• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    不同基質(zhì)對(duì)閉鞘姜生長發(fā)育和光合作用的影響

    2021-12-23 16:55:29劉曉榮吳志徐揚(yáng)韓慶斌王代容
    熱帶作物學(xué)報(bào) 2021年11期
    關(guān)鍵詞:椰糠光合特性泥炭

    劉曉榮 吳志 徐揚(yáng) 韓慶斌 王代容

    摘 ?要:采用隨機(jī)區(qū)組設(shè)計(jì),研究不同配比的紅壤、泥炭、椰糠和珍珠巖6種基質(zhì)配方對(duì)閉鞘姜生長的影響。測(cè)定6種基質(zhì)的物理和化學(xué)性質(zhì),觀測(cè)萌芽率、葉片數(shù)、莖粗、株高、株幅、光合日變化、根莖鮮重和根莖干重。結(jié)果顯示,基質(zhì)S4(泥炭+椰糠+珍珠巖=1∶2∶2)的植株凈光合速率(Pn)顯著高于其他基質(zhì)處理。在6種基質(zhì)生長的植株葉片凈光合速率曲線呈單峰或雙峰變化,而蒸騰速率曲線呈單峰變化。最大株高、最大根莖鮮重和根莖干重也出現(xiàn)在基質(zhì)S4種植的植株。從以上結(jié)果可知,基質(zhì)S4比較適合閉鞘姜的生長和根狀莖干物質(zhì)積累。

    關(guān)鍵詞:閉鞘姜;盆栽植物;無土栽培基質(zhì);泥炭;椰糠;光合特性

    中圖分類號(hào):S682.19 ? ? ?文獻(xiàn)標(biāo)識(shí)碼:A

    1 ?Introduction

    Costus speciosus is a rhizomatous perennial herb with pinkish white flowers on reddish bracts. It has increased popularity in recent years due to its medicinal and ornamental properties. Its traditional potting substrate is soil, which is heavy and ine?fficient for transport.

    Substrate is a key factor that affects plant growth in soilless cultivation. In addition to supporting and fixing, substrate is important for transferring adequate oxygen, water, and nutrients from the nutrient solution to plant roots. Peat has been widely used in soilless cultivation over the last century due to its excellent physical and chemical properties, especially at the seedling stage[1-3]. Ho?wever, as a non-renewable resource and increasing price, peat has raised concerns among environmental, scientific, and governmental agencies[4-7], which has resulted in policy changes and governmental regulations of its use in several European countries.

    Coir is now widely used in the soilless cultivation across the world as an environmentally friendly substrate which has abundant resources. It is lightweight, good aeration, and a high water-holding capacity that is more than eight times of its own weight[8]. Previous studies found that coconut coir is a good alternative to peat[9-11]. It is also cost efficient for raising plant growth, which has been widely used for growing various fruits, vegetables, and flowers since the beginning of the century[12-14].

    Although coir has a high water-holding capa?city, it has poor aeration. Mixed and combined with other coarser material could make up this shortcoming. Pan et al[15] demonstrated that Oncidium grew best in a substrate combination of crushed stone, bark, coconut shell and charcoal in a 2∶2∶1∶1 ratio. A hanging ornamental plant was proved that soil mixture (1 part cocopeat:1 part topsoil:1 part sand) was significantly better than cocopeat only[16]. Bhardwaj[17] reported that the medium (coil + vermicompost + sand + pond soil) gave maximum seed germination and seedling growth.

    Although, the effects of different substrate mixtures on flower growth and development have been previously investigated, there were few reports available on C. speciosus growth. The objective of this study was to assess red soil, peat, coir, and perlite in different combinations on C. speciosus growth and development, to develop a labor-effi?cient and cost-saving substrate.

    2 ?Materials and Methods

    2.1 ?Plant and growth conditions

    Rhizomes annually of C. speciosus were wild germplasm obtained from native. One or two buds were divided and individually grown in plastic pots with a diameter of 10 cm and height of 8.0 cm. The experiment was conducted in the greenhouse in En-vironmental Horticulture Institute, Guangdong Aca-demy of Agricultural Sciences, China (113°15 E, 23°08 N) from April, 2018 to October, 2018. The temperature and relative humidity were recorded by ZDR-20 data loggers (Hangzhou Zeda Instruments Co. Ltd., Hangzhou, China). The minimum and ma?ximum average temperature was 24.3 ℃ and 33.9 ℃, respectively. Relative humidity was maintained at the range of 70% to 80%.

    2.2 ?Substrate treatment

    Six substrates consisting of red soil, peat, coir, and perlite in different proportions were used for the experiment. The red soil was the native field soil. Peat, coir and perlite were purchased from a hor?ticultural supplier’s corporation (DGSTAR, Guangzhou, China). The mixtures by volume were as follows: S1 (red soil + perlite; 3∶1); S2 (peat + perlite; 3∶1); S3 (coir + perlite; 3∶1); S4 (peat + coir + perlite; 1∶2∶2); S5 (peat + coir + perlite; 2∶1∶2) and S6 (peat + coir + perlite; 2∶2∶1).

    Coir was supplied in the form of compressed bricks (30 cm × 30 cm × 12 cm), and peat was sup?plied as compressed bails (300 L). Both substrates were hydrated according to the manufacturer’s instructions. Initial substrate samples of each treatment were collected. The potential of hydrogen (pH) and electrical conductivity (EC) of extracted substrate solutions were analyzed using the pour thr?ough method[18]. The bulk density (BD), total po?rosity, and aeration porosity of the media were measured and analyzed[19].

