI Hong, ZHANG Pengzhen, LU Haishen. Sub-nanometer precision polishing of glass substrate with a colloidal SiO2slurry[J].Lubrication Engineering, 2006, 1(1): 31–34. (in Chinese)

    [4] SOROOSHIAN A, ASHWANI R, CHOI H K. Effect of particle interaction on agglomeration of silica-based CMP slurries[C]//Materials Research Society Symposium Proceedings, San Francisco,CA, United States, April 13–15, 2004: 125–131.

    [5] ZHOU Chunhong, SHAN Lei, HIGHT R J, et al. Influence of colloidal abrasive size on material removal rate and surface finish in SiO2chemical mechanical polishing[J]. Tribology Transactions,2002, 45(2): 232–238.

    [6] BASIM G B, ADLER J J, MAHAJAN U. Effect of particle size of chemical mechanical polishing slurries for enhanced polishing with minimal defects[J]. Journal of the Electrochemical Society, 2000,147(9): 3 523–3 528.

    [7] LEI Hong, ZHANG Pengzhen. Preparation of alumina/silica core-shell abrasives and their CMP behavior[J]. Applied Surface Science, 2007, 253(21): 8 754–8 761.

    [8] LEI Hong, LUO Jianbin, LU XinChun. Two-step chemicalmechanical polishing of rigid disk substrate to get atom-scale planarization surface[J]. Chinese Journal of Mechanical Engineering, 2006, 19(4): 496–499.

    [9] LEI Hong, CHU Yuliang, TU Xifu. Preparation of ultra-fined Al2O3slurry and its polishing properties on disk CMP[J]. Journal of Functional Materials, 2005, 36(9): 1 425–1 428. (in Chinese)

    [10] ZHANG Pengzhen, LEI Hong, ZHANG Jianping. Preparation of nano-sized CeO2and its polishing performances[J]. Optical Technique, 2006, 32(5): 682–684. (in Chinese)

    [11] FENG Xiandong, HER Y S, ZHANG W L, et al. CeO2particles for chemical mechanical planarization[C]//Materials Research Society Symposium Proceedings, San Francisco, CA, United States, April 12–24, 2003, 767: 173–183.

    [12] XU Jin, LUO Jianbin, WANG Liangliang, et al. The crystallographic change in subsurface layer of the silicon single crystal polished by chemical mechanical polishing[J]. Tribology International, 2007, 40(2): 285–289.

    [13] XU Jin, LUO Jianbin, ZHANG ChaoHui, et al. Nano-deformation of a Ni-P coating surface after nanoparticle impacts[J]. Applied Surface Science, 2006, 252(16): 5 846–5 854.

    [14] XU Jin, LUO Jianbin, LU XinChun, et al. Atomic scale deformation in the solid surface induced by nanoparticle impacts[J].Nanotechnology, 2005, 16(6): 859–864.

    [15] LUO Jianbin, XU Xifu, JING Yang, et al. Movements and collisions of nanoparticles in two phase flow[C]//Proceedings of the World Tribology Congress III-2005, Washington D.C., United States, September 12–16, 2005: 355–356.

    [16] ZHANG Zefang, LEI Hong. Preparation of α-alumina/polymethacrylic acid composite abrasive and its CMP performance on glass substrate[J]. Microelectronic Engineering, 2008, 85(4):714–720.

    [17] SINGH R K, BAJAJ R. Advances in chemical-mechanical planarization[J]. MRS Bulletin, 2002, 27(10): 743.

    [18] YANO H, MATSUI Y, MINAMIHABA G, et al.High-performance CMP slurry with inorganic/resin abrasive for Al/low-k damascene[C]//Materials Research Society Symposium Proceedings, San Francisco, CA, United States, April 18–20, 2001,671: M2.4.1–M2.4.5.

    [19] SHIHO H, MANABE Y, KAWAHASHI N. Magnetic compounds as coatings on polymer particles and magnetic properties of the composite particles[J]. Journal of Material Chemistry, 2000, 10:333–336.

