• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Transient transition behaviors of fractional-order simplest chaotic circuit with bi-stable locally-active memristor and its ARM-based implementation

    2021-12-22 06:40:42ZongLiYang楊宗立DongLiang梁棟DaWeiDing丁大為
    Chinese Physics B 2021年12期
    關(guān)鍵詞:李浩

    Zong-Li Yang(楊宗立) Dong Liang(梁棟) Da-Wei Ding(丁大為)

    Yong-Bing Hu(胡永兵)1, and Hao Li(李浩)3

    1School of Electronics and Information Engineering,Anhui University,Hefei 230601,China

    2National Engineering Research Center for Agro-Ecological Big Data Analysis&Application,Anhui University,Hefei 230601,China

    3State Grid Lu’an Electric Power Supply Company,Lu’an 237006,China

    Keywords: fractional calculus,bi-stable locally-active memristor,transient transition behaviors,ARM implementation

    1. Introduction

    Chua has predicted that there is the fourth fundamental circuit element called memristor, which describes the relation between chargeqand magnetic fluxφ.[1]In 2008, HP(Hewlett Packard)Laboratory first fabricated a practical memristor physical device.[2]From then on, the research of the memristor received widespread attention in many fields of academia and industry. Due to its nonlinear and nonvolatile characteristics, memristors can be applied in many scenarios,such as neural networks,[3–5]memory storage,[6–8]chaotic circuit design[9–11]and secure communications.[12–14]

    Researches show that the memristor has many types,and current popular memristors contain the HP memristors,[15–17]piecewise nonlinear memristors,[18–20]continuous nonlinear function memristors,[21–23]locally-active memristors,[24–26]and so on. Recently, the research of locally-active memristors has attracted wide attention because it has the capability of a nonlinear dynamical system to amplify infinitesimal energy fluctuations.[27–29]According to the principle of energy conservation, if a nonlinear dynamical system can produce and maintain oscillations, a locally-active element is essential. Oscillations occur only in locally-active regions.[30]As a novel memory device, the locally-active memristor is first proposed by Chua,[31]and it is considered to be the origin of complexity.[32]Chua proposed a corsage memristor with one pinched hysteresis loop and locally-active ranges, which was analyzed from complex frequency domain.[33]Oscillation of the circuit on the corsage memristor was analyzed via an application of the theory of local activity, edge of chaos and the Hopf-bifurcation.[34]A novel bi-stable nonvolatile locallyactive memristor model was introduced,and the dynamics and periodic oscillation were analyzed using the theory of local activity, pole-zero analysis of admittance functions, Hopf bifurcation and the edge of chaos.[35]Jinet al. proposed a novel locally-active memristor based on a voltage-controlled generic memristor, analyzed its characteristics and illustrated the concept of local activity via the DCV–Iloci of the memristor and nonvolatile memory via the power-off plot of the memristor.[36]Yinget al. proposed a nonvolatile locallyactive memristor, and the edge of chaos was observed using the method of the small-signal equivalent circuit.[37]Wanget al. proposed a locally-active memristor with two pinched hysteresis loops and four locally-active regions,and the effect of locally-active memristors on the complexity of systems was discussed.[38]

    Fractional calculus is a generalization of the integer-order calculus,and it has the same historical memory characteristic as memristor with respect to time, therefore memristor and memristive system can be extended to fractional-order. Ivo Petr′aˇset al. firstly proposed the conception of the fractionalorder memristor.[39]Yuet al. demonstrated that fractionalorder system can describe memory effect better than integer order system in frequency domain.[40]Foudaet al. discussed the response of the fractional-order memristor under the DC and periodic signals.[41]A fractional-order HP TiO2memristor model was proposed, and the fingerprint analysis of the new model under periodic external excitation was made.[42]Wanget al. studied the properties of a fractional-order memristor, and the influences of parameters were analyzed and compared. Then the current–voltage characteristics of a simple series circuit that is composed of a fractional-order memristor and a capacitor were studied.[43]

    Nowadays, there are many researches on locally-active memristor.[44–47]Fractional-order locally-active systems can generate more complex dynamic behaviors.However,there are few researches on the nonlinear characteristics of fractional-order locally-active memristor. Our objective is to propose a novel fractional-order continuous nonlinear bistable locally-active memristor model,and study its nonlinear characteristics and conclude that the fractional-order memristor is a bi-stable locally-active memristor in certain conditions.Then, we analyze the features of the fractional-order locallyactive memristor by time domain waveforms and pinched hysteresis loop at different frequencies, different amplitudes and different orders. In order to verify that the fractional-order memristor is locally-active, we design a fractional-order simplest circuit system using the designed memristor, a linear passive inductor and a linear passive capacitor in series. It is observed that the circuit can produce oscillation and its dynamical behavior is abundant. Particularly, the fractionalorder simplest nonlinear circuit using bi-stable locally-active memristor exhibits discontinuous coexisting phenomenon and rich transient transition phenomenon. Moreover, in order to verify the correctness of the theoretical analysis and numerical simulation, the fractional-order simplest chaotic system is implemented by ARM-based MCU. The contributions of this paper are listed as follows: (1) We design and analyze a fractional-order bi-stable locally-active memristor. (2) We build a fractional-order chaotic system based on the proposed memristor and discover its discontinuous coexisting dynamical behaviors and transient transition behaviors. (3)The proposed memristor and chaotic system are implemented digitally by ARM-based hardware.

    The structure of this paper is organized as follows: Section 2 introduces the mathematical model of the fractionalorder bi-stable locally-active memristor and the power-off plot(POP)and DCV–Iloci are used to verify the nonvolatile and the locally-active characteristics. In Section 3, a fractionalorder nonlinear circuit using the proposed memristor is established, and the stability of the system is discussed. In Section 4,the nonlinear dynamics and transient transition behaviors of this system are revealed numerically using bifurcation diagrams, Lyapunov exponent spectrum, and phase portraits and so on. In Section 5,the circuit implement is carried out by ARM-based MCU in order to verify the validity of the numerical simulation results. Finally, some concluding remarks are given in the last short section.