    2.3 ?Experimental design

    Plants were arranged in a randomized complete block design, and each treatment replicated three times, and in each replicate consisted of 10 plants. Plants were fertilized using a 20 N-20 P-20 K com?mercial water-soluble fertilizer (COMPO Expert GmbH, Munster, Germany) and irrigated two or three days with tap water. The EC and the pH value of water are 0.23 mS·cm–1 and 7.4 respectively.

    2.4 ?Data collection

    Data regarding all growth indices were collected in late June before flowering time, including the plant height, plant width, number of leaves, leaf length, and leaf width of the third mature leaf from the top of the plant. Rhizome fresh weight (RFW) and rhizome dry weight (RDW) were measured in October. Leaf gas exchange was measured using a portable photosynthesis measuring system (LI-6400; LICOR, Lincoln, NE, USA). Stomatal conductance, intercellular carbon dioxide (CO2), net photosynthetic rate (Pn), and transpiration rate (Tr) were recorded. Water use efficiency (WUE) was calculated using the following equation: WUE = Pn/Tr.

    Diurnal photosynthetic variations were deter-mined from 8∶30 to 16∶30 in three sunny days using five plants per treatment, and from the top the third leaf per plant was selected. Leaf length, leaf width, chlorophyll content was determined using the same leaves as those used for other growth parameters above. 3 SPAD readings (Minolta Camera Co., Osaka, Japan) were taken on each leaf (inter area).

    2.5 ?Statistical analysis

    The data were analyzed using statistical soft?ware (SAS version 8.1; SAS Institute, Cary, NC). It was used one-way PROC ANOVA to evaluate variance of substrate pH, EC, density, total porosity, aeration porosity, hold-water porosity and gas-water porosity ratio, number of leaves, stem base diameter, plant height, leaf length and width, RFW and RDW, stomatal conductance, intercellular CO2, Pn, Tr and WUE and leaf SPAD. Mean separation used least significant difference (LSD) at P = 0.01 or 0.05.

    3 ?Results

    3.1 ?Substrate physical and chemical proper-ties

    The physical characteristics of the six sub-strates were provided in Tab. 1. S1 and S2 had the lower pH values (5.58 and 4.84, respectively) sig-nificantly different from each other. No significant differences were detected among S3, S4, S5, and S6 with regard to pH values. S1 had the lowest EC value, although there was no significant difference between S1 and S3. There was the highest bulk density (0.972 g·L–1) And lowest water holding capacity (54.82%) in S1. S4 had the greatest total porosity (84.67%) and water holding porosity (76.88%), but had a lower bulk density. No significant differences were detected in the aeration porosity or gas- water porosity ratios among the six media treatments.

    3.2 ?Effects of different substrates on vegeta-tive parameters

    The six substrates did not significantly affect the sprouting rate or leaf length (Tab. 2). The greatest number of leaves was observed in S4 (25.3). Although the greatest stem base diameter was observed in S6, no significant differences were detected among S3, S4, and S6. Plant height was greater in S3 and S4 than in S5. The smallest leaf width was observed in S1 (4.47 cm), but no significant differences were detected among the other five substrates. TheRFW (231.85 g) and RDW (44.80 g) of S4 were greater than those of S1, S2. The lowest RFW (146.03 g) and RDW (20.81 g) were observed in S1.

    3.3 ?Effects of different substrates on photo-synthetic physiological characteristics

    No significant differences were detected in sto-matal conductance and Tr among the six substrates (Tab. 3), but intercellular CO2 concentration, Pn, and WUE were significant. The intercellular CO2 concentration of S1 was greater than S2, and S6. The Pn of S4 was significantly greater than S1, S2, S5, and S6. The WUE of S3 was greater than S1, S5 and S6.

    3.4 ?Diurnal changes of leaf photosynthetic parameters

    The diurnal variation curve of leaf Pn in S1 dis-played two single peaks (Fig. 1). The first peak was appeared at 10:30 (11.48 μmol·m–2s–1), and the second peak was at 14:30 (13.35 μmol·m–2s–1). The diurnal variation curves of leaf Pn in the other five substrates were similar and displayed one peak at 12:30. The average diurnal Pn of the six substrates were 7.77, 8.50, 9.43, 12.16, 9.71 and 9.00 μmol·m–2s–1, respectively.

    The diurnal variation of Tr of all six substrates displayed one peak (Fig. 2), but the times were dif-ferent. The peak in S1 appeared at 12:30, while the peaks in S2, S3, and S4 reached their maximum at 14:30. In S5 and S6, the peak appeared at 10:30. The maximum leaf Tr was observed in S6 (8.17 mmolm–2s–1), while the minimum was observed in S4 (5.22 mmolm-2s-1). The average diurnal Tr of the six substrates were 3.53, 3.28, 3.72, 2.99, 3.50, and 3.70 mmol·m–2s–1, respectively.

