• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Dispersion of neutron spin resonance mode in Ba0.67K0.33Fe2As2?

    2021-12-22 06:44:32TaoXie謝濤ChangLiu劉暢TomFennellUweStuhrShiLiangLi李世亮andHuiQianLuo羅會(huì)仟
    Chinese Physics B 2021年12期
    關(guān)鍵詞:劉暢

    Tao Xie(謝濤) Chang Liu(劉暢) Tom Fennell Uwe StuhrShi-Liang Li(李世亮) and Hui-Qian Luo(羅會(huì)仟)

    1Beijing National Laboratory for Condensed Matter Physics,Institute of Physics,Chinese Academy of Sciences,Beijing 100190,China

    2School of Physical Sciences,University of Chinese Academy of Sciences,Beijing 100190,China

    3Laboratory for Neutron Scattering and Imaging,Paul Scherrer Institut,CH-5232 Villigen PSI,Switzerland

    4Songshan Lake Materials Laboratory,Dongguan 523808,China

    Keywords: iron-based superconductor,neutron spin resonance,magnetic excitations

    1. Introduction

    The neutron spin resonance mode is a prominent clue to understand the magnetically driven superconductivity in unconventional superconductors.[1,2]Experimentally, it is a sharp peak emerging in the low-energy spin excitations with intensity behaving like a superconducting order parameter,which has been extensively observed in copper-oxide,[3,4]heavy-fermion,[5,6]iron-pnictide,[7]and iron-chalcogenide superconductors.[8]The resonance energyERdefined at the peak point is generally proportional to the superconducting transition temperature(Tc)with a universal ratioER/kBTc=4–6.[1,2,9–12]Theoretically, the neutron spin resonance mode is commonly regarded as a spin exciton arising from the collective particle–hole excitations of gapped Cooper pairs. In this picture,the entire spin resonance should be below a spinflip continuum energy ˉhωcjust beneath the pair-breaking gap 2?(?is the superconducting gap),[1,2]and usually the mode energy follows another linear scalingER/2?≈0.6 for most of unconventional superconductors.[13,14]When the spin resonance disperses to high energy approaching ˉhωc, it will become weaker and weaker,then finally damps out after entering the particle–hole continuum.[1,2]Therefore,the superconducting gap determines not only the upper limit of the resonance energy, but also the shape of the resonance dispersion.[12,15]In cuprates with d-wave pairing, ˉhωcseems like a complete dome with a strong momentum dependence from antinodal(?max=?0) to nodal region (?min=0), resulting in a downward dispersion of spin resonance withER<2?0.[1]In ironbased superconductors, the superconducting pairing symmetry is generally believed as a sign-reversed s±-wave between the hole and electron Fermi pockets.[16,17]The spin resonance arises from quasiparticle excitations with a finite wavevectorQthat connects those sign-changed pairs of Fermi pockets,thus ˉhωcis defined by the total superconducting gap summed on them: ˉhωc=?tot=|?k|+|?k+Q|.?totis momentum independent when only two similar sized Fermi pockets nest with each other.[18–20]In this case,a magnon-like upward dispersion of spin resonance is expected to be beneath the near constant ceiling of?tot. This upward dispersion of spin resonance in the superconducting state is closely related to the anisotropic spin–spin correlation length in the normal state,but has a much lower velocity than the antiferromagnetic(AF)spin waves in parent compounds.[21–23]In most cases, the size mismatch of Fermi pockets together with the distribution of multiple gaps may further affect the dispersion of the resonance.[23,24]

    Although the spin resonance mode has been observed in almost all of iron-based superconductors and generally follows both linear relations:ER/kBTc≈4.9 andER/?tot≈0.64,[11–14]the resonance energy may exceed?totin several particular compounds such as KxFe2?y(Se1?zSz)2,[25](CaFe1?xPtxAs)10Pt3As8,[26](Li0.8Fe0.2)ODFeSe[27]andACa2Fe4As4F2(A= K, Cs).[12,28]Instead of the excitonic scenario under s±-pairing, some of them may be alternatively explained as the self-energy effect induced redistribution of spin excitations under sign-preserved (s++)pairing.[29,30]In addition to the mode energyERat antiferromagnetic wavevectorQAF, the dispersion of the spin resonance seems to highly depend on the magnetic interactions in different compounds.[9]Weak out-of-plane dispersion of the spin resonance mode alongLdirection has been found in those superconducting compounds proximate to the three-dimensional (3D) stripe-type AF order [e.g.,BaFe2?x(Ni,Co,Ru)xAs2,BaFe2(As1?xPx)2,NaFe1?xCoxAs,Ba1?xNaxFe2As2,etc.],[31–37]while in those compounds with weak spin–orbital coupling (such as Ca1?yLayFe1?xNixAs2)or stoichiometric superconductivity(such as KCa2Fe4As4F2),the spin resonance is two-dimensional (2D) in reciprocal space.[11,12]In the bilayer CaKFe4As4system, the resonance intensity splits into two opposite harmonic modulations showing odd and even symmetries alongLdirection with respect to the distance of Fe–Fe planes within the Fe–As bilayer unit,but the resonance energies for both odd and even modes areLindependent.[14]So far,the investigations on the in-plane dispersion (alongHorKdirection) of spin resonance are quite limited in iron-based superconductors,since it is a great challenge to map the weak resonant signals away from the zone centerQAFand peak energyER. Previous inelastic neutron scattering measurements on BaFe2?xNixAs2reveal an upward in-plane dispersion of the resonance mode, thus it supports the spin excitonic picture and also explains the weakLdispersion as a consequence of the residual weak interlayer spin correlations.[21,24]However, an unusual downward in-plane dispersion of the resonance was recently discovered in the quasi-2D KCa2Fe4As4F2, which apparently exceeds?totand deeply challenges the spin excitonic picture.[12]Therefore,it is essential to fully compare the in-plane dispersion of spin resonance mode with the superconducting gaps in each system of iron-based superconductors.

