• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    不同基質(zhì)對(duì)閉鞘姜生長發(fā)育和光合作用的影響

    2021-12-23 16:55:29劉曉榮吳志徐揚(yáng)韓慶斌王代容
    熱帶作物學(xué)報(bào) 2021年11期
    關(guān)鍵詞:椰糠光合特性泥炭

    劉曉榮 吳志 徐揚(yáng) 韓慶斌 王代容

    摘 ?要:采用隨機(jī)區(qū)組設(shè)計(jì),研究不同配比的紅壤、泥炭、椰糠和珍珠巖6種基質(zhì)配方對(duì)閉鞘姜生長的影響。測(cè)定6種基質(zhì)的物理和化學(xué)性質(zhì),觀測(cè)萌芽率、葉片數(shù)、莖粗、株高、株幅、光合日變化、根莖鮮重和根莖干重。結(jié)果顯示,基質(zhì)S4(泥炭+椰糠+珍珠巖=1∶2∶2)的植株凈光合速率(Pn)顯著高于其他基質(zhì)處理。在6種基質(zhì)生長的植株葉片凈光合速率曲線呈單峰或雙峰變化,而蒸騰速率曲線呈單峰變化。最大株高、最大根莖鮮重和根莖干重也出現(xiàn)在基質(zhì)S4種植的植株。從以上結(jié)果可知,基質(zhì)S4比較適合閉鞘姜的生長和根狀莖干物質(zhì)積累。

    關(guān)鍵詞:閉鞘姜;盆栽植物;無土栽培基質(zhì);泥炭;椰糠;光合特性

    中圖分類號(hào):S682.19 ? ? ?文獻(xiàn)標(biāo)識(shí)碼:A

    1 ?Introduction

    Costus speciosus is a rhizomatous perennial herb with pinkish white flowers on reddish bracts. It has increased popularity in recent years due to its medicinal and ornamental properties. Its traditional potting substrate is soil, which is heavy and ine?fficient for transport.

    Substrate is a key factor that affects plant growth in soilless cultivation. In addition to supporting and fixing, substrate is important for transferring adequate oxygen, water, and nutrients from the nutrient solution to plant roots. Peat has been widely used in soilless cultivation over the last century due to its excellent physical and chemical properties, especially at the seedling stage[1-3]. Ho?wever, as a non-renewable resource and increasing price, peat has raised concerns among environmental, scientific, and governmental agencies[4-7], which has resulted in policy changes and governmental regulations of its use in several European countries.

    Coir is now widely used in the soilless cultivation across the world as an environmentally friendly substrate which has abundant resources. It is lightweight, good aeration, and a high water-holding capacity that is more than eight times of its own weight[8]. Previous studies found that coconut coir is a good alternative to peat[9-11]. It is also cost efficient for raising plant growth, which has been widely used for growing various fruits, vegetables, and flowers since the beginning of the century[12-14].

    Although coir has a high water-holding capa?city, it has poor aeration. Mixed and combined with other coarser material could make up this shortcoming. Pan et al[15] demonstrated that Oncidium grew best in a substrate combination of crushed stone, bark, coconut shell and charcoal in a 2∶2∶1∶1 ratio. A hanging ornamental plant was proved that soil mixture (1 part cocopeat:1 part topsoil:1 part sand) was significantly better than cocopeat only[16]. Bhardwaj[17] reported that the medium (coil + vermicompost + sand + pond soil) gave maximum seed germination and seedling growth.

    Although, the effects of different substrate mixtures on flower growth and development have been previously investigated, there were few reports available on C. speciosus growth. The objective of this study was to assess red soil, peat, coir, and perlite in different combinations on C. speciosus growth and development, to develop a labor-effi?cient and cost-saving substrate.

    2 ?Materials and Methods

    2.1 ?Plant and growth conditions

    Rhizomes annually of C. speciosus were wild germplasm obtained from native. One or two buds were divided and individually grown in plastic pots with a diameter of 10 cm and height of 8.0 cm. The experiment was conducted in the greenhouse in En-vironmental Horticulture Institute, Guangdong Aca-demy of Agricultural Sciences, China (113°15 E, 23°08 N) from April, 2018 to October, 2018. The temperature and relative humidity were recorded by ZDR-20 data loggers (Hangzhou Zeda Instruments Co. Ltd., Hangzhou, China). The minimum and ma?ximum average temperature was 24.3 ℃ and 33.9 ℃, respectively. Relative humidity was maintained at the range of 70% to 80%.

    2.2 ?Substrate treatment

    Six substrates consisting of red soil, peat, coir, and perlite in different proportions were used for the experiment. The red soil was the native field soil. Peat, coir and perlite were purchased from a hor?ticultural supplier’s corporation (DGSTAR, Guangzhou, China). The mixtures by volume were as follows: S1 (red soil + perlite; 3∶1); S2 (peat + perlite; 3∶1); S3 (coir + perlite; 3∶1); S4 (peat + coir + perlite; 1∶2∶2); S5 (peat + coir + perlite; 2∶1∶2) and S6 (peat + coir + perlite; 2∶2∶1).

    Coir was supplied in the form of compressed bricks (30 cm × 30 cm × 12 cm), and peat was sup?plied as compressed bails (300 L). Both substrates were hydrated according to the manufacturer’s instructions. Initial substrate samples of each treatment were collected. The potential of hydrogen (pH) and electrical conductivity (EC) of extracted substrate solutions were analyzed using the pour thr?ough method[18]. The bulk density (BD), total po?rosity, and aeration porosity of the media were measured and analyzed[19].