    2. Preliminaries

    In this section,the mathematical definition of the Caputo fractional derivatives and Adomian decoposition method are introduced.

    2.1. Fractional calculus

    Definition 1[48]The Caputo fractional derivation definition of fractional-orderαis

    2.2. Adomian decomposition method

    For a fractional-order chaotic systemDαt0x(t) =f(x(t)) +g(t), herex(t) = [x1(t),x2(t),...,xn(t)]Tare the state variables of the given function, andg(t) =[g1,g2,...,gn]Tare the constants for the autonomous system,and the functionfcan be divided into linear and nonlinear termsk

    3. Bi-stable locally-active memristor

    3.1. Memristor model

    Based on Chua’s unfolding theorem,[50]a generic current-controlled memristor can be described by

    wherevandiare the input and output of the memristor,respectively,xis the state variable, andg(·) andG(·) are functions related to a specific memristor.

    A novel generic memristor model is proposed as follows:

    Based on Eqs. (12) and (13), when the unfolding parameters are set asa=4,b=?1,the POP of Eq.(13)with the arrowheads is shown in Fig. 1. Observing the trajectory of motion of the state variablex, we find that there are three intersections with thex-axis located atx1=?2,x2=0,x3=2. The dynamic route identifies that the equilibrium points?E1andE1are asymptotically stable, whereas the equilibrium pointE0is unstable, and the attraction domains of?E1andE1are(?∞,0)and(0,∞),respectively.

    Fig.1. Power-off plot(POP)of Eq.(13).

    3.2. Pinched hysteresis loops

    A sinusoidal signal source with amplitudeAand frequenciesωis designed to drive the memristor. The dynamical trajectory displays one monostable or bi-stable pinched hysteresis loop as the amplitudeAand frequencyωof the sinusoidal signal source take different values.

    Let the amplitudeA=4 V,α=0.9, and the frequencyωis changed. Whenω> 3.5 rad/s, the dynamical trajectory displays double coexisting pinched hysteresis loops as many initial valuesx0are situated on two sides of the origin.Letx0=1 andx0=?1,double coexisting pinched hysteresis loops can be obtained as shown in Figs. 2(a)–2(c). It can be found from Fig.2 that the double coexisting pinched hysteresis loops of the memristor are located in at least three quadrants.Forω>35 rad/s, although the dynamical trajectory displays double coexisting pinched hysteresis loops, the memristor is non-active.

    Let the frequencyω=6 rad/s,α=0.9, and the amplitudeAis changed. WhenA<6.4 V,the dynamical trajectory displays one bi-stable pinched hysteresis loop as many initial valuesx0are situated on two sides of the origin. Letx0=1 andx0=?1, double coexisting pinched hysteresis loops can be obtained as shown in Figs.2(d)–2(f). The same conclusion can be obtained as above.

    Let the amplitudeA=5 V,α=0.9,and the frequencyωis changed. When 1.4 rad/s≤ω<3.5 rad/s,the pinched hysteresis loops have a pinch-off point. When 0 ≤ω<1.4 rad/s,the pinched hysteresis loops have two pinch-off points,and all of the pinched hysteresis loops are symmetric abouti=0,the memristor is monostable memristor. The pinched hysteresis loops and corresponding time domain diagram are shown in Figs.3(a)–3(d).

    Fig. 2. Double coexisting pinched hysteresis loops when α =0.9, where red curves indicate initial value is x0 =1, blue curves indicate the initial value is x0=?1: (a)A=4 V,ω =4 rad/s,(b)A=4 V,ω =7 rad/s,(c)A=4 V,ω =10 rad/s,(d)A=3 V,ω =6 rad/s,(e)A=4.5 V,ω =6 rad/s,(f)A=5.5 V,ω =6 rad/s.

    Fig.3. The time-domain wave and pinched hysteresis loops of monostable memristor: (a)the time-domain diagram when A=5 V,ω =2.1 rad/s,(b)the pinched hysteresis loops when A=5 V,ω =2.1 rad/s,(c)the time-domain diagram when A=5 V,ω =1.5 rad/s,(d)the pinched hysteresis loops when A=5 V, ω =1.5 rad/s, (e) the time-domain diagram when A=6.7 V, ω =3 rad/s, (f) the pinched hysteresis loops when A=6.7 V,ω =3 rad/s,(g)the time-domain diagram when A=8 V,ω =3 rad/s,(h)the pinched hysteresis loops when A=8 V,ω =3 rad/s.

    In the same way, let the frequencyω=5 rad/s, and the amplitudeAis changed. WhenA>6 V,the pinched hysteresis loops have one pinch-off point. When 6.85 V≤A<10.5 V,the pinched hysteresis loop has two pinch-off points, and all of the pinched hysteresis loops are symmetric abouti=0,the memristor is monostable memristor. The pinched hysteresis loops and corresponding time domain diagram are shown in Figs.3(e)–3(h).

    Let the amplitudeA=4 V,ω=5 rad/s, and the orderαis changed. When 0.787 ≤α<1, the pinched hysteresis loop has two pinch-off points. With the orderαincreasing,the non-origin pinch-off point moves from left to right until it disappears. Whenα<0.787,the pinched hysteresis loop has a pinch-off point of the origin,and it is symmetric abouti=0.The pinched hysteresis loops are shown in Fig.4.

    Fig. 4. The pinched hysteresis loops when A=4, ω =5, where red curve indicates the order of α =0.9,green curve indicates the order of α =0.8,blue curve indicates the order of α =0.7.