    It was noted that the ringlike upward in-plane dispersion of spin resonance in Ba0.67K0.33(Fe1?xCox)2As2probably arises from particle–hole excitations on the imperfectly nested electron–hole Fermi surfaces.[23]However, their measurements were undertaken by time-of-flight neutron scattering experiments with fixedki ‖c?, which means the energy transfer is always coupled with the momentum transfer alongLdirection. Previous reports on the band structure and superconducting gaps of Ba1?xKxFe2As2are controversial,thus the random phase approximation(RPA)calculation of the spin exciton model is inadequate to capture the details of the resonance dispersion.[22,23]Here, we measure the in-plane dispersion of spin resonance mode in Ba0.67K0.33Fe2As2in fixedLplanes in more detail using a triple-axis neutron scattering spectrometer,and compare with the gap distributions recently measured by high resolution angle resolved photoemission spectroscopy (ARPES). Our results show that the spin resonance quickly becomes incommensurate forE≥11 meV and disperses upwards at least up toE=26 meV, much higher than?totfor all kinds of combination of hole–electron pockets. Therefore,the dispersion of the spin resonance cannot be fully accounted by particle–hole excitons under s±-pairing,as it may not be restricted by superconducting gaps in such multiband systems.

    2. Experimental setup

    High quality single crystals of Ba0.67K0.33Fe2As2were grown by self-flux method using FeAs as flux.[38,39]The largest sizes of our crystals are near 20 mm with homogenous composition. For neutron scattering experiments, about 11 g of crystals were co-aligned on rectangular aluminum plates by x-ray Laue camera using CYTOP hydrogen-free glue[Fig.1(a)]. Resistivity measurements on typical samples show a very sharp superconducting transition atTc=38.2 K within ?T ≈1 K [Fig. 1(b)]. Magnetization measurements also show a sharp superconducting transition and a nearly full diamagnetic susceptibility 4πχ ≈?1 [Fig. 1(c)]. For easy comparison, we summarized the superconducting gap values measured by ARPES on optimally doped Ba1?xKxFe2As2in Fig. 1(d).[40–46]Since all measurements suggested isotropic(s-wave) gaps on each Fermi pockets at fixedkz, here?totis the sum of the absolute gap value on a pair of hole–electron pockets connected by momentum transferQ,as shown in the inset of Fig. 1(d), where the deviations from the center point[Q=(1,0)]are due to the mismatch of the connected hole and electron pockets, and the horizontal bars on the data points mark their distribution in the reciprocal space. The early ARPES measurements seemed to overestimate the gap value,giving?tot=16–24 meV[upper arc in Fig.1(d)].[40–42]From high resolution ARPES measurements based on high quality crystals,[43–45]especially the most recently published results based on laser-ARPES,[46]we estimated?tot=11–17 meV,which forms a lower downward arc shape along the longitudinal direction [Fig. 1(d)]. Neutron scattering experiments were performed using thermal neutron triple-axis spectrometers EIGER at the Swiss Spallation Neutron Source (SINQ),Paul Scherrer Institut, Switzerland, with fixed final energyEf= 14.7 meV.[47]The scattering plane [H,0,0]×[0,0,L]is defined by a pseudo-orthorhombic magnetic unit cell witha ≈b ≈5.52 ?A,c=13.22 ?A,and the vectorQin reciprocal space is defined asQ=Ha?+Kb?+Lc?,whereH,K,andLare Miller indices anda?= ?a2π/a,b?= ?b2π/b,c?= ?c2π/care reciprocal lattice basis vectors. In this case, the AF wave vector isQAF=[1,0,L](L=±1,±3,±5),andq=Q?QAFis the vector away from the zone center to describe the dispersion. The total sample mosaic, defined by the full-widthat-half-maximum (FWHM) of the rocking curve, was about 2.6?for peak (2, 0, 0) and 2.8?for peak (0, 0, 4). In Fig.1(e), we schematically depict the low-energy spin waves of the parent compound BaFe2As2,[48]together with the dispersion of spin resonance in a doped compound. If the spin resonance is indeed from particle–hole excitons under s±-pairing, it should be entirely below?totwith upward dispersions but much slower velocity than the spin waves in the parent compound.[21–24]