    The diurnal variation of WUE in S1, S3, and S6 exhibited a linear rise-fall pattern (Fig. 3). The peaks of S1 and S3 appeared at 10:30 (4.70 μmol CO2mmol–1 H2O) and 12:30 (5.0 μmol CO2mmol–1 H2O) respectively. From 8:30 to 12:30, S6 rose in a straight line, slowly decreased at 14:30, and subsequently rose to 5.22 μmol CO2mmol–1 H2O. In contrast to S1, S2, and S6, the diurnal variation of WUE in S2, S4, and S5 exhibited a linear fall-rise pattern. The S2 exhibited a linear downward trend from 8:30 to 16:30. From 8:30 to 14:30, S4 exhibited a downward trend and rose after 14:30 to 6.52 μmol CO2·mmol–1 H2O. The S5 reached its minimum level (1.57 μmol CO2·mmol–1 H2O) at 10:30, and subsequently increased.

    3.5 ?Effects of different substrates on foliar SPAD readings

    The SPAD readings of S1 were the highest (44.1), while S3 was the lowest (34.7) (Fig. 4). The order of SPAD readings among the six substrates was as follows: S1>S2>S4>S6>S5>S3. No significant differences were detected among S1, S2, and S4. The SPAD readings of S1 was significantly higher than S3 (P<0.05), which was about 1.27 times.

    4 ?Discussion

    Soil and peat were the most commonly used growing substrates in the container production of annual and perennial ornamental plants[20]. However the density of soil was heavy, difficult to move, and contains many potentially harmful micro-organisms. Peat was uneconomical or unrecyclable, making growers look for alternatives.

    In this study, the greatest of S4 over the other combinations probably related to its characteristics including higher total porosity and hold-water porosity. The number of leaves, RFW, and RDW of S4 significantly increased compared with other five substrates. Although sprouting rate and leaf lengths were not significantly different.

    The total porosity and maximum water holding capacity are important factors for plant growth. However, porosity and bulk density are interacted each other. Bulk porosity is low and the air content is reduced. The air porosity of the substrate is large; therefore it is more suitable for plant growth. Middle density was more suitable at the seedling stage; similar findings were also reported by Chen[21].

    The results revealed that the stem base diameter, RFW and RDW were lower in S1 the soil-based substrate potentially due to its large bulk density (0.972 g·L–1), matching the findings that the density range of substrate was 0.19~0.70 g·L–1 for most potting commercial horticultural crops[22].

    Different substrates affected Pn, Tr and pore conductance of two gerbera[23]. This study revealed that the Pn differed among the six substrates and the greatest value observed in S4. Intercellular CO2 and WUE also differed among the six substrates, in the following orders S1>S5>S4>S2>S6>S3 and S3> S2>S4>S6>S5>S1, respectively. However, like Pn, the diurnal variation curves of leaf photosynthesis were similar and exhibited one peak, except S1. Interestingly, the Tr of the six substrates displayed single peak, but the times were different.

    The maximum value of Pn was in S4, which promoted plant leaf growth and increased rhizome accumulation. The results confirmed previously reported findings, in which Pn directly reflected plant light energy and the ability to accumulate photosynthetic products[24].

    SPAD-502 meter has been provided a rapid and nondestructive measurement of leaf chlorophyll content. Several studies demonstrated that SPAD readings were significantly related to extracted chlorophyll[25-28]. In the study, the greenest leaves were observed in S1. Although no significant differences were detected between S1 and S4, the degree of leaf greenness reflected plant growth and physiological health. In future studies if combined with fertilizer management, the leaf chlorophyll content would be improved. Therefore, S4 would be an excellent substrate for C. speciosus growth and development.

    References

    [1] Kaveriappa K M, Phillips L M, Trigiano R N. Micropropa-gation of flowering dogwood (Cornus florida) from seedl-ings[J]. Plant Cell Reports, 1997, 16(7): 485-489.

    [2] Worrall R J. Comparison of composted hardwood and peat-based media for the production of seedlings, foliage and flowering plants[J]. Scientia Horticulturae, 1981, 15(4): 311-319.

    [3] 欒亞寧, 孫向陽, 劉克林, 等. 幾種泥炭基質(zhì)物理性質(zhì)比較研究[J]. 中國農(nóng)學(xué)通報(bào), 2008, 24(9): 137-140.

    Luan Y N, Sun X Y, Liu K L, et al. Comparisons of physical properties of several peats as growing mediums[J]. Chinese Agricultural Science Bulletin, 2008, 24(9): 137-140.

    [4] Barkham J P. For peat’s sake: Conservation or exploita-tion?[J]. Biodiversity and Conservation, 1993, 2(5): 556-566.

    [5] Carlile W R. Growing media and the environmental lobby in the UK. 1997-2001[J]. Acta Horticulturae, 2004, 644: 107-113.

    [6] Defra SP08019: Availability and supply of alternative mate-rials for use in growing media to meet the UKBAP target on reduced peat use in horticulture[Z]. 2009.

    [7] Gruda N. Current and future perspective of growing media in Europe[J]. Acta Horticulturae, 2012, 960: 37-43.

    [8] 蔡?hào)|宏, 韋開蕾. 我國椰子業(yè)現(xiàn)狀發(fā)展前景和對(duì)策[J]. 世界熱帶農(nóng)業(yè)信息, 1999(4): 8-10.

    Cai D H, Wei K L. Prospects and countermeasures of coco-nut industry in China[J]. World Tropical Agriculture Infor-mation, 1999(4): 8-10.

    [9] Alexander P D, Bragg N C, Meade R, et al. Peat in horticul-ture and conservation: the UK response to a changing world[J]. Mires and Peat, 2008, 3(8): 1-10.

    [10] Evans M R, Stamps R H. Growth of bedding plants in sphagnum peat and coir dust-based substrates[J]. Journal of Environmental Horticulture, 1996, 14(4): 187-190.