    [20] KAWAHASHI N, HATTORI M. An evaluation on the effects of newly designed abrasives in CMP slurry[C]//Materials Research Society Symposium Proceedings, San Francisco, CA, United States,April 18–20, 2001, 671: M2.2.1–M2.2.8.

    [21] SHIHO H, KAWAHASHI N. Iron compounds as coatings on polystyrene latex and as hollow spheres[J]. Journal of Colloid and Interface Science, 2000, 226(1): 91–97.

    [22] SILVIA A, VALENTINA T, KAREN M. Composite nanoparticles for defectivity reduction during CMP[C]//AIChE Annual Meeting,Conference Proceedings, Austin, TX, United States, November 7–12, 2004: 2 473–2 484.

    [23] LEI Hong, LU Haishen, LUO Jianbin, et al. Preparation of α-alumina-g-polyacrylamide composite abrasive and chemical mechanical polishing behavior[J]. Thin Solid Films, 2008, 516(10):3 005–3 008.

    [24] CECIL A COUTINHO A, SUBRHAMANYA R MUDHIVARTHI,et al. Novel ceria-polymer microcomposites for chemical mechanical polishing[J]. Applied Surface Science, 2008, 255(4):3 090–3 096.

    [25] DAUCHOT G, CASTRO E D, REPOUX M, et al. Application of TOF-SIMS surface analysis to tribochemistry in metal forming processes[J]. Wear, 2006, 260(3): 296–304.