    Fig. 1. (a) Photo of Ba0.67K0.33Fe2As2 crystals used in our neutron scattering experiments. (b) Resistivity transition of superconductivity at Tc =38.2 K.(c)Magnetization transition of superconductivity under fieldcooling (FC) and zero-field-cooling (ZFC). (d) The total superconducting gaps ?tot =|?k|+|?k+Q| on the hole and electron Fermi pockets linked by wavevector Q obtained from ARPES results. (e) Comparison between the dispersion of spin resonance mode in the superconducting compound and the spin wave in the parent compound (BaFe2As2) as predicted by the magnetic exciton scenario under s±-pairing symmetry, here assuming?tot is momentum independent. (f) The neutron spin resonance peaks at Q = (1,0,L) (L = 2,3,4) deduced by subtracting the spin excitations at normal state (T =45 K) from those at superconducting state (T =1.5 K).(g)The neutron spin resonance peaks normalized by the magnetic form factor of Fe2+.

    3. Results and discussion

    We firstly identify the spin resonance peak by constant-Qscans(energy scans)atQ=(1,0,L)(L=2,3,4). By subtracting the spin excitations at normal state(T=45 K)from those at superconducting state (T=1.5 K), we find a strong peak with clear intensity gain from 8 meV to 20 meV in superconducting state,the peak position forL=2 and 4 is 15 meV,and forL=3 is slightly lower at 14 meV [Fig. 1(f)]. By further normalizing the intensity using the square of magnetic form factor of Fe2+(|F(Q)|2), it seems that all three peaks have similar shape except for a small shift to low energy side forL=3. Such results suggest that the spin resonance intensity does not have anyLmodulation,and theLdispersion ofERis very weak,namely,the resonance mode is nearly 2D in reciprocal space. These results are consistent with previous reports on the spin resonance energy and the weakkzmodulation in most of superconducting gaps.[23,39,45]

    To determine the in-plane dispersion of the spin resonance, we have performed constant-energy scans (Q-scans)alongQ=[H,0,3]fromE=3 meV to 24 meV both atT=1.5 K (superconducting state) andT=45 K (normal state).Due to the limitation from spectrometer itself and the scattering rule,the scattering triangle cannot be closed for lowQside ofE=22 meV and 24 meV with fixedL=3, we thus measured theE=26 meV alongQ=[H,0,4]. The raw data are shown in Fig. 2, the flat backgrounds are already subtracted.To confirm the 2D behavior, additional scans atE=3 meV,9 meV and 18 meV were also measured alongQ=[H,0,4](data not shown). The signals at high energy are contaminated by spurious scattering possibly from the phonons of the sample holder or multiple scattering of Bragg peaks,which should be almost temperature independent within the measured range 1.5–45 K but only broaden the peak width. We find clear enhancements of the intensity aboveE=9 meV atT=1.5 K from the spin resonance. Due to the opening of full superconducting gaps belowTc,the spin excitations atE=3 meV are nearly fully gapped[Fig.2(a)],and there are still intensity loss and peak sharpening atT=1.5 K for low energies 3–8 meV,which can be explained as a strengthened spin–spin correlation length responding to the superconducting order.[39]From the raw data,we cannot identify any incommensurate spin excitations even in the superconducting state. Thus we have simply performed the single Gaussian fitting for all raw data peaks both atT=1.5 K andT=45 K, as shown by solid lines in Fig. 2. The FWHM of such fitting roughly reflects the energy and temperature dependence of the spin–spin correlation length[Fig.4(c)].

    Fig. 2. Constant-energy scans along Q = [H,0,3] from E = 3 meV to 24 meV and along Q=[H,0,4] for E =3 meV , 18 meV and 26 meV measured both at T =1.5 K(red)and T =45 K(black). The solid lines are fitting curves by single Gaussian functions.

    Fig. 3. The difference between T =1.5 K and 45 K of constant-energy scans in Fig.2(?Int.=Int.(T =1.5 K)?Int.(T =45 K)). The solid lines for E=3 meV,5 meV,7 meV,8 meV,9 meV are obtained by the difference(1.5 K?45 K)of single Gaussian fitting in Fig.2,and other solid lines for E =10–26 meV are fitting curves by two symmetric Gaussian functions.For comparison,the results along Q=[H,0,4]at E =3 meV,18 meV and 26 meV are also presented by open symbols.

    From thoseQ-scans in Fig. 2, we obtain cleanQdistribution of the spin resonance by doing subtraction?Int.=Int.(T=1.5 K)?Int.(T=45 K),as shown in Fig.3.The spin gap atE=3 meV has similar peak width forL=3(FWHM=0.259 r.l.u.) andL= 4 (FWHM=0.245 r.l.u.)[Fig. 3(a)]. At the commensurate position ofQAF=(1,0,3)(Brillouin zone center withq= 0), the change of correlation length firstly induces a small tip in the center of ?Int atE= 5 meV [Fig. 3(b)], and evolves to two negative peaks atE= 7 meV [Fig. 3(c)] and a partially positive peak atE= 8 meV [Fig. 3(d)]. To identify the starting energy of resonance intensity, we integrate ?Int. and then find that it becomes positive whenE> 9 meV [Fig. 3(e)], as there is certainly a positive peak atE=10 meV [Fig. 3(f)]. Therefore,the spin resonance actually emerges between 9 meV and 10 meV, or even lower energy~8 meV if only considering the excitations nearq=0. The resonance peak quickly disperses to incommensurate positions as shown by the data aboveE=11 meV[Figs.3(g)–3(p)],because all of them can be well fitted by two symmetric gaussian functions. The incommensurabilityδalongHdoes not haveLdependence,as manifested by the nearly overlapped data points forL=3 andL=4 atE=18 meV within the experimental errors[Fig.3(i)].Thus we could track the in-plane dispersion of spin resonance by combining the results both fromL=3 andL=4 due to its 2D nature.