    3.3. DC V–I plots

    DCV–Iplot is the Ohm’s law of the memristor, which can clearly show the intrinsic features of the memristor. Letx=X, dx/dt|x=X=0,Eq.(13)can be described as follow:

    Solving Eq. (14) for the equilibrium point (X,I), a function between the stateXand the applied DC currentIcan be derived,and we have

    Fig.5. DC X–I and V–I loci. (a)The equilibrium state curve on the X–I plane for the DC current on interval ?6 A

    Then settingk=1 and substituting Eq.(15)into Eq.(12),the DC voltageVcan be calculated as

    Based on Eqs. (15) and (16), when the parametercis set as 0.4, the DCX–IandV–Iplots of the memristor can be obtained, as shown in Figs. 5(a) and 5(b), respectively. When the parametercis set as different values,the DCV–Iplots are drawn as shown in Figs. 5(c) and 5(d). It can be seen from Fig.5 that the slopes of three parts of the DCV–Icurves are negative,hence the designed memristor is locally active.

    4. Fractional-order bi-stable memristive system

    The well-known simplest chaotic system was presented by Chua.[51]The system contains three circuit elements,a resistance, an inductance and a memristor. When the memristor is replaced by a bi-stable locally-active memristor,a novel 3D autonomous fractional-order memristive chaotic system is given by

    The parameter values areC=1,L=1,a=4,b=?1.The state variables in terms of circuit variables arex(t)=vC(t)(voltage across capacitorC),y(t)=iL(t)(current through inductorL)andz(t)is the internal state of the bi-stable locallyactive memristor.

    From basic circuit theory,it is not possible to have an oscillation with three independent state variables if we use the non-active memristor. However,if we use a bi-stable locallyactive memristor in the circuit, the autonomous system can generate oscillation.

    4.1. The stability of the equilibria

    To evaluate the equilibrium points,let

    The asymptotically stable regions and unstable regions in thek–cplane are separated by the curves ofk(2z??cz?3)=2 andk(2z??cz?3)=?2,which are shown as the red curves and blue curves in Fig.6,respectively.

    Fig.6. Asymptotically stable and unstable regions of the system(16)in the k–c plane.

    4.2. Solution of the fractional-order bi-stable simplest memristive system

    According to Eqs. (32)–(37), we can obtain the solutions of the proposed system,then analyze the dynamical characteristics of the system.

    4.3. Analysis of complex dynamical behaviors

    Coexisting phase diagrams, coexisting bifurcation diagrams,basins of attractor and coexisting Lyapunov exponents are applied to analyze the dynamical behaviors of system(17).

    4.3.1. Bifurcation analysis and Lyapunov exponents

    4.3.1.1. Two-parameter bifurcation

    In order to show parameter-related dynamical behaviors of the proposed system, a two-parameter bifurcation diagram should first be computed. We know that there is a fractionalorder bi-stable memristor used in system (17), whena=4,c=0.5,α=0.8,two examples of two-parameter bifurcation diagrams for different initial conditions (x0,y0,z0)=(1,1,1)and (x0,y0,z0) = (?1,?1,?1) are shown in Figs. 7(a) and 7(b), respectively. The regions marked with different colors represent different attractor types and the navy blue regions imply the orbit tending to infinite. In addition, for different parameters, many classes of attractors cannot be completely distinguished, such as limit cycles with different periodicity and chaotic attractors with different topologies. The twoparameter bifurcation diagrams show rich dynamical behaviors and coexisting phenomenon in our system.

    Fig.7. Two-parameter bifurcation diagrams(a)in k–b plane for initial value(1, 1, 1), (b)in k–b plane for initial value(?1, ?1, ?1), (c)in α–b plane for initial value(1,1,1),(d)in α ?k plane for initial value(1,1,1).

    In Fig.7(a),there are many regions marked with different colors,corresponding to the four different attractor types(navy blue region indicates the attractor tending to infinite),namely,cyan area, light area and yellow area indicate point attractor,limit cycle and chaos,respectively. Comparing Fig.7(b)with Fig. 7(a), it is easily seen that the two-parameter bifurcation diagram from system(17)is almost completely asymmetric.

    As shown in Fig. 7(c), there are three different attractor types,which are marked by three different colors,namely,the blue area indicates point attractors, light blue area indicates period attractors and the yellow area indicates chaotic attractors. In contrast, the period attractors have very small area marked by light blue,and the point attractors have biggest area marked by blue. In Fig. 7(d), there are three regions marked with different colors, corresponding to the three different attractor types. The blue area indicates point attractors,the light blue area indicates period attractors,and the yellow area indicates chaotic attractors.From Fig.7,stable point,periodic and chaotic areas can be easily identified.

    4.3.1.2. Coexisting bifurcation

    Lyapunov exponents are considered as one of the most useful diagnostic tools for analyzing dynamical behaviors of nonlinear system,and coexisting bifurcation analysis can compare the characteristics of a nonlinear system in different initial values. The method of Ref.[54]is used to solve the Lyapunov exponents in this paper. Based on the two-parameter bifurcation diagram,we can trace the dynamics to compute a single-parameter bifurcation diagram, i.e.,b=1.5,b=?1.5 andk=0.5,k=?0.5. We choose two sets of different initial values (1, 1, 1) and (?1,?1,?1), and plot coexisting bifurcation diagrams ofxversusb,xversuskandzversusα. The corresponding bifurcation diagrams and Lyapunov exponents are shown in Figs.8–10,respectively.

    Fig.8. Bifurcation diagrams with respect to x and Lyapunov exponents.(a) k=0.5, xmax excited by two sets of initial value (1,1,1) (red) and initial value(?1,?1,?1)(blue),(b)k=0.5,coexisting bifurcation of xmax for initial value(1,1,1)(red)and initial value(?1,?1,?1)(blue),(c)k=0.5,Lyapunov exponents corresponding to(a),(d)k=0.5,coexisting Lyapunov exponents corresponding to(b), (e)k=?0.5, xmax excited by two sets of initial value(1,1,1)(red)and initial value(?1,?1, ?1)(blue), (f)k=?0.5, coexisting bifurcation of xmax for initial value(1,1,1)(red)and initial value(?1,?1,?1)(blue),(g)k=?0.5,Lyapunov exponents corresponding to(e),(h)k=?0.5,coexisting Lyapunov exponents corresponding to(f).