    2.3 ?Experimental design

    Plants were arranged in a randomized complete block design, and each treatment replicated three times, and in each replicate consisted of 10 plants. Plants were fertilized using a 20 N-20 P-20 K com?mercial water-soluble fertilizer (COMPO Expert GmbH, Munster, Germany) and irrigated two or three days with tap water. The EC and the pH value of water are 0.23 mS·cm–1 and 7.4 respectively.

    2.4 ?Data collection

    Data regarding all growth indices were collected in late June before flowering time, including the plant height, plant width, number of leaves, leaf length, and leaf width of the third mature leaf from the top of the plant. Rhizome fresh weight (RFW) and rhizome dry weight (RDW) were measured in October. Leaf gas exchange was measured using a portable photosynthesis measuring system (LI-6400; LICOR, Lincoln, NE, USA). Stomatal conductance, intercellular carbon dioxide (CO2), net photosynthetic rate (Pn), and transpiration rate (Tr) were recorded. Water use efficiency (WUE) was calculated using the following equation: WUE = Pn/Tr.

    Diurnal photosynthetic variations were deter-mined from 8∶30 to 16∶30 in three sunny days using five plants per treatment, and from the top the third leaf per plant was selected. Leaf length, leaf width, chlorophyll content was determined using the same leaves as those used for other growth parameters above. 3 SPAD readings (Minolta Camera Co., Osaka, Japan) were taken on each leaf (inter area).

    2.5 ?Statistical analysis

    The data were analyzed using statistical soft?ware (SAS version 8.1; SAS Institute, Cary, NC). It was used one-way PROC ANOVA to evaluate variance of substrate pH, EC, density, total porosity, aeration porosity, hold-water porosity and gas-water porosity ratio, number of leaves, stem base diameter, plant height, leaf length and width, RFW and RDW, stomatal conductance, intercellular CO2, Pn, Tr and WUE and leaf SPAD. Mean separation used least significant difference (LSD) at P = 0.01 or 0.05.

    3 ?Results

    3.1 ?Substrate physical and chemical proper-ties

    The physical characteristics of the six sub-strates were provided in Tab. 1. S1 and S2 had the lower pH values (5.58 and 4.84, respectively) sig-nificantly different from each other. No significant differences were detected among S3, S4, S5, and S6 with regard to pH values. S1 had the lowest EC value, although there was no significant difference between S1 and S3. There was the highest bulk density (0.972 g·L–1) And lowest water holding capacity (54.82%) in S1. S4 had the greatest total porosity (84.67%) and water holding porosity (76.88%), but had a lower bulk density. No significant differences were detected in the aeration porosity or gas- water porosity ratios among the six media treatments.

    3.2 ?Effects of different substrates on vegeta-tive parameters

    The six substrates did not significantly affect the sprouting rate or leaf length (Tab. 2). The greatest number of leaves was observed in S4 (25.3). Although the greatest stem base diameter was observed in S6, no significant differences were detected among S3, S4, and S6. Plant height was greater in S3 and S4 than in S5. The smallest leaf width was observed in S1 (4.47 cm), but no significant differences were detected among the other five substrates. TheRFW (231.85 g) and RDW (44.80 g) of S4 were greater than those of S1, S2. The lowest RFW (146.03 g) and RDW (20.81 g) were observed in S1.

    3.3 ?Effects of different substrates on photo-synthetic physiological characteristics

    No significant differences were detected in sto-matal conductance and Tr among the six substrates (Tab. 3), but intercellular CO2 concentration, Pn, and WUE were significant. The intercellular CO2 concentration of S1 was greater than S2, and S6. The Pn of S4 was significantly greater than S1, S2, S5, and S6. The WUE of S3 was greater than S1, S5 and S6.

    3.4 ?Diurnal changes of leaf photosynthetic parameters

    The diurnal variation curve of leaf Pn in S1 dis-played two single peaks (Fig. 1). The first peak was appeared at 10:30 (11.48 μmol·m–2s–1), and the second peak was at 14:30 (13.35 μmol·m–2s–1). The diurnal variation curves of leaf Pn in the other five substrates were similar and displayed one peak at 12:30. The average diurnal Pn of the six substrates were 7.77, 8.50, 9.43, 12.16, 9.71 and 9.00 μmol·m–2s–1, respectively.

    The diurnal variation of Tr of all six substrates displayed one peak (Fig. 2), but the times were dif-ferent. The peak in S1 appeared at 12:30, while the peaks in S2, S3, and S4 reached their maximum at 14:30. In S5 and S6, the peak appeared at 10:30. The maximum leaf Tr was observed in S6 (8.17 mmolm–2s–1), while the minimum was observed in S4 (5.22 mmolm-2s-1). The average diurnal Tr of the six substrates were 3.53, 3.28, 3.72, 2.99, 3.50, and 3.70 mmol·m–2s–1, respectively.