    The peak positions determined by the incommensurability are present in Fig. 4(a). ForE=9 meV, we simply show the commensurate position with a horizontal error bar to represent the estimated peak width of the positive part. The lower arc shape of?totfrom high resolution ARPES measurements shown in Fig.1(d)is also present in Fig.4(a)for direct comparison,and the gradient colors represent the intensity of ?Int.obtained from Fig. 3. Apparently,?totjust cuts through the waist of the resonance mode. Although the most intensity of ?Int. locates belowE= 17 meV, the dispersion of the resonance mode can break though?totand persist to at leastE=26 meV [Figs. 3(p) and 4(a)]. We replot the resonance peak in Fig. 4(b) by using the integrated intensity of ?Int.from constant-energy scans alongQ=[H,0,3]in Fig.3. The peak energy still locates atE=14 meV, but the peak shape slightly shifts to high energy in comparison to theE-scan atQ=(1,0,3) shown in Fig. 1(f). The peak widths from single Gaussian fitting in Fig. 2 are plotted in Fig. 4(c), both results atT= 1.5 K andT= 45 K linearly increase upon energy, but the two lines cross around the resonance energyER= 14 meV. Namely, the correlation length in superconducting state is elongated below the mode center energyER,but shorten aboveERdue to the effect from dispersion of the resonance.

    Fig.4. (a)Dispersion along H of the spin resonance. Here the solid squares mark the incommensurate peak positions from two-Gaussian-fitting of the resonance peaks,the horizontal bar at E=9 meV is the estimated width for positive part of ?Int.,and the contour colors represent the intensity obtained from the solid lines in Fig. 3. The distribution of ?tot is also shown as the white arc[same as the lower arc in Fig.1(d)].(b)Integrated intensity of ?Int.obtained from constant-energy scans along Q=[H,0,3]in Fig.3.The solid line is guide to eyes,and the dashed line is normalized intensity from the Escan at Q=(H,0,3)in Fig.1(f). (c)Comparison of the peak width between T =1.5 K and T =45 K along Q=[H,0,3] from single-Gaussian-fitting curves in Fig.2.

    4. Conclusion

    To summarize, we have carefully examined the in-plane dispersion of spin resonance mode in Ba0.67K0.33Fe2As2. The mode energy with maximum intensity locates atE=14 meV forQ=(1,0,3), but the resonance may emerge at lower energy(E=9–10 meV)and quickly disperse to incommensurate positions(q/=0)persisting up toE=26 meV.While the estimated resonance velocity by the spin exciton model agrees reasonably well with experimental observation,the dispersion of spin resonance breaks through the limit of the total superconducting gaps?tot. Our results suggest that the detailed behaviors of spin resonance in iron-based superconductors may be closely related to its multi-band nature.By comparing them among different systems would inspire new mechanisms of magnetically driven superconductivity.

    Acknowledgments

    The authors thanks the helpful discussion with Prof.Jiangping Hu and Prof. Jianxin Li. This work is based on neutron scattering experiments performed at the Swiss Spallation Neutron Source (SINQ), Paul Scherrer Institut, Villigen,Switzerland(Proposal No.20180227).