    猜你喜歡
    根本性興盛基礎(chǔ)性
    河南心意拳系列之三:興盛周家口
    少林與太極(2023年7期)2023-08-25 05:28:48
    呂梁財(cái)政四項(xiàng)舉措支持基礎(chǔ)性養(yǎng)老服務(wù)發(fā)展
    黨的政治建設(shè)是黨的根本性建設(shè)
    活力(2019年17期)2019-11-26 00:41:52
    論教育在考據(jù)學(xué)興盛中的作用
    追尋音樂(lè)本色,讓活動(dòng)趨向有效
    揚(yáng)州雕版印刷技術(shù)的興盛和傳承
    淺析“禮”在儒家犯罪理論中的根本性地位
    中國(guó)移動(dòng)4G基礎(chǔ)性網(wǎng)絡(luò)部署策略研究
    絲綢之路“新北道”的開(kāi)通與興盛
    對(duì)外漢字教學(xué)的若干基礎(chǔ)性問(wèn)題
    日韩欧美一区视频在线观看| 九九久久精品国产亚洲av麻豆| 国产日韩欧美在线精品| 三上悠亚av全集在线观看| 午夜免费观看性视频| 一级毛片黄色毛片免费观看视频| 久久久久久伊人网av| 91久久精品国产一区二区成人| 久久99热6这里只有精品| 一级毛片aaaaaa免费看小| 免费高清在线观看日韩| 女人精品久久久久毛片| 午夜福利影视在线免费观看| 亚洲国产毛片av蜜桃av| 欧美xxⅹ黑人| 十分钟在线观看高清视频www| 免费大片18禁| 亚洲精品成人av观看孕妇| 亚洲三级黄色毛片| 天堂中文最新版在线下载| 亚洲国产av新网站| 国内精品宾馆在线| tube8黄色片| 人人妻人人澡人人爽人人夜夜| 亚洲熟女精品中文字幕| 国精品久久久久久国模美| 最近2019中文字幕mv第一页| 国产av一区二区精品久久| 人成视频在线观看免费观看| 啦啦啦在线观看免费高清www| 国语对白做爰xxxⅹ性视频网站| 18禁观看日本| 五月开心婷婷网| 亚洲色图 男人天堂 中文字幕 | 搡老乐熟女国产| 久久久久精品性色| 久久久久久久亚洲中文字幕| 熟女av电影| 亚洲精品成人av观看孕妇| 九色亚洲精品在线播放| 高清在线视频一区二区三区| 欧美日韩av久久| 欧美精品一区二区大全| 天堂中文最新版在线下载| 久久久久精品久久久久真实原创| 国产亚洲午夜精品一区二区久久| 18禁在线无遮挡免费观看视频| 蜜桃国产av成人99| 国产成人午夜福利电影在线观看| 亚洲欧美精品自产自拍| 国产午夜精品久久久久久一区二区三区| 亚洲精品日韩在线中文字幕| 欧美日韩视频精品一区| 欧美bdsm另类| 日韩av免费高清视频| 欧美少妇被猛烈插入视频| 视频中文字幕在线观看| 国产免费一区二区三区四区乱码| 亚洲精品日本国产第一区| 建设人人有责人人尽责人人享有的| 国产深夜福利视频在线观看| h视频一区二区三区| 黄色配什么色好看| 大话2 男鬼变身卡| 国产精品一国产av| 日韩三级伦理在线观看| 美女xxoo啪啪120秒动态图| 高清欧美精品videossex| 国产69精品久久久久777片| 少妇精品久久久久久久| 母亲3免费完整高清在线观看 | 一个人看视频在线观看www免费| 最新的欧美精品一区二区| 一级毛片电影观看| 999精品在线视频| 欧美激情国产日韩精品一区| 久久久久精品久久久久真实原创| 99久久精品国产国产毛片| 老女人水多毛片| 精品国产一区二区三区久久久樱花| 亚洲欧洲国产日韩| 精品卡一卡二卡四卡免费| 丝瓜视频免费看黄片| 亚洲经典国产精华液单| 99久久中文字幕三级久久日本| 男男h啪啪无遮挡| 亚洲四区av| 一级片'在线观看视频| 亚洲欧美精品自产自拍| 国产有黄有色有爽视频| 久久久久久久久久久久大奶| 五月伊人婷婷丁香| 