    The diurnal variation of WUE in S1, S3, and S6 exhibited a linear rise-fall pattern (Fig. 3). The peaks of S1 and S3 appeared at 10:30 (4.70 μmol CO2mmol–1 H2O) and 12:30 (5.0 μmol CO2mmol–1 H2O) respectively. From 8:30 to 12:30, S6 rose in a straight line, slowly decreased at 14:30, and subsequently rose to 5.22 μmol CO2mmol–1 H2O. In contrast to S1, S2, and S6, the diurnal variation of WUE in S2, S4, and S5 exhibited a linear fall-rise pattern. The S2 exhibited a linear downward trend from 8:30 to 16:30. From 8:30 to 14:30, S4 exhibited a downward trend and rose after 14:30 to 6.52 μmol CO2·mmol–1 H2O. The S5 reached its minimum level (1.57 μmol CO2·mmol–1 H2O) at 10:30, and subsequently increased.

    3.5 ?Effects of different substrates on foliar SPAD readings

    The SPAD readings of S1 were the highest (44.1), while S3 was the lowest (34.7) (Fig. 4). The order of SPAD readings among the six substrates was as follows: S1>S2>S4>S6>S5>S3. No significant differences were detected among S1, S2, and S4. The SPAD readings of S1 was significantly higher than S3 (P<0.05), which was about 1.27 times.

    4 ?Discussion

    Soil and peat were the most commonly used growing substrates in the container production of annual and perennial ornamental plants[20]. However the density of soil was heavy, difficult to move, and contains many potentially harmful micro-organisms. Peat was uneconomical or unrecyclable, making growers look for alternatives.

    In this study, the greatest of S4 over the other combinations probably related to its characteristics including higher total porosity and hold-water porosity. The number of leaves, RFW, and RDW of S4 significantly increased compared with other five substrates. Although sprouting rate and leaf lengths were not significantly different.

    The total porosity and maximum water holding capacity are important factors for plant growth. However, porosity and bulk density are interacted each other. Bulk porosity is low and the air content is reduced. The air porosity of the substrate is large; therefore it is more suitable for plant growth. Middle density was more suitable at the seedling stage; similar findings were also reported by Chen[21].

    The results revealed that the stem base diameter, RFW and RDW were lower in S1 the soil-based substrate potentially due to its large bulk density (0.972 g·L–1), matching the findings that the density range of substrate was 0.19~0.70 g·L–1 for most potting commercial horticultural crops[22].

    Different substrates affected Pn, Tr and pore conductance of two gerbera[23]. This study revealed that the Pn differed among the six substrates and the greatest value observed in S4. Intercellular CO2 and WUE also differed among the six substrates, in the following orders S1>S5>S4>S2>S6>S3 and S3> S2>S4>S6>S5>S1, respectively. However, like Pn, the diurnal variation curves of leaf photosynthesis were similar and exhibited one peak, except S1. Interestingly, the Tr of the six substrates displayed single peak, but the times were different.

    The maximum value of Pn was in S4, which promoted plant leaf growth and increased rhizome accumulation. The results confirmed previously reported findings, in which Pn directly reflected plant light energy and the ability to accumulate photosynthetic products[24].

    SPAD-502 meter has been provided a rapid and nondestructive measurement of leaf chlorophyll content. Several studies demonstrated that SPAD readings were significantly related to extracted chlorophyll[25-28]. In the study, the greenest leaves were observed in S1. Although no significant differences were detected between S1 and S4, the degree of leaf greenness reflected plant growth and physiological health. In future studies if combined with fertilizer management, the leaf chlorophyll content would be improved. Therefore, S4 would be an excellent substrate for C. speciosus growth and development.

    References

    [1] Kaveriappa K M, Phillips L M, Trigiano R N. Micropropa-gation of flowering dogwood (Cornus florida) from seedl-ings[J]. Plant Cell Reports, 1997, 16(7): 485-489.

    [2] Worrall R J. Comparison of composted hardwood and peat-based media for the production of seedlings, foliage and flowering plants[J]. Scientia Horticulturae, 1981, 15(4): 311-319.

    [3] 欒亞寧, 孫向陽, 劉克林, 等. 幾種泥炭基質(zhì)物理性質(zhì)比較研究[J]. 中國農(nóng)學(xué)通報(bào), 2008, 24(9): 137-140.

    Luan Y N, Sun X Y, Liu K L, et al. Comparisons of physical properties of several peats as growing mediums[J]. Chinese Agricultural Science Bulletin, 2008, 24(9): 137-140.

    [4] Barkham J P. For peat’s sake: Conservation or exploita-tion?[J]. Biodiversity and Conservation, 1993, 2(5): 556-566.

    [5] Carlile W R. Growing media and the environmental lobby in the UK. 1997-2001[J]. Acta Horticulturae, 2004, 644: 107-113.

    [6] Defra SP08019: Availability and supply of alternative mate-rials for use in growing media to meet the UKBAP target on reduced peat use in horticulture[Z]. 2009.

    [7] Gruda N. Current and future perspective of growing media in Europe[J]. Acta Horticulturae, 2012, 960: 37-43.

    [8] 蔡?hào)|宏, 韋開蕾. 我國椰子業(yè)現(xiàn)狀發(fā)展前景和對(duì)策[J]. 世界熱帶農(nóng)業(yè)信息, 1999(4): 8-10.

    Cai D H, Wei K L. Prospects and countermeasures of coco-nut industry in China[J]. World Tropical Agriculture Infor-mation, 1999(4): 8-10.

    [9] Alexander P D, Bragg N C, Meade R, et al. Peat in horticul-ture and conservation: the UK response to a changing world[J]. Mires and Peat, 2008, 3(8): 1-10.