    [11] Meerow A W. Coir dust, a viable alternative to peat moss[J]. Greenhouse Product News, 1997, 1: 17-21.

    [12] Xiong J, Tian Y Q, Wang J G, et al. Comparison of coconut coir, rockwool, and peat cultivations for tomato production: nutrient balance, plant growth and fruit quality[J]. Frontiers in Plant Science, 2017, 8(2): 1327.

    [13] Khayyat M, Nazari F, Salehi H. Effects of different pot mixtures on pothos (Epipremnum aureum Lindl. and Andre ‘Golden Pothos’) growth and development[J]. Ameri-can-Eurasian Journal of Agricultural and Environmental Science, 2007, 57(4): 492-493.

    [14] Usman M, Shah M, Badar A, et al. Media steaming and coco-coir enhance growth of rough lemon (Citrus Jambhiri L.) stock[J]. Pakistan Journal of Agricultural Sciences, 2014, 51(3): 617-625.

    [15] 潘英文, 林明光, 陳施明. 文心蘭切花產(chǎn)業(yè)化栽培基質(zhì)的篩選研究[J]. 熱帶農(nóng)業(yè)科學(xué), 2009, 29(7): 32-35.

    Pan Y W, Lin M G, Chen S M. Screening of substrates for commercial culture of cut-flower Oncidium orchid[J]. Chi-nese Journal of Tropical Agriculture, 2009, 29(7): 32-35

    [16] Khelikuzzaman M H. Effect of different potting media on growth of a hanging ornamental plant (Tradescantiasp)[J]. Journal of Tropical Agriculture and Food Science, 2007, 35(1): 41–48

    [17] Bhardwaj R L. Effect of growing media on seed germination and seedling growth of papaya cv. ‘Red lady’[J]. African Journal of Plant Science, 2014, 8(4): 178-184.

    [18] Wright R D. The pour-through nutrient extraction proce-dure[J]. Hortscience, 1986, 21: 227-229.

    [19] Niedziela C E, Nelson P V. A rapid method for determining physical properties of undisturbed substrate[J]. Hortscience, 1992, 27(12): 1279-1280.

    [20] Baiyeri K P, Mbah B N. Effects of soilless and soil-based nursery media on seedling emergence, growth and response to water stress of African breadfruit (Treculia africana Decne)[J]. African Journal of Biotechnology, 2006, 5(15): 1405-1410.

    [21] 陳鳳真. 不同基質(zhì)對(duì)小青菜穴盤苗生長和光合特性的影響[J]. 中國土壤與肥料, 2014(1): 75-78, 100.

    Chen F Z. Effects on growth and photosynthetic characteristics of greengrocery (Brassica chinensis L.) in plugs under different substrate[J]. Journal of Soil and fertilizer sciences in china, 2014(1): 75-78, 100.

    [22] Bilderback T E, Warren S L, Owen Jr J S, et al. Healthy substrates need physicals too[J]. Hort Technology, 2005, 15: 747-751.

    [23] Issa M, Ouzounidou G, Maloupa H, et al. Seasonal and diurnal photosynthetic responses of two gerbera cultivars to different substrates and heating systems[J]. Scientia Horticulturae, 2001, 88(3): 215-234.

    [24] Lincoln Taiz, Eduardo Zeiger. Plant physiology-fifth edi-tion[M]. Sinauer Associates, Inc., Publishers, 2015: 92-212.

    [25] Azia F, Stewart K A. Relationships between extractable chlorophyll and spad values in muskmelon leave[J]. Journal of Plant Nutrition, 2001, 24(6): 961-966.

    [26] Ruiz-Espinoza F, Fenech-Larios L, Beltran-Morales A, et al. Field evaluation of the relationship between chlorophyll content in basil leaves and a portable chlorophyll meter (spad-502) readings[J]. Journal of Plant Nutrition, 2010, 33(3): 423-438.

    [27] Wang Q B, Chen J J, Stamps R H, et al. Correlation of visual quality grading and SPAD reading of green-leaved foliage plants[J]. Journal of Plant Nutrition, 2005, 28(7): 1215-1225.

    [28] Yamamoto A, Nakamura T, Adu-Gyamfi J J, et al. Rela-tionship between chlorophyll content in leaves of sorghum and pigeonpea determined by extraction method and by chlorophyll meter (SPAD-502)[J]. Journal of Plant Nutri-tion, 2002, 25(10): 2295-2301.