久久人人爽人人爽人人片va| 亚洲情色 制服丝袜| 在现免费观看毛片| 亚洲精品中文字幕在线视频| 午夜影院在线不卡| 一个人看视频在线观看www免费| 久久99一区二区三区| freevideosex欧美| 国产成人91sexporn| 成人18禁高潮啪啪吃奶动态图 | 日韩一区二区视频免费看| 国产永久视频网站| 久久99热这里只频精品6学生| 精品99又大又爽又粗少妇毛片| 亚洲成色77777| 97超视频在线观看视频| 97精品久久久久久久久久精品| 国产精品国产av在线观看| 日产精品乱码卡一卡2卡三| 久久综合国产亚洲精品| 亚洲国产精品国产精品| 满18在线观看网站| 黄片播放在线免费| 国产亚洲精品第一综合不卡 | 大码成人一级视频| 麻豆精品久久久久久蜜桃| 亚洲久久久国产精品| 亚洲色图 男人天堂 中文字幕 | a 毛片基地| 国产精品国产av在线观看| 国产精品一国产av| 热99国产精品久久久久久7| 亚洲三级黄色毛片| 欧美bdsm另类| 男人爽女人下面视频在线观看| 80岁老熟妇乱子伦牲交| 日本av免费视频播放| 啦啦啦视频在线资源免费观看| 久久久久久久久久久丰满| 亚洲第一区二区三区不卡| 有码 亚洲区| 人妻系列 视频| 国产精品一区二区三区四区免费观看| 日韩三级伦理在线观看| 嘟嘟电影网在线观看| videosex国产| xxx大片免费视频| 亚洲人与动物交配视频| 九草在线视频观看| 午夜久久久在线观看| 99热全是精品| 大陆偷拍与自拍| 啦啦啦在线观看免费高清www| 日韩一区二区三区影片| 欧美日韩综合久久久久久| 大码成人一级视频| 中文字幕制服av| 日本-黄色视频高清免费观看| 一级a做视频免费观看| 欧美xxxx性猛交bbbb| 亚洲,欧美,日韩| 亚洲美女视频黄频| 亚洲欧美日韩另类电影网站| 亚洲国产日韩一区二区| 午夜激情久久久久久久| 国产欧美日韩一区二区三区在线 | 午夜激情福利司机影院| 亚洲经典国产精华液单| 亚洲国产精品一区三区| 久久久a久久爽久久v久久| av网站免费在线观看视频| 青青草视频在线视频观看| 亚洲av在线观看美女高潮| 我的老师免费观看完整版| 人人妻人人添人人爽欧美一区卜| 国产欧美日韩一区二区三区在线 | 久久久精品区二区三区| 亚洲av日韩在线播放| 精品一区在线观看国产| 久久精品国产亚洲av天美| 亚洲av日韩在线播放| 青青草视频在线视频观看| 中文字幕人妻熟人妻熟丝袜美| 成人毛片60女人毛片免费| 黑人猛操日本美女一级片| 欧美亚洲日本最大视频资源| 两个人的视频大全免费| 视频中文字幕在线观看| 秋霞伦理黄片| 亚洲伊人久久精品综合| 九色亚洲精品在线播放| 国产有黄有色有爽视频| 亚洲色图综合在线观看| 亚洲av成人精品一区久久| 蜜臀久久99精品久久宅男| 久久 成人 亚洲| 久久久久久久亚洲中文字幕| 欧美日韩视频精品一区| av女优亚洲男人天堂| 在线亚洲精品国产二区图片欧美 | 国产精品三级大全| 久热久热在线精品观看| 国产av精品麻豆| 欧美另类一区| videos熟女内射| 亚洲激情五月婷婷啪啪| 插阴视频在线观看视频| 亚洲国产精品999| 国产成人91sexporn| 亚洲欧美一区二区三区国产| 少妇高潮的动态图| 久久久久人妻精品一区果冻| 久久久久久久亚洲中文字幕| 亚洲欧美成人综合另类久久久| 熟女人妻精品中文字幕| 久久久国产精品麻豆| 有码 亚洲区| 蜜桃久久精品国产亚洲av| 亚洲av欧美aⅴ国产| xxxhd国产人妻xxx| 午夜免费观看性视频| 人人妻人人澡人人看| 亚洲国产精品成人久久小说| 国产成人精品在线电影| 成人18禁高潮啪啪吃奶动态图 | 日韩伦理黄色片| 水蜜桃什么品种好| 肉色欧美久久久久久久蜜桃| 男男h啪啪无遮挡| 赤兔流量卡办理| 