    It is found from Fig.8 that system(17)occurs alternately the phenomenon of period and chaos with the increase of parameter. Whenk=0.5,b ∈[?8.2,?2.33], system (17) produces chaotic oscillation and period oscillation only in initial value (1, 1, 1). Whenk= 0.5,b ∈[?2.34,1.59], system (17) undergoes coexisting chaos and period-1 states, coexisting point attractor and period-1 states,coexisting point attractor and chaos states. Whenk=0.5,b ∈[1.6,13],the coexisting oscillation disappears and system(17)alternately occurs period and chaos oscillation only in initial value(?1,?1,?1).Whenk=?0.5,b ∈[?8.2,13],system(17)undergoes almost the same process ask=0.5, shown in Figs. 8(a), 8(b), 8(e),and 8(f). Symmetry reflects the beauty of harmony and unity.In general, if a system manifests a symmetric transformationT:(x,y,z)→(?x,?y,?z),it can be found that the system is invariant underT,and emerges dynamic behaviors in pairs. In contrast, our system does not satisfy the condition of a symmetric transformationT,we still find that the bifurcation plots are not perfectly symmetrical with respect tob-axis,xmax-axis and center. This indicates that system(17)with the proposed bi-stable locally-active memristor possesses the unique characteristics.The corresponding Lyapunov exponents are shown in Figs.8(c),8(d),8(g),and 8(h).

    Fig.9. Coexisting bifurcation diagrams with respect to x and Lyapunov exponents. (a)b=1.5,coexisting bifurcation of xmax for initial value(1,1,1)(red)and initial value(?1,?1,?1)(blue),(b)b=?1.5,coexisting bifurcation of xmax for initial value(1,1,1)(red)and initial value(?1,?1,?1)(blue),(c)b=1.5,Lyapunov exponents corresponding to(a),(d)b=?1.5,coexisting Lyapunov exponents corresponding to(b).

    It is found from Fig.9 that with the increase of parameterk, system (17) alternately occurs the phenomenon of periods and chaos. Whenb= 1.5,k ∈[?4,?0.5329], system (17)produces a stable point attractor only in initial value (1,1,1).Whenb=1.5,k ∈[?0.5328,?0.3], system (17) undergoes coexisting chaos and point attractor states,coexisting period-1 and point attractor states,whenk ∈[?0.3,0.3],the coexisting phenomenon disappears and system (17) undergoes chaos to period to chaos. Whenk ∈[0.3,0.5328], the coexisting phenomenon appears again, and system (17) undergoes a symmetrical process withk ∈[?0.5328,?0.3]. Whenb= 1.5,k ∈[0.5329,4], system (17) produces stable point attractor only in initial value (?1,?1,?1). Whenb=?1.5,k ∈[?0.5328,0.5328], system (17) undergoes coexisting chaos and point attractor states. Whenk ∈[?4,?0.5328]∪k ∈[0.5328,4], the coexisting phenomenon disappears and system (17) only appears stable point attractor. We find that the bifurcation plots are not perfectly symmetrical with respect tok-axis,xmax-axis and center. The corresponding Lyapunov exponents are shown in Figs.9(c)and 9(d).

    It is found from Fig. 10(a) that with the increase of parameterα,system(17)alternately occurs the phenomenon of stable point, periods and chaos. Whenb=?1.5,k= 0.5,α ∈[0.5,0.63], system (17) produces stable point attractor in all values. Whenb=?1.5,k= 0.5,α ∈(0.63,0.78],system (17) produces chaos oscillation in all values. Whenb=?1.5,k=0.5,α ∈(0.78,1],system(17)undergoes coexisting chaos and period states. The corresponding Lyapunov exponents are shown in Fig.10(b).

    Fig.10. Coexisting bifurcation diagrams with respect to z versus α and Lyapunov exponents. (a) k=0.5, b=?1.5, coexisting bifurcation of zmax for initial value(1,1,1)(red)and initial value(?1,?1,?1)(blue),(b)k=0.5,b=?1.5,Lyapunov exponents corresponding to(a).

    4.3.2. Coexisting attractors and attraction basins

    If a nonlinear system with bi-stable memristor can produce oscillation, it must have coexisting attractors. Based on bifurcation plots in Figs. 7–10, we set parametersa=4,c=0.5,α=0.8,h=0.001 and change parametersbandk,then,we can draw phase diagrams as shown in Fig.11.We find that there are two kinds of chaotic attractors and two kinds of period-I cycles in the system,and called chaotic attractor I and chaotic attractor II, cycle I and cycle II. Figure 11(a) shows the coexistence of cycle I and chaotic attractor I.Figures 11(b)and 11(c)only show cycle I and attractor I,respectively. Figure 11(d) shows the coexistence of attractor I and pointer attractor. Figure 11(e)shows the coexistence of two pointer attractors in the system. Figure 11(f) shows the coexistence of chaotic attractor II and pointer attractor. Figure 11(g) shows the coexistence of cycle II and pointer attractor. Figure 11(h)shows the coexistence of cycle II and pointer attractor. From Fig. 11, we also can see the coexisting phenomenon of system(17)is intermittent.

    The different types of attractors coexist stably in the proposed simple chaotic system, their basins of attraction represent the states of the attractors in the initial state space.When we set parametersa=4,c=0.5,α=0.8,h=0.001 and change parametersb, we can draw basins of attraction as shown in Fig. 12. In Fig. 12, the basins of attraction of the point and chaos attractors of system(17)are indicated by blue and yellow, respectively. The light blue region indicates the attractor tending to infinite. Comparing Fig. 12(b) with Fig. 12(a), it is easily seen that the basins of attraction from system(17)have similar area shapes when the parameterbis set as 1 and?1.