    責(zé)任編輯:謝龍蓮

    猜你喜歡
    椰糠光合特性泥炭
    椰糠-黏土植生基材崩解特性試驗(yàn)1)
    污泥炭的制備及其在典型行業(yè)廢水處理中的應(yīng)用
    云南化工(2020年11期)2021-01-14 00:50:40
    浸泡時(shí)長對(duì)椰糠基質(zhì)理化性狀的影響
    泥炭產(chǎn)業(yè)發(fā)展的觀察與思考
    溫室禮品西瓜椰糠無土栽培試驗(yàn)總結(jié)
    5個(gè)引種美國紅楓品種的光合特性比較
    4種砧木對(duì)甜櫻桃葉片光合特性的影響
    不同水分條件下硫肥對(duì)玉米幼苗葉片光合特性的影響
    安圖縣水稻高光效新型栽培技術(shù)示范推廣總結(jié)
    主流媒體聚焦泥炭產(chǎn)業(yè)發(fā)展
    腐植酸(2015年4期)2015-12-26 06:43:51
    欧美精品高潮呻吟av久久| 亚洲天堂av无毛| 久久久精品94久久精品| 色播在线永久视频| 两性午夜刺激爽爽歪歪视频在线观看 | 大香蕉久久网| 亚洲,欧美精品.| 宅男免费午夜| 国产一卡二卡三卡精品| www.999成人在线观看| 成人免费观看视频高清| 中文字幕人妻丝袜制服| 欧美日韩成人在线一区二区| 国产色视频综合| 男女高潮啪啪啪动态图| 欧美日韩av久久| 一个人免费看片子| 黄网站色视频无遮挡免费观看| 人成视频在线观看免费观看| 欧美日本中文国产一区发布| 久久精品aⅴ一区二区三区四区| 精品国产一区二区三区四区第35| 久久毛片免费看一区二区三区| 美女高潮喷水抽搐中文字幕| 国产一区二区激情短视频| 一个人免费在线观看的高清视频| 精品国产乱码久久久久久男人| 一级片免费观看大全| 国产精品偷伦视频观看了| 人人妻人人澡人人看| 首页视频小说图片口味搜索| 多毛熟女@视频| 黄片播放在线免费| 欧美人与性动交α欧美软件| 日本黄色视频三级网站网址 | 成人亚洲精品一区在线观看| 国产极品粉嫩免费观看在线| 男男h啪啪无遮挡| 欧美日韩亚洲高清精品| 亚洲精品粉嫩美女一区| 三级毛片av免费| 麻豆一二三区av精品| 悠悠久久av| www.999成人在线观看| 久久久色成人| 国产精品电影一区二区三区| 欧美一区二区精品小视频在线| 国产精品一区二区三区四区久久| 真人一进一出gif抽搐免费| 久久人妻av系列| 99视频精品全部免费 在线 | 中文字幕高清在线视频| 伊人久久大香线蕉亚洲五| 亚洲精品国产精品久久久不卡| 麻豆成人午夜福利视频| 波多野结衣巨乳人妻| 国产爱豆传媒在线观看| 九九热线精品视视频播放| 精品无人区乱码1区二区| 99国产精品99久久久久| 久久久久亚洲av毛片大全| 久久久久久大精品| 99久久精品国产亚洲精品| 在线观看舔阴道视频| 国产男靠女视频免费网站| 舔av片在线| 97超级碰碰碰精品色视频在线观看| 9191精品国产免费久久| 一级a爱片免费观看的视频| 亚洲欧美一区二区三区黑人| 精品久久久久久成人av| 小说图片视频综合网站| 黄片小视频在线播放| 久久午夜亚洲精品久久| 国产激情欧美一区二区| 日韩欧美国产一区二区入口| 叶爱在线成人免费视频播放| 美女高潮的动态| 免费在线观看视频国产中文字幕亚洲| 一a级毛片在线观看| cao死你这个sao货| 精品久久久久久久久久久久久| www日本在线高清视频| 中文字幕人成人乱码亚洲影| 老鸭窝网址在线观看| 久久伊人香网站| netflix在线观看网站| 亚洲午夜理论影院| 亚洲人成伊人成综合网2020| 精品久久久久久久久久久久久| 国产精品98久久久久久宅男小说| 国产三级中文精品| 国产免费av片在线观看野外av| 成人三级做爰电影| 国产69精品久久久久777片 | 亚洲美女黄片视频| 国产一区二区三区在线臀色熟女| 香蕉国产在线看| 99热这里只有精品一区 | 日韩成人在线观看一区二区三区| 18禁黄网站禁片免费观看直播| 岛国视频午夜一区免费看| 级片在线观看| 黄色丝袜av网址大全| 亚洲国产欧美网| 国产亚洲精品综合一区在线观看| 久久精品91蜜桃| 国产一区二区在线观看日韩 | 久久欧美精品欧美久久欧美| 久久中文看片网| 精品久久久久久久末码| 色视频www国产| 午夜福利成人在线免费观看| 麻豆一二三区av精品| 欧美日韩黄片免| 午夜福利欧美成人| 成人特级av手机在线观看| 亚洲av第一区精品v没综合| 亚洲成av人片免费观看| 欧美色欧美亚洲另类二区| 成人亚洲精品av一区二区| 啦啦啦韩国在线观看视频| 手机成人av网站| 日韩欧美国产一区二区入口| 国产高清视频在线观看网站| 日本a在线网址| 