    猜你喜歡
    劉暢
    Measurement of International Competitiveness of Clothing Industry under the Background of Value Chain Reconstruction
    水蒸氣變戲法
    春來(lái)啦
    They are just kids
    愛(ài)挑剔的番茄
    珍視自我
    劉暢作品
    海參
    夏天咋來(lái)的
    月亮洗澡
    人人妻,人人澡人人爽秒播| 久久久精品国产亚洲av高清涩受| 精品国产乱子伦一区二区三区| 一边摸一边抽搐一进一出视频| 男女午夜视频在线观看| 免费高清在线观看日韩| 亚洲伊人久久精品综合| 亚洲国产欧美网| 不卡一级毛片| 黄色视频不卡| 操出白浆在线播放| 看免费av毛片| 在线观看www视频免费| 在线永久观看黄色视频| 久久免费观看电影| 国产精品 欧美亚洲| 国产精品熟女久久久久浪| 亚洲专区中文字幕在线| 人人妻人人澡人人爽人人夜夜| 久久精品亚洲av国产电影网| 看免费av毛片| 黄色 视频免费看| 亚洲成人国产一区在线观看| 国产av又大| 久久ye,这里只有精品| 黄色视频在线播放观看不卡| 91麻豆精品激情在线观看国产 | av在线播放免费不卡| 久久人妻福利社区极品人妻图片| 中文字幕色久视频| 一本久久精品| 美女午夜性视频免费| 国产精品自产拍在线观看55亚洲 | 日日爽夜夜爽网站| 国产精品影院久久| 精品免费久久久久久久清纯 | 亚洲av片天天在线观看| 老熟女久久久| 国产伦人伦偷精品视频| 亚洲精品国产一区二区精华液| 热99国产精品久久久久久7| 无遮挡黄片免费观看| 极品教师在线免费播放| 婷婷丁香在线五月| 亚洲欧美日韩另类电影网站| 人人妻人人爽人人添夜夜欢视频| 中文字幕人妻熟女乱码| 精品久久久精品久久久| 国产又色又爽无遮挡免费看| 最新的欧美精品一区二区| 高清在线国产一区| 蜜桃国产av成人99| 天堂动漫精品| 国产麻豆69| 精品高清国产在线一区| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲国产精品一区二区三区在线| 人妻久久中文字幕网| 成人永久免费在线观看视频 | 国产高清videossex| 黄色视频在线播放观看不卡| 亚洲成av片中文字幕在线观看| 久久九九热精品免费| 久久国产精品人妻蜜桃| 成人国产一区最新在线观看| av有码第一页| 国产成人欧美在线观看 | 国产又爽黄色视频| 久久精品成人免费网站| 最近最新中文字幕大全电影3 | 久久人人97超碰香蕉20202| 啦啦啦 在线观看视频| 美女主播在线视频| 在线av久久热| 欧美精品亚洲一区二区| 99国产精品免费福利视频| 亚洲天堂av无毛| 人人妻人人添人人爽欧美一区卜| 国产深夜福利视频在线观看| 少妇裸体淫交视频免费看高清 | 亚洲精品粉嫩美女一区| 极品人妻少妇av视频| 亚洲欧美一区二区三区久久| 天天躁狠狠躁夜夜躁狠狠躁| 久久天躁狠狠躁夜夜2o2o| 男女高潮啪啪啪动态图| 久久久久久人人人人人| 国产精品av久久久久免费| 国产区一区二久久| 水蜜桃什么品种好| 亚洲久久久国产精品| 男人操女人黄网站| 亚洲欧美一区二区三区久久| 一区福利在线观看| 亚洲色图 男人天堂 中文字幕| 午夜免费鲁丝| 97在线人人人人妻| 免费女性裸体啪啪无遮挡网站| 婷婷丁香在线五月| 妹子高潮喷水视频| 久久国产精品大桥未久av| 久久久久久亚洲精品国产蜜桃av| 麻豆成人av在线观看| 国产欧美日韩一区二区三| 免费人妻精品一区二区三区视频| 少妇猛男粗大的猛烈进出视频| 国产精品久久久久久精品古装| 国产野战对白在线观看| 亚洲精华国产精华精| 国产欧美日韩综合在线一区二区| 黄色怎么调成土黄色| 午夜精品国产一区二区电影| 中文字幕人妻丝袜制服| 欧美精品av麻豆av| 久久精品国产a三级三级三级| 国产av精品麻豆| 亚洲第一欧美日韩一区二区三区 | 丝袜美腿诱惑在线| 成人18禁在线播放| 亚洲国产成人一精品久久久| 久久精品国产亚洲av高清一级| 国产精品久久电影中文字幕 | 老熟女久久久| 最近最新免费中文字幕在线| 国产av国产精品国产| 国产在线一区二区三区精| 国产亚洲精品久久久久5区| 精品午夜福利视频在线观看一区 | 国产有黄有色有爽视频| 欧美精品av麻豆av| av天堂在线播放| 18禁美女被吸乳视频| www.精华液| 建设人人有责人人尽责人人享有的| 一二三四社区在线视频社区8| 在线观看免费午夜福利视频| 在线 av 中文字幕| 黄色视频不卡| www.