    [10] Evans M R, Stamps R H. Growth of bedding plants in sphagnum peat and coir dust-based substrates[J]. Journal of Environmental Horticulture, 1996, 14(4): 187-190.

    [11] Meerow A W. Coir dust, a viable alternative to peat moss[J]. Greenhouse Product News, 1997, 1: 17-21.

    [12] Xiong J, Tian Y Q, Wang J G, et al. Comparison of coconut coir, rockwool, and peat cultivations for tomato production: nutrient balance, plant growth and fruit quality[J]. Frontiers in Plant Science, 2017, 8(2): 1327.

    [13] Khayyat M, Nazari F, Salehi H. Effects of different pot mixtures on pothos (Epipremnum aureum Lindl. and Andre ‘Golden Pothos’) growth and development[J]. Ameri-can-Eurasian Journal of Agricultural and Environmental Science, 2007, 57(4): 492-493.

    [14] Usman M, Shah M, Badar A, et al. Media steaming and coco-coir enhance growth of rough lemon (Citrus Jambhiri L.) stock[J]. Pakistan Journal of Agricultural Sciences, 2014, 51(3): 617-625.

    [15] 潘英文, 林明光, 陳施明. 文心蘭切花產(chǎn)業(yè)化栽培基質(zhì)的篩選研究[J]. 熱帶農(nóng)業(yè)科學(xué), 2009, 29(7): 32-35.

    Pan Y W, Lin M G, Chen S M. Screening of substrates for commercial culture of cut-flower Oncidium orchid[J]. Chi-nese Journal of Tropical Agriculture, 2009, 29(7): 32-35

    [16] Khelikuzzaman M H. Effect of different potting media on growth of a hanging ornamental plant (Tradescantiasp)[J]. Journal of Tropical Agriculture and Food Science, 2007, 35(1): 41–48

    [17] Bhardwaj R L. Effect of growing media on seed germination and seedling growth of papaya cv. ‘Red lady’[J]. African Journal of Plant Science, 2014, 8(4): 178-184.

    [18] Wright R D. The pour-through nutrient extraction proce-dure[J]. Hortscience, 1986, 21: 227-229.

    [19] Niedziela C E, Nelson P V. A rapid method for determining physical properties of undisturbed substrate[J]. Hortscience, 1992, 27(12): 1279-1280.

    [20] Baiyeri K P, Mbah B N. Effects of soilless and soil-based nursery media on seedling emergence, growth and response to water stress of African breadfruit (Treculia africana Decne)[J]. African Journal of Biotechnology, 2006, 5(15): 1405-1410.

    [21] 陳鳳真. 不同基質(zhì)對(duì)小青菜穴盤苗生長和光合特性的影響[J]. 中國土壤與肥料, 2014(1): 75-78, 100.

    Chen F Z. Effects on growth and photosynthetic characteristics of greengrocery (Brassica chinensis L.) in plugs under different substrate[J]. Journal of Soil and fertilizer sciences in china, 2014(1): 75-78, 100.

    [22] Bilderback T E, Warren S L, Owen Jr J S, et al. Healthy substrates need physicals too[J]. Hort Technology, 2005, 15: 747-751.

    [23] Issa M, Ouzounidou G, Maloupa H, et al. Seasonal and diurnal photosynthetic responses of two gerbera cultivars to different substrates and heating systems[J]. Scientia Horticulturae, 2001, 88(3): 215-234.

    [24] Lincoln Taiz, Eduardo Zeiger. Plant physiology-fifth edi-tion[M]. Sinauer Associates, Inc., Publishers, 2015: 92-212.

    [25] Azia F, Stewart K A. Relationships between extractable chlorophyll and spad values in muskmelon leave[J]. Journal of Plant Nutrition, 2001, 24(6): 961-966.

    [26] Ruiz-Espinoza F, Fenech-Larios L, Beltran-Morales A, et al. Field evaluation of the relationship between chlorophyll content in basil leaves and a portable chlorophyll meter (spad-502) readings[J]. Journal of Plant Nutrition, 2010, 33(3): 423-438.

    [27] Wang Q B, Chen J J, Stamps R H, et al. Correlation of visual quality grading and SPAD reading of green-leaved foliage plants[J]. Journal of Plant Nutrition, 2005, 28(7): 1215-1225.

    [28] Yamamoto A, Nakamura T, Adu-Gyamfi J J, et al. Rela-tionship between chlorophyll content in leaves of sorghum and pigeonpea determined by extraction method and by chlorophyll meter (SPAD-502)[J]. Journal of Plant Nutri-tion, 2002, 25(10): 2295-2301.