    Fig. 11. Coexisting attractor, red curves indicate initial value of (1, 1,1), blue curves indicate the initial value of (?1, ?1, ?1); (a) k=0.5,b=?2.33, (b) k=0.5, b=?2, (c) k=0.5, b=?1.3, (d) k=0.5,b=?0.8,(e)k=0.5,b=0.4,(f)k=0.5,b=0.6,(g)k=0.5,b=1.2,(h)k=?1.5,b=1.15.

    Fig.12. Attractor basins for(a)b=1,(b)b=?1.

    4.4. Transient transition

    Transient chaos and transient period are unique phenomenon in nonlinear systems with locally-active memristor.[55,56]This section will focus on the transient transition behaviors of the proposed system,and study the transient transition phenomena with changing parameters of the system and initial value.

    4.4.1. Transient transition when parameter k changes

    To research the rich transient behaviors when the parameterkchanges, we firstly fix the parametersα=0.8,a=4,c=0.5,b=1.5 and initial value (1, 1, 1), then choose the parameterk ∈(0.01,0.51).

    Settingk= 0.06, the simulation timet ∈(0,300), the time-domain wave and phase diagram of the state variablezare shown in Figs. 13(a) and 12(b). Whent ∈(0,140), the time-domain wave is shown in the blue domain of Fig.13(a),in this time,LE1=0.0220,LE2=0.0073,LE3=?10.6775,so the system is chaos. Whent ∈(141,165),the time-domain wave is shown in the green domain of Fig. 13(a), the system displays an unstable chaotic state. Whent ∈(166,300), the system displays a period state, which is shown in the red domain of Fig.13(a).The corresponding phase diagram is shown in Fig. 13(b). Whenk= 0.13,t ∈(0,150), the system is chaotic state,which is shown in the blue domain of Fig.13(c),thent ∈(150,200), the system jumps from a chaotic state to another chaotic state, which is shown in the green domain of Fig.13(c). In this time,LE1=0.051,LE2=0.0062,LE3=?0.035,LE1+LE2+LE3>0,the system is an unstable chaotic state. Whent ∈(200,600),the system displays a clear three periods,which is shown in the red domain of Fig.13(c).The corresponding phase diagram is shown in Fig.13(d).With the parameterkincreasing, whenk=0.47,t ∈(0,220), the system is a single period state,which is shown in the blue domain of Fig. 13(e). Thent ∈(220,600), the system jumps from chaos I to chaos II state, which is shown in green and red domains of Fig.13(e). The corresponding phase diagram is shown in Fig.13(f).

    Fig. 13. The time-domain waveform and phase diagram of variable z, (a) k =0.06 time-domain waveform, (b) k =0.06 phase diagram,(c) k=0.15 time-domain waveform, (d) k=0.15 phase diagram, (e)k=0.47 time-domain waveform,(f)k=0.47 phase diagram.

    4.4.2. Transient transition when parameter b changes

    When the parameterbchanges,we firstly fix the parametersα=0.8,a=4,c=0.5,k=0.5 and initial value(1,1,1),then vary the parameterb ∈(?8,1.59).

    Settingb=?5.4, the simulation timet ∈(0,600), the time-domain wave and phase diagram of the state variablezare shown in Figs.14(a)and 14(b).Whent ∈(0,60),the timedomain wave is shown in the blue domain of Fig.14(a),which indicates that the system is in cycle state,and the range of amplitude is(?1.5,1.5).

    Fig. 14. The time-domain waveform and phase diagram of variable z,(a)b=?5.4 time-domain waveform,(b)b=?5.4 phase diagram,(c)b=?0.73 time-domain waveform, (d) b=?0.73 phase diagram, (e)b=0.556 time-domain waveform,(f)b=0.556 phase diagram.

    Whent ∈(60,180), the time-domain wave is shown in the green domain of Fig.14(a),the system is in chaotic state.Whent ∈(180,600), the time-domain wave is shown in the red domain of Fig. 14(a). The corresponding phase diagram is shown in Fig. 14(b). Whenb=?0.73, the time-domain wave int ∈(0,50)is shown in the blue domain of Fig.14(c),and the system is in cycle state,the rang of amplitude is(1.1,1.5). Thent ∈(50,250), the time-domain wave is shown in the green domain of Fig. 14(c), the system is chaotic state.Whent ∈(250,600), the time-domain wave is shown in the red domain of Fig.14(c),which shows the system jumps from one chaotic state to another chaotic state. The corresponding phase diagram is shown in Fig.14(d).With the parameterbincreasing,whenb=0.556,t ∈(0,150),the time-domain wave is in a single period state,which is shown in the blue domain of Fig.14(e),thent ∈(150,450),the system jumps from one period to chaos I state,which is shown in the green domain of Fig.14(e). Whent ∈(450,600),the system changes from one chaotic state to another chaotic state, which is shown in the red domain of Fig.14(e). The corresponding phase diagram is shown in Fig.14(f).

    4.4.3. Transient transition when parameter α changes

    To study the rich transient behavior when the parameterαchanges,we firstly fix the parametersa=4,c=0.5,k=0.5,b=1.5 and initial value(1,1,1),then choose the parametersα ∈(0.5,1).

    Fig. 15. The time-domain waveform and phase diagram of variable z, (a) α = 0.6 time-domain waveform, (b) α = 0.6 phase diagram,(c)α =0.77 time-domain waveform, (d)α =0.77 phase diagram, (e)α =0.79 time-domain waveform,(f)α =0.79 phase diagram.