精华液| 999久久久精品免费观看国产| 国产亚洲欧美在线一区二区| 美女扒开内裤让男人捅视频| 女人被躁到高潮嗷嗷叫费观| 亚洲av日韩在线播放| 黄色丝袜av网址大全| 黄色 视频免费看| 99国产综合亚洲精品| 亚洲avbb在线观看| 午夜两性在线视频| 99精国产麻豆久久婷婷| 国产男女内射视频| 狠狠精品人妻久久久久久综合| 国产精品av久久久久免费| 国产激情久久老熟女| 国产精品99久久99久久久不卡| 高清视频免费观看一区二区| 亚洲综合色网址| 国产精品亚洲一级av第二区| 久久中文字幕一级| 丰满迷人的少妇在线观看| 亚洲 国产 在线| 久久人妻熟女aⅴ| 男女高潮啪啪啪动态图| 丁香六月天网| 制服诱惑二区| 黄色视频在线播放观看不卡| 90打野战视频偷拍视频| 最新美女视频免费是黄的| 狠狠精品人妻久久久久久综合| 性色av乱码一区二区三区2| 男女高潮啪啪啪动态图| 国产日韩欧美亚洲二区| 十八禁人妻一区二区| 黄色毛片三级朝国网站| 日韩精品免费视频一区二区三区| 欧美人与性动交α欧美精品济南到| 欧美日韩国产mv在线观看视频| 国产不卡一卡二| 欧美成狂野欧美在线观看| 亚洲欧美一区二区三区久久| 人人妻人人爽人人添夜夜欢视频| av网站在线播放免费| 精品国产超薄肉色丝袜足j| 久久国产精品大桥未久av| 亚洲国产中文字幕在线视频| 嫩草影视91久久| 高清黄色对白视频在线免费看| 欧美久久黑人一区二区| 天天影视国产精品| 99精品久久久久人妻精品| 一本大道久久a久久精品| 宅男免费午夜| 自拍欧美九色日韩亚洲蝌蚪91| 日韩中文字幕欧美一区二区| 免费高清在线观看日韩| 高潮久久久久久久久久久不卡| 午夜福利视频在线观看免费| 免费观看a级毛片全部| 香蕉久久夜色| 久久中文看片网| 操美女的视频在线观看| 另类精品久久| av网站免费在线观看视频| 精品国内亚洲2022精品成人 | 另类亚洲欧美激情| 国产97色在线日韩免费| 成人av一区二区三区在线看| 麻豆av在线久日| 亚洲午夜理论影院| 中文字幕人妻丝袜一区二区| 午夜成年电影在线免费观看| 成人国产一区最新在线观看| 欧美精品一区二区免费开放| 欧美日韩精品网址| 久久中文字幕一级| 啦啦啦视频在线资源免费观看| 啦啦啦免费观看视频1| 99riav亚洲国产免费| 亚洲午夜理论影院| 久久久水蜜桃国产精品网| 亚洲国产欧美在线一区| 亚洲少妇的诱惑av| 久久香蕉激情| 中文亚洲av片在线观看爽 | 午夜两性在线视频| 国产不卡一卡二| 亚洲人成77777在线视频| 久久这里只有精品19| 欧美乱码精品一区二区三区| 精品亚洲成国产av| 一个人免费在线观看的高清视频| 国产熟女午夜一区二区三区| 色尼玛亚洲综合影院| 成人永久免费在线观看视频 | 国产成人av教育| 日日夜夜操网爽| 亚洲专区中文字幕在线| 大香蕉久久网| 久久久国产成人免费| 青青草视频在线视频观看| 丰满饥渴人妻一区二区三| 80岁老熟妇乱子伦牲交| 这个男人来自地球电影免费观看| 国产片内射在线| 欧美 日韩 精品 国产| 大型av网站在线播放| 久久国产亚洲av麻豆专区| 日韩欧美一区视频在线观看| 亚洲精品乱久久久久久| 亚洲精品在线观看二区| 国产精品成人在线| 激情在线观看视频在线高清 | 日本vs欧美在线观看视频| 麻豆乱淫一区二区| 国产精品久久久久久人妻精品电影 | 色在线成人网| 18禁黄网站禁片午夜丰满| 变态另类成人亚洲欧美熟女 | 在线观看免费视频日本深夜| 91久久精品国产一区二区成人 | h日本视频在线播放| or卡值多少钱| 精品久久久久久久人妻蜜臀av| 欧美午夜高清在线| 久久伊人香网站| 久久久久亚洲av毛片大全| 欧美乱妇无乱码| 精品福利观看| av视频在线观看入口| 亚洲中文日韩欧美视频| 国产一区二区在线av高清观看| 日韩欧美在线二视频| 2021天堂中文幕一二区在线观| 后天国语完整版免费观看| 亚洲av五月六月丁香网| 两个人视频免费观看高清| 看片在线看免费视频| 日韩欧美三级三区| av黄色大香蕉| 久久精品国产亚洲av香蕉五月| aaaaa片日本免费| 午夜福利在线观看免费完整高清在 | 亚洲国产精品999在线| 亚洲成人久久爱视频| 亚洲国产高清在线一区二区三| 亚洲aⅴ乱码一区二区在线播放| 亚洲av片天天在线观看| 成人特级av手机在线观看| 91老司机精品| 婷婷六月久久综合丁香| 成人亚洲精品av一区二区| 人人妻,人人澡人人爽秒播| 欧美色视频一区免费| 又紧又爽又黄一区二区| 精品久久久久久久末码| 