    責(zé)任編輯:謝龍蓮

    猜你喜歡
    椰糠光合特性泥炭
    椰糠-黏土植生基材崩解特性試驗(yàn)1)
    污泥炭的制備及其在典型行業(yè)廢水處理中的應(yīng)用
    云南化工(2020年11期)2021-01-14 00:50:40
    浸泡時(shí)長對(duì)椰糠基質(zhì)理化性狀的影響
    泥炭產(chǎn)業(yè)發(fā)展的觀察與思考
    溫室禮品西瓜椰糠無土栽培試驗(yàn)總結(jié)
    5個(gè)引種美國紅楓品種的光合特性比較
    4種砧木對(duì)甜櫻桃葉片光合特性的影響
    不同水分條件下硫肥對(duì)玉米幼苗葉片光合特性的影響
    安圖縣水稻高光效新型栽培技術(shù)示范推廣總結(jié)
    主流媒體聚焦泥炭產(chǎn)業(yè)發(fā)展
    腐植酸(2015年4期)2015-12-26 06:43:51
    精品久久久久久电影网| 夜夜骑夜夜射夜夜干| 伊人亚洲综合成人网| 秋霞伦理黄片| 一边摸一边做爽爽视频免费| 黄片播放在线免费| 在线观看免费日韩欧美大片| 黄色视频不卡| 午夜精品国产一区二区电影| 美女福利国产在线| 一本—道久久a久久精品蜜桃钙片| 免费观看av网站的网址| 丝袜在线中文字幕| 校园人妻丝袜中文字幕| 天天躁夜夜躁狠狠久久av| 午夜福利乱码中文字幕| 下体分泌物呈黄色| 国产精品亚洲av一区麻豆 | 午夜福利网站1000一区二区三区| 熟妇人妻不卡中文字幕| 女人爽到高潮嗷嗷叫在线视频| 色婷婷av一区二区三区视频| 久久人妻熟女aⅴ| 欧美精品高潮呻吟av久久| 麻豆乱淫一区二区| www日本在线高清视频| 好男人视频免费观看在线| 亚洲天堂av无毛| www.av在线官网国产| 日本欧美视频一区| 婷婷色av中文字幕| 久久 成人 亚洲| av网站在线播放免费| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲国产精品一区二区三区在线| 国产午夜精品一二区理论片| 日日啪夜夜爽| 日韩制服丝袜自拍偷拍| 日韩 亚洲 欧美在线| 一本久久精品| 美女福利国产在线| 高清av免费在线| 少妇人妻久久综合中文| 又大又爽又粗| 少妇被粗大猛烈的视频| 美女主播在线视频| 国产精品无大码| 亚洲熟女精品中文字幕| 91aial.com中文字幕在线观看| 免费人妻精品一区二区三区视频| 汤姆久久久久久久影院中文字幕| 最近最新中文字幕大全免费视频 | 久久精品熟女亚洲av麻豆精品| 自线自在国产av| 久久久久精品性色| 国产免费视频播放在线视频| www.熟女人妻精品国产| 一级毛片 在线播放| 成人国产麻豆网| 哪个播放器可以免费观看大片| 日韩av不卡免费在线播放| 亚洲成色77777| 久热这里只有精品99| 超碰97精品在线观看| 国产在视频线精品| 丰满乱子伦码专区| 最新的欧美精品一区二区| 国产免费现黄频在线看| 涩涩av久久男人的天堂| 男人爽女人下面视频在线观看| 国产精品免费大片| av福利片在线| 亚洲av欧美aⅴ国产| 亚洲av日韩精品久久久久久密 | 天天添夜夜摸| 国产在线视频一区二区| 午夜福利视频在线观看免费| 国产亚洲一区二区精品| 日韩欧美精品免费久久| 男男h啪啪无遮挡| 日韩av免费高清视频| 制服诱惑二区| 中文天堂在线官网| 午夜福利免费观看在线| 久久久欧美国产精品| 国产色婷婷99| 性色av一级| 不卡av一区二区三区| 久久 成人 亚洲| 国精品久久久久久国模美| 一本色道久久久久久精品综合| 一级,二级,三级黄色视频| 亚洲国产日韩一区二区| 天天影视国产精品| 国产精品国产三级国产专区5o| av卡一久久| 高清av免费在线| 久久精品久久久久久噜噜老黄| 亚洲av国产av综合av卡| 男女免费视频国产| 美女高潮到喷水免费观看| 亚洲欧美色中文字幕在线| 亚洲欧美日韩另类电影网站| 韩国高清视频一区二区三区| 久久久精品区二区三区| a级毛片黄视频| 精品一区二区三区av网在线观看 | 国产99久久九九免费精品| 亚洲精品久久久久久婷婷小说| videosex国产| 十八禁网站网址无遮挡| 中文字幕人妻丝袜制服| 亚洲av欧美aⅴ国产| 国产精品av久久久久免费| www.av在线官网国产| 欧美日韩亚洲综合一区二区三区_| 成人免费观看视频高清| 一区二区日韩欧美中文字幕| 精品一区二区三卡| 国产成人午夜福利电影在线观看| 国产精品香港三级国产av潘金莲 | 国产 精品1| 老司机深夜福利视频在线观看 | a级片在线免费高清观看视频| 国产精品国产av在线观看| 国产精品久久久人人做人人爽| 国产精品蜜桃在线观看| 青春草国产在线视频| 日本欧美国产在线视频| 最近手机中文字幕大全| 午夜91福利影院| 国产免费一区二区三区四区乱码| 少妇猛男粗大的猛烈进出视频| 一二三四中文在线观看免费高清| 丰满少妇做爰视频| 日韩制服丝袜自拍偷拍| 国产毛片在线视频| 亚洲中文av在线| 中文字幕另类日韩欧美亚洲嫩草| 天天操日日干夜夜撸| 欧美精品一区二区免费开放| 一级毛片电影观看| 在线观看免费高清a一片| 国产免费一区二区三区四区乱码| 女人爽到高潮嗷嗷叫在线视频| 成人影院久久| 激情五月婷婷亚洲| www.