    Settingα= 0.6, the simulation timet ∈(0,150), the time-domain wave and phase diagram of the state variablezare shown in Figs. 15(a) and 15(b). Whent ∈(0,5), the time-domain wave is shown in the blue domain of Fig.15(a),which indicates that the system is in a chaotic state. Whent ∈(5,25), the time-domain wave is shown in the green domain of Fig.15(a),and the system is in second type of chaotic state. Whent ∈(25,110),the time-domain wave is shown in the red domain of Fig. 15(a), the system is in third type of chaotic state. Whent ∈(110,150), the time-domain wave is shown in the pink domain of Fig. 15(a), and the system converges to a point. The corresponding phase diagram is shown in Fig.15(b). Whenα=0.77,att ∈(0,20),the time-domain wave is shown in the blue domain of Fig.15(c),and the system is in a single period state. Whent ∈(20,70),the time-domain wave is shown in the green domain of Fig.15(c),and the system is in a chaotic state. Thent ∈(70,150),the time-domain wave is shown in the red domain of Fig.15(c),and the system is in another chaotic state. The corresponding phase diagram is shown in Fig.15(d). With the parameterαincreasing,whenα=0.79,t ∈(0,150),the time-domain wave is shown in the blue domain of Fig.15(e),and the system is in a single period state. Whent ∈(150,320),the time-domain wave is shown in the green domain of Fig.15(e),and the system is in a chaotic state. Thent ∈(320,500), the time-domain wave is shown in the red domain of Fig. 15(e), and the system is in another chaotic state. The corresponding phase diagram is shown in Fig.15(f).

    It can be seen that system(17)transits from a state to another state, and finally stabilizes under the above parameters.There are two, three or four states from the beginning to the stable state,which is different from the transient transition behaviors reported in the literature.

    5. Implementation on ARM

    We implement the fractional-order bi-stable memristive simplest chaotic system on ARM platform. For hardware design, the block diagram of the working principle is shown in Fig. 16. In the experiments, the ARM-based MCU STM32F750 is employed. STM32F750 is a 32-bit ARMbased MCU running at 216 MHz with floating-point calculation unit. The processor comes with a 12-bit/8-bit dual channels digital-to-analog converter(DAC).Phase portraits of the system are captured randomly by an analog oscilloscope. The platform to implement the chaotic system (17) is shown in Fig.17.

    Fig.16. Block diagram for ARM implementation of a fractional-order chaotic system.

    Fig.17. Platform to implement a fractional-order chaotic system.

    The operational procedure of software design is shown in Fig. 18. After initializing ARM, we set the initial values(x0,y0,z0),parametersh,αand iteration number. Before iterative computation, we calculate all Γ(·) andhnα. Finally, all the data is transferred to DAC and shown in oscilloscope.

    Fig. 18. Flow chart for ARM implementation of a fractional-order chaotic system.

    Fig.19. Phase diagrams realized by ARM platform and recorded by the oscilloscope in x–z plane: (a)k=0.1,(b)k=0.15,(c)k=0.2,(d)k=0.45.

    We seta=4,c=0.5,b=1.5,α=0.8,h=0.01, initial values(x0,y0,z0)=(1,1,1), and change the parameterk.Phase portraits of the system are captured by the oscilloscope as shown in Fig.19. The experimental results qualify the simulation analysis. It indicates that the fractional-order bi-stable memristive simplest chaotic system is realized successfully on ARM platform.

    6. Conclusion

    In this paper,a bi-stable locally-active memristor is firstly proposed, which has double coexisting pinched hysteresis loops and locally-active regions. Then, a fractional-order chaotic system based on the bi-stable locally-active memristor is explored, and the stability of equilibrium points of the system is analyzed. It is found that oscillations occur only within the locally-active region. By bifurcation analysis and Lyapunov exponent spectrum analysis, we find that the system has extremely rich dynamics, such as transient transition behaviors. Finally, the circuit simulation of the fractionalorder bi-stable locally-active memristive chaotic system is implemented on ARM-based MCU to verify the validity of the numerical simulation results.