久99久视频精品免费| 国产 一区 欧美 日韩| 一个人看视频在线观看www免费 | 亚洲真实伦在线观看| 国产精品免费一区二区三区在线| 午夜亚洲福利在线播放| 免费在线观看亚洲国产| 啦啦啦韩国在线观看视频| 精品不卡国产一区二区三区| 久久精品国产清高在天天线| 日韩有码中文字幕| 亚洲自偷自拍图片 自拍| 亚洲片人在线观看| 国产精华一区二区三区| 麻豆一二三区av精品| 亚洲国产精品sss在线观看| 亚洲欧美日韩卡通动漫| 国产在线精品亚洲第一网站| 亚洲美女黄片视频| 十八禁人妻一区二区| 真人做人爱边吃奶动态| 啦啦啦免费观看视频1| 久久久久国内视频| 午夜日韩欧美国产| 久久亚洲精品不卡| 亚洲欧美日韩高清专用| 免费在线观看视频国产中文字幕亚洲| 欧美黄色片欧美黄色片| 在线看三级毛片| 手机成人av网站| 五月玫瑰六月丁香| 美女高潮的动态| 在线a可以看的网站| 亚洲熟妇中文字幕五十中出| 首页视频小说图片口味搜索| 99视频精品全部免费 在线 | 亚洲最大成人中文| АⅤ资源中文在线天堂| 成人亚洲精品av一区二区| 午夜福利在线观看免费完整高清在 | 又紧又爽又黄一区二区| 国产一区二区在线av高清观看| 国产69精品久久久久777片 | 久久久久性生活片| 国产乱人伦免费视频| 亚洲精品美女久久av网站| 色视频www国产| 又紧又爽又黄一区二区| 国产精品精品国产色婷婷| 熟女少妇亚洲综合色aaa.| 欧美三级亚洲精品| 一个人免费在线观看电影 | 国产精品日韩av在线免费观看| 精品日产1卡2卡| 日本黄大片高清| 亚洲精品色激情综合| 欧美成狂野欧美在线观看| 欧美高清成人免费视频www| 国产又色又爽无遮挡免费看| 一级作爱视频免费观看| 亚洲欧美日韩东京热| 国产精品免费一区二区三区在线| 久久久色成人| www日本在线高清视频| 国产精品一区二区三区四区久久| 99久国产av精品| 成人特级黄色片久久久久久久| 99久久精品国产亚洲精品| 怎么达到女性高潮| 亚洲成人中文字幕在线播放| 成年人黄色毛片网站| 欧美日本视频| 宅男免费午夜| 精品久久蜜臀av无| 人妻夜夜爽99麻豆av| 欧美日韩乱码在线| 精品国产乱子伦一区二区三区| 无遮挡黄片免费观看| 午夜福利在线观看吧| 亚洲中文日韩欧美视频| 免费av毛片视频| 欧美色欧美亚洲另类二区| 国产视频一区二区在线看| 国产精品自产拍在线观看55亚洲| 久久国产精品人妻蜜桃| 日韩欧美国产一区二区入口| 日本一二三区视频观看| 亚洲va日本ⅴa欧美va伊人久久| 亚洲国产欧洲综合997久久,| 国产综合懂色| 午夜免费成人在线视频| 亚洲色图 男人天堂 中文字幕| 亚洲最大成人中文| 国产黄a三级三级三级人| 成人鲁丝片一二三区免费| 成人永久免费在线观看视频| 十八禁网站免费在线| 老司机福利观看| 欧美三级亚洲精品| 欧美zozozo另类| 久久久久久久久免费视频了| 最好的美女福利视频网| 国产精华一区二区三区| 激情在线观看视频在线高清| 嫩草影院精品99| 伦理电影免费视频| 人人妻人人澡欧美一区二区| 18美女黄网站色大片免费观看| 精品久久久久久久人妻蜜臀av| 成人三级黄色视频| 国产成人aa在线观看| 免费无遮挡裸体视频| 免费高清视频大片| 久久精品国产99精品国产亚洲性色| 在线a可以看的网站| 偷拍熟女少妇极品色| 男女那种视频在线观看| 成人三级黄色视频| 99热6这里只有精品| 小说图片视频综合网站| 国产成人精品无人区| 国产人伦9x9x在线观看| 免费看a级黄色片| 真人一进一出gif抽搐免费| 国产伦精品一区二区三区四那| 18禁观看日本| 亚洲av成人av| 免费观看人在逋| 狂野欧美激情性xxxx| 在线观看舔阴道视频| 在线视频色国产色| 色播亚洲综合网| 欧美一级a爱片免费观看看| 国产精品综合久久久久久久免费| 久久久久久久午夜电影| 国产69精品久久久久777片 | 观看美女的网站| 午夜福利成人在线免费观看| 久久香蕉精品热| 麻豆国产97在线/欧美| 99久久精品国产亚洲精品| 岛国在线观看网站| 宅男免费午夜| 中文字幕精品亚洲无线码一区| 亚洲自偷自拍图片 自拍| 国产免费av片在线观看野外av| 亚洲欧美激情综合另类| 两个人的视频大全免费| 俺也久久电影网| 欧美绝顶高潮抽搐喷水| 久久久久久国产a免费观看| 国产 一区 欧美 日韩| 在线观看一区二区三区| 欧美3d第一页| 神马国产精品三级电影在线观看| 麻豆国产av国片精品| 久久国产精品影院| 欧美黑人巨大hd| 超碰成人久久| 国产一区二区三区在线臀色熟女| 亚洲av中文字字幕乱码综合| 床上黄色一级片| 国产又黄又爽又无遮挡在线| 久久精品aⅴ一区二区三区四区| www国产在线视频色| 