熟女人妻精品国产| 精品久久蜜臀av无| 性少妇av在线| 日本午夜av视频| 成人黄色视频免费在线看| 中文天堂在线官网| 满18在线观看网站| 国产精品av久久久久免费| 大香蕉久久网| 国产免费现黄频在线看| 国产淫语在线视频| 国产日韩欧美在线精品| 日日啪夜夜爽| 女人高潮潮喷娇喘18禁视频| 午夜精品国产一区二区电影| 天堂俺去俺来也www色官网| a 毛片基地| 曰老女人黄片| 女性被躁到高潮视频| 女性被躁到高潮视频| 免费在线观看视频国产中文字幕亚洲 | 大陆偷拍与自拍| 国产在线视频一区二区| 亚洲,欧美,日韩| 看十八女毛片水多多多| 捣出白浆h1v1| 国产探花极品一区二区| 99国产精品免费福利视频| 另类亚洲欧美激情| h视频一区二区三区| h视频一区二区三区| 成人午夜精彩视频在线观看| 久久婷婷青草| 精品人妻一区二区三区麻豆| 伊人久久大香线蕉亚洲五| 国产一级毛片在线| 激情视频va一区二区三区| 中文字幕亚洲精品专区| 亚洲av在线观看美女高潮| 日本欧美视频一区| 极品少妇高潮喷水抽搐| 欧美黑人精品巨大| 久久天堂一区二区三区四区| 亚洲精品一二三| 黄片小视频在线播放| 99精国产麻豆久久婷婷| 欧美在线一区亚洲| 国产一区二区三区av在线| 亚洲色图 男人天堂 中文字幕| 桃花免费在线播放| 国产精品免费大片| 观看美女的网站| 欧美人与性动交α欧美软件| 欧美激情极品国产一区二区三区| 精品亚洲成a人片在线观看| 一区二区日韩欧美中文字幕| 欧美日本中文国产一区发布| 国产高清不卡午夜福利| 亚洲精品,欧美精品| 激情五月婷婷亚洲| 国产在视频线精品| 国产片特级美女逼逼视频| 日韩一区二区三区影片| 亚洲国产成人一精品久久久| 亚洲美女搞黄在线观看| 国产精品久久久人人做人人爽| 久久鲁丝午夜福利片| 天天添夜夜摸| 亚洲成人av在线免费| 亚洲国产欧美一区二区综合| 青草久久国产| 69精品国产乱码久久久| 国产精品亚洲av一区麻豆 | 久久精品国产综合久久久| 美女国产高潮福利片在线看| 老司机靠b影院| kizo精华| 午夜日本视频在线| 日韩大片免费观看网站| 国产视频首页在线观看| 丝袜美足系列| 亚洲欧美一区二区三区国产| 日韩中文字幕欧美一区二区 | 成年女人毛片免费观看观看9 | 热re99久久国产66热| 黑人欧美特级aaaaaa片| 欧美日韩视频高清一区二区三区二| 毛片一级片免费看久久久久| 色视频在线一区二区三区| 久久韩国三级中文字幕| 亚洲精品av麻豆狂野| 咕卡用的链子| 欧美 亚洲 国产 日韩一| 女性被躁到高潮视频| 精品少妇一区二区三区视频日本电影 | 亚洲成国产人片在线观看| 免费久久久久久久精品成人欧美视频| av一本久久久久| 久久韩国三级中文字幕| 老司机影院成人| a 毛片基地| 欧美成人精品欧美一级黄| 女人高潮潮喷娇喘18禁视频| h视频一区二区三区| 国产免费又黄又爽又色| 欧美人与性动交α欧美精品济南到| 人人妻人人爽人人添夜夜欢视频| 欧美激情极品国产一区二区三区| 高清黄色对白视频在线免费看| 国产黄色免费在线视频| 一区二区av电影网| av福利片在线| 亚洲一级一片aⅴ在线观看| 亚洲av电影在线观看一区二区三区| 国产av国产精品国产| 久久精品国产综合久久久| 国产亚洲av高清不卡| 亚洲精品在线美女| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲精品视频女| 日韩不卡一区二区三区视频在线| 久久久久视频综合| 成人18禁高潮啪啪吃奶动态图| 国产精品一二三区在线看| 一本一本久久a久久精品综合妖精| 久久久久久久久久久久大奶| bbb黄色大片| www.