    猜你喜歡
    李浩
    “算兩次”法在數(shù)學(xué)解題中的應(yīng)用
    Quantum estimation of rotational speed in optomechanics
    Theory of multiphoton photoemission disclosing excited states in conduction band of individual TiO2 nanoparticles?
    李浩:防治新冠肺炎,科學(xué)利用藥膳
    李浩作品
    國畫家(2017年5期)2017-10-16 06:26:25
    李浩:總有那么一股勁兒——走進(jìn)空軍某試驗訓(xùn)練基地?zé)o人機飛行員李浩
    那個叫李浩的兄弟
    這個李浩
    楊班侯大功架四十二式太極拳(四)
    少林與太極(2016年4期)2016-06-16 00:47:47
    《二次根式的乘除》測試題
    又黄又爽又刺激的免费视频.| 亚洲色图综合在线观看| 亚洲国产色片| 午夜免费鲁丝| 黑人高潮一二区| 亚洲精品,欧美精品| 亚洲,欧美,日韩| 久热久热在线精品观看| 王馨瑶露胸无遮挡在线观看| 日韩制服丝袜自拍偷拍| videossex国产| 久久ye,这里只有精品| 精品久久久久久电影网| 2022亚洲国产成人精品| 国产精品.久久久| 久久久久久人人人人人| 久久青草综合色| 亚洲av男天堂| 亚洲天堂av无毛| 精品国产露脸久久av麻豆| 久久av网站| 国产精品久久久av美女十八| 久久久久久人妻| 黄网站色视频无遮挡免费观看| 欧美 亚洲 国产 日韩一| 天堂8中文在线网| 午夜激情久久久久久久| 69精品国产乱码久久久| 香蕉丝袜av| 免费av不卡在线播放| 日韩电影二区| 狂野欧美激情性bbbbbb| 一区二区三区乱码不卡18| 91精品伊人久久大香线蕉| 国产综合精华液| 精品久久蜜臀av无| 久久久久久久久久久久大奶| 青春草国产在线视频| 免费高清在线观看视频在线观看| 国产伦理片在线播放av一区| 捣出白浆h1v1| 欧美日韩综合久久久久久| 国产精品国产av在线观看| av线在线观看网站| 黄色 视频免费看| 亚洲五月色婷婷综合| 美女国产高潮福利片在线看| 狂野欧美激情性bbbbbb| 一级黄片播放器| 水蜜桃什么品种好| 国产亚洲一区二区精品| 在现免费观看毛片| 美国免费a级毛片| 日韩一本色道免费dvd| 午夜视频国产福利| 日韩一区二区视频免费看| av在线app专区| 在线观看人妻少妇| 九九爱精品视频在线观看| 高清毛片免费看| av线在线观看网站| 国产免费又黄又爽又色| 欧美激情 高清一区二区三区| 国产乱人偷精品视频| 久久久久网色| 九色亚洲精品在线播放| 国产在视频线精品| 最近最新中文字幕免费大全7| 国产极品粉嫩免费观看在线| 两性夫妻黄色片 | 久久久久久久国产电影| 成年av动漫网址| 日韩一区二区视频免费看| 国产成人午夜福利电影在线观看| 精品人妻在线不人妻| tube8黄色片| videos熟女内射| 国产一级毛片在线| 亚洲少妇的诱惑av| 精品亚洲成国产av| 老熟女久久久| 五月天丁香电影| 国产免费一区二区三区四区乱码| 亚洲av电影在线观看一区二区三区| 日本猛色少妇xxxxx猛交久久| 爱豆传媒免费全集在线观看| 色婷婷av一区二区三区视频| 日韩制服骚丝袜av| 五月伊人婷婷丁香| 中文字幕人妻熟女乱码| 91国产中文字幕| 国产av码专区亚洲av| www.av在线官网国产| 少妇高潮的动态图| 国产一区二区三区综合在线观看 | 国产欧美日韩综合在线一区二区| 日韩伦理黄色片| 26uuu在线亚洲综合色| 汤姆久久久久久久影院中文字幕| 久久人妻熟女aⅴ| 久久久久久久久久成人| 欧美+日韩+精品| 精品酒店卫生间| 亚洲成色77777| 一级,二级,三级黄色视频| 国产黄频视频在线观看| 久久99精品国语久久久| 午夜福利在线观看免费完整高清在| 国产一级毛片在线| 日韩 亚洲 欧美在线| 一级黄片播放器| 伊人久久国产一区二区| 亚洲国产毛片av蜜桃av| 少妇精品久久久久久久| 久久婷婷青草| 另类亚洲欧美激情| 宅男免费午夜| 欧美激情极品国产一区二区三区 | av国产精品久久久久影院| 久久久久久久精品精品| 久久精品国产综合久久久 | 黄色一级大片看看| 老司机影院毛片| 男女边摸边吃奶| 国产一区二区三区av在线| av又黄又爽大尺度在线免费看| 国产国拍精品亚洲av在线观看| 精品久久国产蜜桃| 午夜激情久久久久久久| 亚洲国产精品一区三区| 亚洲国产精品专区欧美| 中文字幕人妻熟女乱码| 国产精品久久久久久久电影| 国产精品嫩草影院av在线观看| 欧美日韩国产mv在线观看视频| 国产精品一区www在线观看| 国精品久久久久久国模美| 久久韩国三级中文字幕| 热re99久久国产66热| 亚洲欧美清纯卡通| 少妇熟女欧美另类| 国产无遮挡羞羞视频在线观看| 18禁观看日本| 成年动漫av网址| 日韩在线高清观看一区二区三区| 色94色欧美一区二区| 国产av精品麻豆| 在线观看免费日韩欧美大片| 国产激情久久老熟女| 自拍欧美九色日韩亚洲蝌蚪91| 最近中文字幕高清免费大全6| 国产av国产精品国产| 久久国产亚洲av麻豆专区| 高清欧美精品videossex| 国产精品一二三区在线看| 高清在线视频一区二区三区| 午夜免费观看性视频| 高清视频免费观看一区二区| 久久婷婷青草| 免费高清在线观看日韩| 精品人妻偷拍中文字幕| 日韩中字成人| 精品一区在线观看国产| 久久国产亚洲av麻豆专区| 老司机影院成人| 18禁观看日本| 尾随美女入室| 男女免费视频国产| av免费在线看不卡| 美女xxoo啪啪120秒动态图| 亚洲欧美日韩卡通动漫| 咕卡用的链子| 热re99久久国产66热| www日本在线高清视频| 丝袜在线中文字幕| 久久精品aⅴ一区二区三区四区 | 校园人妻丝袜中文字幕| 男女高潮啪啪啪动态图| 精品一区在线观看国产| 欧美日韩视频高清一区二区三区二| 