免费看光身美女| 露出奶头的视频| 高潮久久久久久久久久久不卡| 日韩欧美一区二区三区在线观看| 老司机福利观看| 99国产极品粉嫩在线观看| 久久久国产成人免费| 亚洲熟女毛片儿| 岛国在线免费视频观看| 亚洲欧美日韩东京热| 一个人免费在线观看的高清视频| 中文字幕高清在线视频| 亚洲中文av在线| 日本一本二区三区精品| 色吧在线观看| 两个人看的免费小视频| 国产精品一及| 精品久久久久久久久久久久久| 日韩 欧美 亚洲 中文字幕| aaaaa片日本免费| 午夜福利高清视频| 国产亚洲精品久久久com| 婷婷精品国产亚洲av| 18禁美女被吸乳视频| 91九色精品人成在线观看| 国产午夜精品久久久久久| 精品久久久久久久久久久久久| 男女下面进入的视频免费午夜| 免费在线观看亚洲国产| 一级黄色大片毛片| 亚洲熟妇熟女久久| 精品久久久久久久久久免费视频| 嫩草影视91久久| 国产精品 国内视频| 不卡av一区二区三区| 国产精品自产拍在线观看55亚洲| 91九色精品人成在线观看| 九九热线精品视视频播放| 窝窝影院91人妻| 亚洲av成人av| 日本一本二区三区精品| 波多野结衣高清作品| 久久国产精品人妻蜜桃| 88av欧美| 免费观看精品视频网站| 国产黄a三级三级三级人| 久久热在线av| 久久精品国产清高在天天线| 真实男女啪啪啪动态图| 欧美午夜高清在线| 国产高清三级在线| 亚洲精品美女久久久久99蜜臀| 久久午夜综合久久蜜桃| 国产成年人精品一区二区| 国产又黄又爽又无遮挡在线| 丰满人妻一区二区三区视频av | 国产欧美日韩精品一区二区| 色综合站精品国产| 亚洲成av人片在线播放无| 久久久国产精品麻豆| 免费一级毛片在线播放高清视频| 日韩三级视频一区二区三区| 少妇的逼水好多| 久久香蕉国产精品| 真人做人爱边吃奶动态| 天天添夜夜摸| 两性午夜刺激爽爽歪歪视频在线观看| 岛国在线免费视频观看| 国产精品99久久99久久久不卡| 国产精品久久久久久人妻精品电影| 国内精品一区二区在线观看| 国产成人精品久久二区二区91| 免费看光身美女| 亚洲精品中文字幕一二三四区| 又黄又粗又硬又大视频| 亚洲av熟女| 国内精品一区二区在线观看| 天天躁日日操中文字幕| 伊人久久大香线蕉亚洲五| 网址你懂的国产日韩在线| 亚洲国产精品成人综合色| 激情在线观看视频在线高清| 免费搜索国产男女视频| 国产亚洲av高清不卡| 99riav亚洲国产免费| 国产精品亚洲一级av第二区| tocl精华| 18禁观看日本| e午夜精品久久久久久久| 日本五十路高清| xxxwww97欧美| 亚洲国产精品999在线| 国产v大片淫在线免费观看| 最好的美女福利视频网| 特大巨黑吊av在线直播| 国产蜜桃级精品一区二区三区| 国产高清videossex| 久久中文看片网| 精品久久久久久久久久免费视频| 19禁男女啪啪无遮挡网站| 国产伦精品一区二区三区四那| 久久香蕉国产精品| 欧美日本视频| 亚洲七黄色美女视频| 激情在线观看视频在线高清| 日韩高清综合在线| 两个人的视频大全免费| 亚洲欧美激情综合另类| 五月伊人婷婷丁香| 国内久久婷婷六月综合欲色啪| 国产精品一及| 99精品在免费线老司机午夜| 国产精品自产拍在线观看55亚洲| 亚洲一区二区三区不卡视频| 69av精品久久久久久| 亚洲欧美精品综合一区二区三区| 国产亚洲av嫩草精品影院| 免费在线观看影片大全网站| 国内精品久久久久久久电影| 一级a爱片免费观看的视频| 亚洲avbb在线观看| 精品乱码久久久久久99久播| 亚洲在线观看片| 国产一区二区激情短视频| 亚洲午夜理论影院| 亚洲欧美日韩卡通动漫| 亚洲专区国产一区二区| 亚洲色图 男人天堂 中文字幕| 久久久久久九九精品二区国产| 国产成人av教育| 村上凉子中文字幕在线| 精品99又大又爽又粗少妇毛片 | 国产av麻豆久久久久久久| 露出奶头的视频| 熟妇人妻久久中文字幕3abv| 色精品久久人妻99蜜桃| 麻豆久久精品国产亚洲av| 日韩有码中文字幕| 天天躁狠狠躁夜夜躁狠狠躁| svipshipincom国产片| 久久中文看片网| 窝窝影院91人妻| 亚洲性夜色夜夜综合| 亚洲最大成人中文| 国模一区二区三区四区视频 | 国产成人av教育| 欧美一区二区精品小视频在线| 亚洲av第一区精品v没综合| 91久久精品国产一区二区成人 | www国产在线视频色| 午夜福利18| 国产成人av教育| www.