精华液| 丝袜美足系列| 热re99久久精品国产66热6| 久久久国产欧美日韩av| 国产免费福利视频在线观看| 91aial.com中文字幕在线观看| 丰满迷人的少妇在线观看| 国产亚洲av高清不卡| 午夜免费观看性视频| 久久女婷五月综合色啪小说| 中文字幕人妻熟女乱码| 久久综合国产亚洲精品| 亚洲国产精品成人久久小说| 悠悠久久av| 久久精品熟女亚洲av麻豆精品| 看十八女毛片水多多多| 中文欧美无线码| 亚洲精品国产一区二区精华液| 一级毛片我不卡| 日韩制服丝袜自拍偷拍| 深夜精品福利| 亚洲天堂av无毛| 我的亚洲天堂| 麻豆精品久久久久久蜜桃| 男女无遮挡免费网站观看| 欧美xxⅹ黑人| 国产成人欧美在线观看 | 九九爱精品视频在线观看| 午夜福利,免费看| 汤姆久久久久久久影院中文字幕| av又黄又爽大尺度在线免费看| 一二三四中文在线观看免费高清| 999久久久国产精品视频| 国产毛片在线视频| 久久精品久久久久久噜噜老黄| 久久青草综合色| 国产日韩欧美视频二区| 秋霞伦理黄片| 麻豆av在线久日| 国产亚洲欧美精品永久| 亚洲综合精品二区| 久久久久久人人人人人| 亚洲第一青青草原| av在线观看视频网站免费| svipshipincom国产片| 亚洲欧美日韩另类电影网站| 蜜桃在线观看..| 视频在线观看一区二区三区| 高清av免费在线| 2021少妇久久久久久久久久久| 伊人久久国产一区二区| 九草在线视频观看| 操出白浆在线播放| 日日爽夜夜爽网站| 亚洲少妇的诱惑av| 免费少妇av软件| 色网站视频免费| 一级毛片 在线播放| av国产久精品久网站免费入址| 亚洲精品国产av蜜桃| 亚洲在久久综合| 中文欧美无线码| 极品人妻少妇av视频| 日韩免费高清中文字幕av| 精品亚洲乱码少妇综合久久| 19禁男女啪啪无遮挡网站| 国产熟女午夜一区二区三区| 日本av手机在线免费观看| 麻豆乱淫一区二区| 国产一卡二卡三卡精品 | 在线观看免费午夜福利视频| 综合色丁香网| 在线观看www视频免费| 亚洲第一青青草原| 超色免费av| 精品第一国产精品| 亚洲欧美日韩另类电影网站| 少妇被粗大的猛进出69影院| 亚洲欧美一区二区三区黑人| 午夜激情久久久久久久| 午夜日韩欧美国产| 久久人人97超碰香蕉20202| 国产精品二区激情视频| 国产精品无大码| 国精品久久久久久国模美| 亚洲美女搞黄在线观看| 国产精品一区二区在线观看99| 99热网站在线观看| 亚洲四区av| 巨乳人妻的诱惑在线观看| 亚洲国产欧美一区二区综合| 搡老乐熟女国产| 久久精品久久久久久久性| 国产伦理片在线播放av一区| 久久免费观看电影| 国产视频首页在线观看| 天堂俺去俺来也www色官网| 欧美老熟妇乱子伦牲交| 亚洲激情五月婷婷啪啪| 黄片播放在线免费| 晚上一个人看的免费电影| 女性生殖器流出的白浆| av片东京热男人的天堂| 免费看av在线观看网站| 国产伦人伦偷精品视频| 欧美久久黑人一区二区| 搡老岳熟女国产| 免费观看a级毛片全部| 国产在视频线精品| h视频一区二区三区| 国产一区二区三区av在线| 热99国产精品久久久久久7| 深夜精品福利| 亚洲欧洲国产日韩| 老司机影院成人| 国产不卡av网站在线观看| 日韩大码丰满熟妇| 亚洲精品国产色婷婷电影| 午夜av观看不卡| 搡老乐熟女国产| 狠狠精品人妻久久久久久综合| 伦理电影大哥的女人| 最新在线观看一区二区三区 | 欧美日韩亚洲国产一区二区在线观看 | 亚洲av福利一区| 亚洲精品国产av成人精品| 熟妇人妻不卡中文字幕| 欧美黄色片欧美黄色片| 在线观看一区二区三区激情| 亚洲av电影在线进入| 91国产中文字幕| 亚洲精品国产一区二区精华液| 美女福利国产在线| 女性被躁到高潮视频| 久久久久久久国产电影| 亚洲视频免费观看视频| 亚洲第一青青草原| 欧美在线一区亚洲| 操美女的视频在线观看| 久久久久久久久免费视频了| av不卡在线播放| 国产爽快片一区二区三区| 亚洲成人国产一区在线观看 | 免费日韩欧美在线观看| 久久久久久久国产电影| 久久av网站| 国产女主播在线喷水免费视频网站| 精品久久久久久电影网| 人人妻人人添人人爽欧美一区卜| 亚洲欧美一区二区三区国产| 免费黄频网站在线观看国产| 成年人免费黄色播放视频| 一级片免费观看大全| 18禁裸乳无遮挡动漫免费视频| 一区二区三区乱码不卡18| 女人被躁到高潮嗷嗷叫费观| 亚洲男人天堂网一区| 国产成人精品无人区| 在线观看国产h片| 女性被躁到高潮视频| 午夜福利乱码中文字幕| 人成视频在线观看免费观看| 中国三级夫妇交换| 91精品国产国语对白视频| 国产一级毛片在线| 国产欧美亚洲国产| 亚洲一码二码三码区别大吗| 亚洲欧美成人综合另类久久久| 国语对白做爰xxxⅹ性视频网站| 在线观看人妻少妇| 18在线观看网站| 黄色怎么调成土黄色| 在线观看一区二区三区激情| 天天躁夜夜躁狠狠久久av| 色视频在线一区二区三区| 777久久人妻少妇嫩草av网站| 精品国产一区二区三区四区第35| 波野结衣二区三区在线| 大码成人一级视频| 建设人人有责人人尽责人人享有的| 