亚洲av成人精品一二三区| 51国产日韩欧美| 国产高清不卡午夜福利| 黄色怎么调成土黄色| 精品一区二区三卡| 日本vs欧美在线观看视频| a级毛色黄片| 国产av码专区亚洲av| 黄片播放在线免费| 成人午夜精彩视频在线观看| 一本—道久久a久久精品蜜桃钙片| 韩国高清视频一区二区三区| 亚洲欧美一区二区三区黑人 | 欧美少妇被猛烈插入视频| 亚洲av在线观看美女高潮| 蜜臀久久99精品久久宅男| 最近手机中文字幕大全| 国产欧美亚洲国产| 欧美性感艳星| 秋霞伦理黄片| 色吧在线观看| 亚洲精品中文字幕在线视频| 国产极品天堂在线| 简卡轻食公司| 肉色欧美久久久久久久蜜桃| 精品少妇内射三级| 麻豆成人av视频| 国产亚洲欧美精品永久| 国产乱人偷精品视频| 中文欧美无线码| 男人爽女人下面视频在线观看| 日韩熟女老妇一区二区性免费视频| 狂野欧美激情性xxxx在线观看| 精品亚洲乱码少妇综合久久| 欧美日韩视频精品一区| 国产老妇伦熟女老妇高清| 少妇的逼水好多| 永久免费av网站大全| 一区二区日韩欧美中文字幕 | 精品视频人人做人人爽| 中文欧美无线码| 春色校园在线视频观看| 亚洲人成网站在线观看播放| 国产精品无大码| 一级毛片我不卡| 免费黄频网站在线观看国产| 大香蕉久久网| 国产精品成人在线| 成人影院久久| 国产黄色视频一区二区在线观看| 午夜免费观看性视频| 久久99蜜桃精品久久| 免费观看无遮挡的男女| 少妇精品久久久久久久| 国产黄色免费在线视频| 中文字幕av电影在线播放| 国产亚洲av片在线观看秒播厂| 亚洲国产精品一区二区三区在线| 内地一区二区视频在线| 国产免费视频播放在线视频| av线在线观看网站| 男女免费视频国产| 视频中文字幕在线观看| 亚洲av成人精品一区久久| 免费观看a级毛片全部| 99九九在线精品视频| 亚洲精品久久成人aⅴ小说 | 丰满乱子伦码专区| 国产精品久久久久久久久免| 欧美老熟妇乱子伦牲交| 色吧在线观看| 日韩一区二区三区影片| 久久久国产精品麻豆| 久久ye,这里只有精品| 精品亚洲乱码少妇综合久久| 国产黄频视频在线观看| 国产亚洲精品久久久com| 亚洲久久久国产精品| 在线观看三级黄色| 欧美 日韩 精品 国产| 成人亚洲欧美一区二区av| 亚洲av男天堂| 嫩草影院入口| 99热这里只有精品一区| av有码第一页| 99热国产这里只有精品6| 国精品久久久久久国模美| 欧美成人精品欧美一级黄| videosex国产| 十分钟在线观看高清视频www| 亚洲av综合色区一区| 欧美最新免费一区二区三区| 丰满迷人的少妇在线观看| 日本欧美视频一区| 免费高清在线观看视频在线观看| 黄色怎么调成土黄色| 欧美精品高潮呻吟av久久| 婷婷色综合大香蕉| 日韩亚洲欧美综合| 午夜视频国产福利| 日韩中字成人| 能在线免费看毛片的网站| 久久国产精品男人的天堂亚洲 | 国产精品无大码| 卡戴珊不雅视频在线播放| 欧美精品高潮呻吟av久久| 蜜臀久久99精品久久宅男| 好男人视频免费观看在线| 国产av一区二区精品久久| 国产一区二区在线观看日韩| 国产精品一区www在线观看| 99精国产麻豆久久婷婷| 日韩成人av中文字幕在线观看| 日韩精品免费视频一区二区三区 | 亚洲精品日韩在线中文字幕| av电影中文网址| 国产精品国产av在线观看| 国产熟女午夜一区二区三区 | a级毛片在线看网站| 一区二区三区免费毛片| 在线观看一区二区三区激情| 汤姆久久久久久久影院中文字幕| 18禁在线无遮挡免费观看视频| 熟女av电影| 九九久久精品国产亚洲av麻豆| 国产精品嫩草影院av在线观看| 精品人妻熟女毛片av久久网站| 国产精品欧美亚洲77777| 久久久精品区二区三区| 制服丝袜香蕉在线| 男男h啪啪无遮挡| 亚洲欧美成人精品一区二区| 