国内少妇人妻偷人精品xxx网站 | 日本五十路高清| 午夜精品久久久久久毛片777| 国产视频一区二区在线看| 久久久久久久精品吃奶| 亚洲国产欧美网| 国产av不卡久久| av黄色大香蕉| 久久这里只有精品中国| 国产v大片淫在线免费观看| 国产三级中文精品| 热99re8久久精品国产| 国产极品精品免费视频能看的| 麻豆av在线久日| 日韩精品中文字幕看吧| 久久久久久久精品吃奶| 国内精品一区二区在线观看| 免费看美女性在线毛片视频| 香蕉久久夜色| 我要搜黄色片| 国产伦在线观看视频一区| 国产一区二区在线av高清观看| 久久久久久久久免费视频了| 岛国视频午夜一区免费看| 亚洲第一电影网av| 一进一出好大好爽视频| 国产av一区在线观看免费| 丁香欧美五月| 亚洲第一欧美日韩一区二区三区| 色在线成人网| 免费看日本二区| 波多野结衣高清无吗| 欧美日韩福利视频一区二区| 人妻夜夜爽99麻豆av| 久久性视频一级片| 日本黄大片高清| 男插女下体视频免费在线播放| 黄色成人免费大全| 夜夜爽天天搞| 精品福利观看| 国模一区二区三区四区视频 | 麻豆成人午夜福利视频| 久久久久久人人人人人| 99在线视频只有这里精品首页| 亚洲精品在线美女| 久久九九热精品免费| 午夜两性在线视频| 欧美乱妇无乱码| 在线a可以看的网站| 老鸭窝网址在线观看| 亚洲午夜精品一区,二区,三区| 精品国产乱码久久久久久男人| 欧美高清成人免费视频www| 琪琪午夜伦伦电影理论片6080| 欧美一级a爱片免费观看看| 美女高潮喷水抽搐中文字幕| 观看免费一级毛片| 国产欧美日韩精品亚洲av| 亚洲在线观看片| 欧美黑人欧美精品刺激| 成人一区二区视频在线观看| 久久久水蜜桃国产精品网| 国内精品久久久久精免费| 美女高潮喷水抽搐中文字幕| 99热精品在线国产| www.999成人在线观看| 国产成人av激情在线播放| 国产91精品成人一区二区三区| 天堂影院成人在线观看| 男女床上黄色一级片免费看| 国产精品电影一区二区三区| 淫秽高清视频在线观看| 国产成+人综合+亚洲专区| 叶爱在线成人免费视频播放| 国产精品乱码一区二三区的特点| 日日干狠狠操夜夜爽| 成人高潮视频无遮挡免费网站| 91av网站免费观看| 欧美日韩瑟瑟在线播放| 国产精品久久视频播放| 动漫黄色视频在线观看| 一级作爱视频免费观看| 欧美又色又爽又黄视频| 国内精品久久久久久久电影| 此物有八面人人有两片| 国产69精品久久久久777片 | 久久精品国产99精品国产亚洲性色| 欧美日韩黄片免| 香蕉国产在线看| 老司机在亚洲福利影院| 黄色视频,在线免费观看| 中文字幕av在线有码专区| 久久精品综合一区二区三区| 亚洲午夜理论影院| 亚洲精品中文字幕一二三四区| 欧美精品啪啪一区二区三区| 久久精品91无色码中文字幕| 熟女电影av网| 1024手机看黄色片| www.自偷自拍.com| 免费看日本二区| 国产不卡一卡二| 亚洲在线自拍视频| 国产一区二区激情短视频| 国产成人精品久久二区二区免费| 午夜亚洲福利在线播放| 婷婷精品国产亚洲av| 欧美黑人巨大hd| 国产精品亚洲一级av第二区| 高清毛片免费观看视频网站| 国产一级毛片七仙女欲春2| 午夜精品在线福利| 亚洲专区中文字幕在线| 日本黄色片子视频| 国产高清激情床上av| 亚洲第一电影网av| 老汉色av国产亚洲站长工具| 波多野结衣巨乳人妻| 极品教师在线免费播放| 老熟妇乱子伦视频在线观看| 午夜福利视频1000在线观看| 国产乱人视频| 国产97色在线日韩免费| 午夜福利欧美成人| 真实男女啪啪啪动态图| 欧美日韩中文字幕国产精品一区二区三区| 91九色精品人成在线观看| 亚洲七黄色美女视频| 成人国产综合亚洲| 啪啪无遮挡十八禁网站| 精品欧美国产一区二区三| 午夜日韩欧美国产| 亚洲av成人av| 国产在线精品亚洲第一网站| 日本 av在线| 久久草成人影院| 男人舔女人的私密视频| 精品一区二区三区四区五区乱码| 日韩欧美国产一区二区入口| 午夜福利视频1000在线观看| 精品福利观看| 国产成人精品无人区| 亚洲最大成人中文| 性色av乱码一区二区三区2| 久久久久免费精品人妻一区二区| 久久久国产精品麻豆| 午夜精品一区二区三区免费看| 男女床上黄色一级片免费看| 丰满人妻熟妇乱又伦精品不卡| 精品国产三级普通话版| 成熟少妇高潮喷水视频| 18禁黄网站禁片免费观看直播| 国产亚洲精品av在线| 国产精品一及| 日本在线视频免费播放| 巨乳人妻的诱惑在线观看| 又爽又黄无遮挡网站| 婷婷精品国产亚洲av在线| 国产真实乱freesex| 亚洲中文字幕一区二区三区有码在线看 | 51午夜福利影视在线观看| 久久久久久久久中文| 亚洲18禁久久av| 国产精品 欧美亚洲| 