尾随美女入室| 婷婷色综合大香蕉| 欧美日韩视频高清一区二区三区二| a 毛片基地| 久久久欧美国产精品| 亚洲av成人精品一二三区| 亚洲欧美中文字幕日韩二区| 久久午夜综合久久蜜桃| 国产精品嫩草影院av在线观看| 无遮挡黄片免费观看| 99国产综合亚洲精品| 一级毛片 在线播放| 国产精品一二三区在线看| 免费少妇av软件| 欧美精品一区二区大全| 男女边吃奶边做爰视频| 久久久久久久国产电影| 成人免费观看视频高清| 日本午夜av视频| 一本大道久久a久久精品| av在线app专区| 亚洲av日韩精品久久久久久密 | 99热全是精品| 亚洲国产精品999| 极品人妻少妇av视频| 欧美日韩国产mv在线观看视频| 欧美日韩亚洲高清精品| 成人免费观看视频高清| 男人操女人黄网站| 91精品伊人久久大香线蕉| 久久婷婷青草| 看非洲黑人一级黄片| 亚洲国产欧美网| 久久久国产欧美日韩av| 满18在线观看网站| 久久久精品94久久精品| 国产老妇伦熟女老妇高清| 国产色婷婷99| 满18在线观看网站| 亚洲精品国产色婷婷电影| 天堂俺去俺来也www色官网| 在线精品无人区一区二区三| 制服诱惑二区| 啦啦啦中文免费视频观看日本| 老司机亚洲免费影院| 涩涩av久久男人的天堂| 黄频高清免费视频| 国产男女内射视频| 美女视频免费永久观看网站| 国产有黄有色有爽视频| 欧美中文综合在线视频| 欧美 日韩 精品 国产| 性高湖久久久久久久久免费观看| 99热国产这里只有精品6| 美女福利国产在线| 新久久久久国产一级毛片| 中文字幕另类日韩欧美亚洲嫩草| 国产男人的电影天堂91| 亚洲欧美中文字幕日韩二区| 国产午夜精品一二区理论片| 在线观看免费日韩欧美大片| 日韩欧美精品免费久久| 免费少妇av软件| 亚洲激情五月婷婷啪啪| 两个人看的免费小视频| 乱人伦中国视频| 亚洲欧美精品自产自拍| 天堂8中文在线网| 天天躁夜夜躁狠狠躁躁| 国产成人精品在线电影| 精品久久蜜臀av无| 日韩中文字幕欧美一区二区 | 一级黄片播放器| 一本一本久久a久久精品综合妖精| 日韩中文字幕视频在线看片| 国产精品免费视频内射| 国产探花极品一区二区| 最新在线观看一区二区三区 | 伦理电影免费视频| 妹子高潮喷水视频| 叶爱在线成人免费视频播放| 精品久久蜜臀av无| 麻豆乱淫一区二区| 亚洲第一区二区三区不卡| 免费av中文字幕在线| 国产欧美日韩一区二区三区在线| 国产精品一区二区在线观看99| 狂野欧美激情性xxxx| 亚洲熟女毛片儿| 久久精品国产亚洲av涩爱| 日韩中文字幕视频在线看片| 亚洲精品成人av观看孕妇| 亚洲人成网站在线观看播放| 中国三级夫妇交换| 狂野欧美激情性bbbbbb| 国产成人精品福利久久| 国产精品三级大全| 精品亚洲成a人片在线观看| 欧美亚洲 丝袜 人妻 在线| 欧美人与性动交α欧美软件| 亚洲,欧美,日韩| 国产成人欧美在线观看 | 午夜免费男女啪啪视频观看| 亚洲av成人精品一二三区| 欧美 日韩 精品 国产| 最近最新中文字幕大全免费视频 | 操出白浆在线播放| 亚洲自偷自拍图片 自拍| 国产不卡av网站在线观看| 久久99精品国语久久久| 国产片特级美女逼逼视频| 久久久久精品人妻al黑| 爱豆传媒免费全集在线观看| 亚洲成人一二三区av| 精品国产一区二区三区久久久樱花| 国产日韩一区二区三区精品不卡| 激情视频va一区二区三区| 国产在线免费精品| www.精华液| 中文字幕制服av| 男女边摸边吃奶| 最近手机中文字幕大全| 国产av一区二区精品久久| 国产欧美日韩综合在线一区二区| 9热在线视频观看99| 亚洲中文av在线| 精品第一国产精品| 国产又色又爽无遮挡免| 国产欧美日韩综合在线一区二区| 欧美国产精品va在线观看不卡| 国产一区二区三区综合在线观看| 中国三级夫妇交换| 久久精品亚洲熟妇少妇任你| 欧美老熟妇乱子伦牲交| 菩萨蛮人人尽说江南好唐韦庄| 久久久久网色| 精品免费久久久久久久清纯 | 日日爽夜夜爽网站| 午夜影院在线不卡| 精品一区二区三区四区五区乱码 | 亚洲成av片中文字幕在线观看| 最近最新中文字幕免费大全7| 精品亚洲成a人片在线观看| 爱豆传媒免费全集在线观看| 久久精品国产a三级三级三级| av片东京热男人的天堂| 无遮挡黄片免费观看| 亚洲一级一片aⅴ在线观看| 欧美亚洲日本最大视频资源| 欧美日韩视频精品一区| 欧美国产精品va在线观看不卡| 大话2 男鬼变身卡| 2021少妇久久久久久久久久久| 51午夜福利影视在线观看| 日日摸夜夜添夜夜爱| 深夜精品福利| 多毛熟女@视频| 亚洲国产毛片av蜜桃av| 性少妇av在线| 晚上一个人看的免费电影| 欧美人与性动交α欧美精品济南到|