日韩精品有码人妻一区| 欧美日韩av久久| 国产精品久久久久久久电影| 制服人妻中文乱码| 自线自在国产av| 国产成人午夜福利电影在线观看| 伊人久久国产一区二区| 高清黄色对白视频在线免费看| 国国产精品蜜臀av免费| 欧美 日韩 精品 国产| 狠狠婷婷综合久久久久久88av| 搡老乐熟女国产| 女的被弄到高潮叫床怎么办| 免费观看在线日韩| 国产成人av激情在线播放 | 赤兔流量卡办理| 少妇被粗大猛烈的视频| 亚洲国产精品成人久久小说| 欧美激情国产日韩精品一区| 十分钟在线观看高清视频www| 国产视频内射| 久久久久久久久久人人人人人人| 国产高清国产精品国产三级| videos熟女内射| 国产精品无大码| 国产精品99久久99久久久不卡 | 亚洲欧美一区二区三区国产| a级毛片在线看网站| 少妇 在线观看| 久久久亚洲精品成人影院| 九色亚洲精品在线播放| 国产精品成人在线| 在线亚洲精品国产二区图片欧美 | 日韩电影二区| 国产亚洲最大av| 日韩成人伦理影院| 黄片播放在线免费| 女性生殖器流出的白浆| 亚洲欧美清纯卡通| 人妻夜夜爽99麻豆av| 国产精品一区www在线观看| 亚洲激情五月婷婷啪啪| 成人二区视频| 国产欧美日韩综合在线一区二区| 久久精品国产亚洲av天美| 久久久久久久久大av| 亚洲国产毛片av蜜桃av| 国产精品欧美亚洲77777| 国产不卡av网站在线观看| 国产高清国产精品国产三级| 国产淫语在线视频| 成人国语在线视频| 夜夜爽夜夜爽视频| 亚洲内射少妇av| 亚洲av在线观看美女高潮| 国产午夜精品久久久久久一区二区三区| 国产69精品久久久久777片| 成人黄色视频免费在线看| 中文字幕免费在线视频6| 日韩伦理黄色片| 日日啪夜夜爽| 精品人妻熟女av久视频| 伊人亚洲综合成人网| 亚洲欧美日韩另类电影网站| 日本与韩国留学比较| 晚上一个人看的免费电影| 3wmmmm亚洲av在线观看| 国产乱人偷精品视频| 免费不卡的大黄色大毛片视频在线观看| 又黄又爽又刺激的免费视频.| 国产一区亚洲一区在线观看| 国产精品国产av在线观看| 久久人人爽av亚洲精品天堂| 看十八女毛片水多多多| 亚洲精品国产av成人精品| 欧美日韩综合久久久久久| 精品少妇久久久久久888优播| 另类亚洲欧美激情| 国产欧美日韩综合在线一区二区| 亚洲第一区二区三区不卡| 欧美日韩国产mv在线观看视频| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 一区二区三区四区激情视频| 天天影视国产精品| 亚洲精品乱码久久久久久按摩| 好男人视频免费观看在线| 免费看光身美女| 九色成人免费人妻av| 亚洲精品一区蜜桃| 久久精品国产自在天天线| 国产乱来视频区| 欧美精品人与动牲交sv欧美| 丰满少妇做爰视频| 国产白丝娇喘喷水9色精品| 一级毛片电影观看| 成人综合一区亚洲| 国产成人91sexporn| 国产欧美日韩一区二区三区在线 | 曰老女人黄片| 国产有黄有色有爽视频| av卡一久久| 久久精品国产亚洲av涩爱| 久久久久人妻精品一区果冻| 久久精品熟女亚洲av麻豆精品| 精品一区二区免费观看| 晚上一个人看的免费电影| 大香蕉久久成人网| 欧美精品亚洲一区二区| 亚洲av日韩在线播放| 性色avwww在线观看| 成人免费观看视频高清| xxxhd国产人妻xxx| 国产毛片在线视频| 国产片内射在线| 日韩精品免费视频一区二区三区 | 只有这里有精品99| 中文乱码字字幕精品一区二区三区| 人人妻人人澡人人爽人人夜夜| 黄色怎么调成土黄色| 色5月婷婷丁香| 中文字幕最新亚洲高清| 一级毛片aaaaaa免费看小| 国产精品人妻久久久影院| 91成人精品电影| 搡女人真爽免费视频火全软件| 国产精品久久久久久久久免| 