久久精品aⅴ一区二区三区四区| 亚洲精品乱码久久久v下载方式 | 99精品欧美一区二区三区四区| 老司机午夜十八禁免费视频| 日韩人妻高清精品专区| 久久久久久久精品吃奶| 精品国内亚洲2022精品成人| 中文字幕人成人乱码亚洲影| 欧美日韩一级在线毛片| 国产精品98久久久久久宅男小说| 亚洲av电影在线进入| 九色国产91popny在线| 成人三级黄色视频| 亚洲人成电影免费在线| 亚洲精品一卡2卡三卡4卡5卡| 国产精品九九99| 伦理电影免费视频| 亚洲精品一区av在线观看| 丝袜人妻中文字幕| 欧美绝顶高潮抽搐喷水| 亚洲av成人av| 亚洲男人的天堂狠狠| 18禁观看日本| 精品久久久久久久末码| 9191精品国产免费久久| 日韩欧美三级三区| 亚洲欧美日韩高清在线视频| 国产伦精品一区二区三区视频9 | 国产精品亚洲av一区麻豆| 在线视频色国产色| 国产精品久久电影中文字幕| 欧美午夜高清在线| 精品久久久久久久久久免费视频| 变态另类丝袜制服| 9191精品国产免费久久| 搡老妇女老女人老熟妇| 国产精品99久久99久久久不卡| 麻豆av在线久日| 精品一区二区三区视频在线观看免费| 午夜精品在线福利| 999久久久国产精品视频| 欧美色欧美亚洲另类二区| 美女免费视频网站| 熟女少妇亚洲综合色aaa.| 91麻豆精品激情在线观看国产| 精品国产乱子伦一区二区三区| 国产三级黄色录像| 欧美日韩国产亚洲二区| 亚洲aⅴ乱码一区二区在线播放| 亚洲精品一卡2卡三卡4卡5卡| 午夜福利视频1000在线观看| 国产爱豆传媒在线观看| 成年免费大片在线观看| 五月伊人婷婷丁香| 丰满人妻熟妇乱又伦精品不卡| 男女床上黄色一级片免费看| 亚洲av中文字字幕乱码综合| 免费观看人在逋| 黄色成人免费大全| 久久九九热精品免费| 久久精品人妻少妇| 精品久久蜜臀av无| 他把我摸到了高潮在线观看| 久久久精品大字幕| 精品久久久久久久毛片微露脸| 又黄又粗又硬又大视频| 欧美zozozo另类| 脱女人内裤的视频| 久久久精品欧美日韩精品| 一本综合久久免费| 欧美黑人巨大hd| 亚洲一区二区三区色噜噜| 99热6这里只有精品| 国产一区在线观看成人免费| 亚洲avbb在线观看| 美女高潮喷水抽搐中文字幕| 看黄色毛片网站| 狠狠狠狠99中文字幕| 中文亚洲av片在线观看爽| 亚洲成人久久爱视频| 免费看a级黄色片| 成熟少妇高潮喷水视频| 久久天堂一区二区三区四区| 天堂网av新在线| 国产三级黄色录像| 国产午夜精品论理片| 亚洲精品中文字幕一二三四区| 国产精品98久久久久久宅男小说| 国产精华一区二区三区| 国产精品综合久久久久久久免费| 99久久精品国产亚洲精品| 国产一区二区在线观看日韩 | 国产单亲对白刺激| 婷婷六月久久综合丁香| xxx96com| 欧美日韩中文字幕国产精品一区二区三区| 亚洲av成人一区二区三| 日韩欧美免费精品| 国产乱人伦免费视频| 欧美成狂野欧美在线观看| 亚洲专区中文字幕在线| 久久久国产成人精品二区| 久久婷婷人人爽人人干人人爱| 亚洲在线自拍视频| 亚洲中文av在线| 成人永久免费在线观看视频| 亚洲精华国产精华精| 国产一区二区三区视频了| 亚洲人成伊人成综合网2020| 亚洲国产精品999在线| 高清在线国产一区| 在线免费观看的www视频| 国产又黄又爽又无遮挡在线| 久久久水蜜桃国产精品网| 国产熟女xx| 国产精品久久久久久人妻精品电影| 曰老女人黄片| 天天躁日日操中文字幕| 女同久久另类99精品国产91| 黄色成人免费大全| av视频在线观看入口| 亚洲午夜精品一区,二区,三区| 欧美黑人巨大hd| 九九在线视频观看精品| 国产亚洲精品久久久com| 日韩中文字幕欧美一区二区| 日韩高清综合在线| 亚洲国产高清在线一区二区三| 黄片大片在线免费观看| 亚洲中文字幕日韩| 久久午夜亚洲精品久久| 国内精品美女久久久久久| av女优亚洲男人天堂 | 中国美女看黄片| 国产精品久久久久久久电影 | 色精品久久人妻99蜜桃| 国产精品亚洲一级av第二区| 桃红色精品国产亚洲av| 亚洲 欧美 日韩 在线 免费| 免费观看的影片在线观看| 老熟妇仑乱视频hdxx| 亚洲一区高清亚洲精品| 国产一区二区在线观看日韩 | 非洲黑人性xxxx精品又粗又长| 美女大奶头视频| 国内久久婷婷六月综合欲色啪| 国产精品久久久人人做人人爽| 一级毛片女人18水好多| 19禁男女啪啪无遮挡网站| 韩国av一区二区三区四区| 日日干狠狠操夜夜爽| 黑人巨大精品欧美一区二区mp4| 亚洲成av人片免费观看| 我的老师免费观看完整版| 亚洲欧美激情综合另类| avwww免费| 一级毛片女人18水好多| 日韩欧美免费精品| 小说图片视频综合网站| 一进一出抽搐动态|