自偷自拍.com| 国产成人aa在线观看| 99久久精品热视频| 亚洲成人久久爱视频| 国产三级中文精品| 国产v大片淫在线免费观看| 久久久成人免费电影| 91老司机精品| 国产精品精品国产色婷婷| 国产精品国产高清国产av| 久久天躁狠狠躁夜夜2o2o| 亚洲一区二区三区色噜噜| 非洲黑人性xxxx精品又粗又长| 一级a爱片免费观看的视频| 黄色丝袜av网址大全| 哪里可以看免费的av片| 好看av亚洲va欧美ⅴa在| 国产精品久久久久久人妻精品电影| 国产亚洲精品久久久久久毛片| 成人av在线播放网站| 亚洲自拍偷在线| 成人18禁在线播放| 国产一区二区激情短视频| 熟妇人妻久久中文字幕3abv| 高清毛片免费观看视频网站| 好男人电影高清在线观看| 免费看日本二区| 亚洲激情在线av| 免费一级毛片在线播放高清视频| 亚洲七黄色美女视频| 午夜两性在线视频| 很黄的视频免费| 男女下面进入的视频免费午夜| 国产在线精品亚洲第一网站| 黄色视频,在线免费观看| 国产乱人伦免费视频| 1024手机看黄色片| 久久人人精品亚洲av| 在线播放国产精品三级| 亚洲精品美女久久av网站| 无限看片的www在线观看| 精品久久久久久久末码| 男人舔女人的私密视频| 欧美日韩亚洲国产一区二区在线观看| 国产精品一区二区三区四区久久| 国产午夜精品论理片| 国产精品 国内视频| 国产高潮美女av| 美女高潮的动态| 免费av毛片视频| 99国产精品99久久久久| 久久亚洲真实| 国产爱豆传媒在线观看| 校园春色视频在线观看| 日韩三级视频一区二区三区| 岛国在线观看网站| 亚洲欧美日韩高清专用| 97人妻精品一区二区三区麻豆| 久久久久精品国产欧美久久久| 国产三级黄色录像| 欧美不卡视频在线免费观看| 99在线视频只有这里精品首页| 日韩成人在线观看一区二区三区| 国产又黄又爽又无遮挡在线| 欧美性猛交╳xxx乱大交人| av福利片在线观看| 狂野欧美白嫩少妇大欣赏| 国产不卡一卡二| 99热精品在线国产| 成人午夜高清在线视频| 日韩欧美 国产精品| 欧美成人免费av一区二区三区| 黄片小视频在线播放| 91在线观看av| 国产成人影院久久av| 欧美又色又爽又黄视频| 亚洲欧洲精品一区二区精品久久久| 琪琪午夜伦伦电影理论片6080| 曰老女人黄片| 国产美女午夜福利| 国产精品av视频在线免费观看| 精品国内亚洲2022精品成人| 欧美激情在线99| 日韩欧美 国产精品| 成人亚洲精品av一区二区| 亚洲熟妇熟女久久| 老熟妇乱子伦视频在线观看| 18禁黄网站禁片午夜丰满| 最新中文字幕久久久久 | 香蕉av资源在线| 黑人操中国人逼视频| 丝袜人妻中文字幕| 欧美日本亚洲视频在线播放| 国产在线精品亚洲第一网站| 51午夜福利影视在线观看| 亚洲电影在线观看av| 女人被狂操c到高潮| 国产成年人精品一区二区| 搞女人的毛片| 久9热在线精品视频| 午夜福利欧美成人| 日日夜夜操网爽| 啪啪无遮挡十八禁网站| 此物有八面人人有两片| 级片在线观看| 免费看美女性在线毛片视频| 国产99白浆流出| 欧美一级毛片孕妇| 变态另类丝袜制服| 一个人看的www免费观看视频| 午夜激情欧美在线| 午夜免费观看网址| 亚洲专区字幕在线| 国产欧美日韩一区二区精品| 一区福利在线观看| 国产亚洲精品综合一区在线观看| 俺也久久电影网| 在线视频色国产色| 国产精品电影一区二区三区| 99久久无色码亚洲精品果冻| 国产精品久久久久久亚洲av鲁大| www.熟女人妻精品国产| 久久中文字幕人妻熟女| 日本黄大片高清| 欧美另类亚洲清纯唯美| 淫秽高清视频在线观看| 夜夜看夜夜爽夜夜摸| 国产v大片淫在线免费观看| 国产成人福利小说| 一二三四在线观看免费中文在| 免费在线观看亚洲国产| 88av欧美| 老熟妇乱子伦视频在线观看| 免费在线观看亚洲国产| 美女高潮喷水抽搐中文字幕| 欧美日韩瑟瑟在线播放| 热99re8久久精品国产| 久久精品国产清高在天天线| 超碰成人久久| 国产美女午夜福利| 91麻豆精品激情在线观看国产| 国产精品99久久久久久久久| 在线观看日韩欧美| 国产伦精品一区二区三区视频9 | av天堂中文字幕网| 国产亚洲欧美98| 亚洲18禁久久av| 欧美不卡视频在线免费观看| 国产精品一区二区免费欧美| 观看美女的网站| 老熟妇仑乱视频hdxx| 99久久成人亚洲精品观看| 制服丝袜大香蕉在线| 国产精品综合久久久久久久免费| 国内久久婷婷六月综合欲色啪| 免费看美女性在线毛片视频| 亚洲成人久久性| 成人18禁在线播放| 少妇裸体淫交视频免费看高清| 午夜视频精品福利| 免费看日本二区| 视频区欧美日本亚洲| 亚洲欧美精品综合一区二区三区| 美女高潮的动态| 亚洲精品粉嫩美女一区| 九九在线视频观看精品| 精品日产1卡2卡| 国产精品自产拍在线观看55亚洲|