亚洲精品,欧美精品| 97精品久久久久久久久久精品| 两个人的视频大全免费| 国产精品嫩草影院av在线观看| 99视频精品全部免费 在线| 久久97久久精品| 99国产精品免费福利视频| 丰满乱子伦码专区| av专区在线播放| 久久久国产一区二区| 国产日韩欧美在线精品| 爱豆传媒免费全集在线观看| 精品亚洲成a人片在线观看| 少妇人妻 视频| 亚洲av不卡在线观看| 街头女战士在线观看网站| 最近的中文字幕免费完整| 交换朋友夫妻互换小说| 日韩亚洲欧美综合| 色网站视频免费| 春色校园在线视频观看| 国产av码专区亚洲av| 久久午夜福利片| 免费av不卡在线播放| 午夜免费鲁丝| 在线精品无人区一区二区三| 国产成人av激情在线播放 | 免费观看a级毛片全部| 蜜桃国产av成人99| 欧美日韩在线观看h| 99热这里只有是精品在线观看| freevideosex欧美| 欧美精品亚洲一区二区| 母亲3免费完整高清在线观看 | 你懂的网址亚洲精品在线观看| 精品久久久精品久久久| 99国产综合亚洲精品| xxxhd国产人妻xxx| 国产一区二区三区综合在线观看 | 国产成人免费无遮挡视频| 国产毛片在线视频| 9色porny在线观看| 国产精品99久久久久久久久| 色哟哟·www| 午夜免费观看性视频| 有码 亚洲区| 另类亚洲欧美激情| av天堂久久9| 尾随美女入室| av一本久久久久| 中国美白少妇内射xxxbb| 欧美少妇被猛烈插入视频| 午夜免费男女啪啪视频观看| 欧美国产精品一级二级三级| 人妻 亚洲 视频| 国产高清国产精品国产三级| 久久亚洲国产成人精品v| av一本久久久久| 熟女av电影| 人人妻人人添人人爽欧美一区卜| 国产成人一区二区在线| 校园人妻丝袜中文字幕| 亚洲精品美女久久av网站| 综合色丁香网| 看免费成人av毛片| 久久影院123| 欧美激情国产日韩精品一区| 黄片播放在线免费| 不卡视频在线观看欧美| 91久久精品国产一区二区成人| 五月开心婷婷网| 国产免费一区二区三区四区乱码| 全区人妻精品视频| 在线 av 中文字幕| 男女免费视频国产| 国产 精品1| 两个人的视频大全免费| 久久久久精品性色| 亚洲激情五月婷婷啪啪| 久久久精品区二区三区| 美女主播在线视频| 久久久久久人妻| 国产成人91sexporn| 亚洲国产精品国产精品| 中国三级夫妇交换| 亚洲欧美色中文字幕在线| 九色成人免费人妻av| 亚洲人成网站在线观看播放| 天堂8中文在线网| 国产精品一区二区三区四区免费观看| 大片免费播放器 马上看| 色网站视频免费| 久久久久网色| 日韩av不卡免费在线播放| 国产亚洲一区二区精品| 国产欧美日韩综合在线一区二区| 极品少妇高潮喷水抽搐| 97超视频在线观看视频| 成人午夜精彩视频在线观看| 中文字幕最新亚洲高清| 在线精品无人区一区二区三| 久久 成人 亚洲| 欧美日韩综合久久久久久| 免费观看的影片在线观看| 精品人妻偷拍中文字幕| 久热久热在线精品观看| 亚洲欧美成人综合另类久久久| 日韩三级伦理在线观看| 午夜视频国产福利| 色视频在线一区二区三区| 免费av不卡在线播放| 中文乱码字字幕精品一区二区三区| freevideosex欧美| 飞空精品影院首页| 99热网站在线观看| 日韩电影二区| 成人漫画全彩无遮挡| 91精品三级在线观看| 美女福利国产在线| 黑丝袜美女国产一区| 美女国产高潮福利片在线看| 只有这里有精品99| 飞空精品影院首页| 国产成人免费观看mmmm| 欧美97在线视频| 99九九线精品视频在线观看视频| 欧美激情极品国产一区二区三区 | 亚洲欧美清纯卡通| 伊人亚洲综合成人网| 国产精品久久久久久精品古装| 亚洲美女视频黄频| 黄色欧美视频在线观看| 成人漫画全彩无遮挡| 亚洲成色77777| 亚洲精品日本国产第一区|