少妇猛男粗大的猛烈进出视频| 一区二区三区乱码不卡18| 在线观看www视频免费| 国产色爽女视频免费观看| 久久婷婷青草| 国产av精品麻豆| 免费观看a级毛片全部| 色婷婷av一区二区三区视频| 午夜久久久在线观看| 成人漫画全彩无遮挡| 亚洲精品国产av成人精品| 黄网站色视频无遮挡免费观看| 天天影视国产精品| videosex国产| 汤姆久久久久久久影院中文字幕| 99久久中文字幕三级久久日本| 国产精品欧美亚洲77777| 国产成人免费无遮挡视频| 欧美人与性动交α欧美软件 | 亚洲国产精品一区二区三区在线| 一区二区三区精品91| 国产一区亚洲一区在线观看| 亚洲欧洲日产国产| 欧美日韩视频高清一区二区三区二| 51国产日韩欧美| 中文字幕亚洲精品专区| 久久狼人影院| 香蕉丝袜av| 国产国语露脸激情在线看| 成人漫画全彩无遮挡| 亚洲精品第二区| 久久精品国产鲁丝片午夜精品| 国产毛片在线视频| 国产白丝娇喘喷水9色精品| 免费观看在线日韩| 亚洲一区二区三区欧美精品| 日韩av不卡免费在线播放| av免费观看日本| 亚洲精品色激情综合| 日本av手机在线免费观看| 亚洲欧美一区二区三区国产| 午夜福利视频在线观看免费| 久久精品人人爽人人爽视色| 只有这里有精品99| 国产成人精品婷婷| 高清欧美精品videossex| 国产在线一区二区三区精| 日本黄色日本黄色录像| 国产男女超爽视频在线观看| 久久免费观看电影| 精品国产乱码久久久久久小说| 精品久久国产蜜桃| 2021少妇久久久久久久久久久| 女的被弄到高潮叫床怎么办| 午夜福利视频在线观看免费| 深夜精品福利| 国产免费一级a男人的天堂| 亚洲av.av天堂| 看免费av毛片| 日韩 亚洲 欧美在线| 亚洲伊人色综图| h视频一区二区三区| 伦理电影大哥的女人| 99re6热这里在线精品视频| 欧美xxⅹ黑人| 18在线观看网站| 这个男人来自地球电影免费观看 | 亚洲国产毛片av蜜桃av| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 内地一区二区视频在线| 久久久国产精品麻豆| 国产欧美亚洲国产| 香蕉国产在线看| 久久97久久精品| 在线免费观看不下载黄p国产| 亚洲三级黄色毛片| 在现免费观看毛片| 免费黄色在线免费观看| 狠狠精品人妻久久久久久综合| 精品酒店卫生间| 久久久久视频综合| 亚洲精品成人av观看孕妇| 一区二区日韩欧美中文字幕 | 日本av免费视频播放| 亚洲国产最新在线播放| 国产成人欧美| 全区人妻精品视频| 午夜激情久久久久久久| 国产精品久久久久久精品古装| 欧美+日韩+精品| 26uuu在线亚洲综合色| 亚洲精品日本国产第一区| 精品少妇黑人巨大在线播放| 69精品国产乱码久久久| 亚洲欧洲精品一区二区精品久久久 | 午夜福利乱码中文字幕| 在线天堂中文资源库| 精品人妻偷拍中文字幕| 少妇的逼好多水| 色婷婷久久久亚洲欧美| 国产免费又黄又爽又色| 永久网站在线| 女人精品久久久久毛片| 人妻人人澡人人爽人人| 国产日韩欧美亚洲二区| 久久人妻熟女aⅴ| 在线观看三级黄色| 熟女人妻精品中文字幕| h视频一区二区三区| 国产极品天堂在线| 搡老乐熟女国产| 免费黄色在线免费观看| 久久精品国产亚洲av涩爱| 看非洲黑人一级黄片| 男男h啪啪无遮挡| 亚洲av综合色区一区| 久久久久国产网址| 26uuu在线亚洲综合色| www.色视频.com| 一二三四中文在线观看免费高清| 香蕉精品网在线| 99国产综合亚洲精品| 女人精品久久久久毛片| 一区二区三区乱码不卡18| 国产精品麻豆人妻色哟哟久久| 国产女主播在线喷水免费视频网站| 久久午夜综合久久蜜桃| 天天躁夜夜躁狠狠躁躁| 97超碰精品成人国产| 街头女战士在线观看网站| 久久人人爽av亚洲精品天堂| 999精品在线视频| 女性生殖器流出的白浆| 精品一区二区三区四区五区乱码 | 9色porny在线观看| 久久人人97超碰香蕉20202| 国产av码专区亚洲av| 国产男人的电影天堂91| 99久久精品国产国产毛片| 亚洲美女搞黄在线观看| 国产成人精品无人区| 夫妻午夜视频| 国产黄色视频一区二区在线观看| 人妻 亚洲 视频| 如日韩欧美国产精品一区二区三区| 久久97久久精品| 精品亚洲成a人片在线观看| 你懂的网址亚洲精品在线观看| 国产精品欧美亚洲77777| 丝袜在线中文字幕| 国产精品久久久久久久电影| 成人国语在线视频| 免费日韩欧美在线观看| 在线观看人妻少妇| 交换朋友夫妻互换小说| 青春草亚洲视频在线观看| 婷婷色av中文字幕| 亚洲av电影在线进入| 国产成人精品婷婷| 99热全是精品| 精品少妇黑人巨大在线播放| 日本vs欧美在线观看视频| 最近手机中文字幕大全| 在线观看免费视频网站a站| 大香蕉久久成人网| 啦啦啦视频在线资源免费观看| 国产色爽女视频免费观看| 精品人妻偷拍中文字幕| 91在线精品国自产拍蜜月| 久久人人97超碰香蕉20202| 插逼视频在线观看| 夫妻午夜视频| 欧美 日韩 精品 国产| 久久女婷五月综合色啪小说| 亚洲精品乱久久久久久| 免费日韩欧美在线观看| 青春草视频在线免费观看| 伦精品一区二区三区| 日本午夜av视频| 青青草视频在线视频观看| 在线观看免费高清a一片| 国产深夜福利视频在线观看| 久久毛片免费看一区二区三区| 男的添女的下面高潮视频| 多毛熟女@视频| 在线免费观看不下载黄p国产| 在线精品无人区一区二区三| 美女国产视频在线观看| 日韩欧美精品免费久久| av线在线观看网站| 天天操日日干夜夜撸| 免费久久久久久久精品成人欧美视频 | 丰满迷人的少妇在线观看| 亚洲精品国产av蜜桃| 色网站视频免费| 丰满乱子伦码专区| 如何舔出高潮| 22中文网久久字幕| 美女国产视频在线观看| 天美传媒精品一区二区| 精品亚洲成a人片在线观看| 天堂中文最新版在线下载| 午夜免费鲁丝| 日本91视频免费播放| 这个男人来自地球电影免费观看 | 色5月婷婷丁香| 女人精品久久久久毛片| 性色av一级| 国产免费一级a男人的天堂| 久久韩国三级中文字幕| 午夜视频国产福利| 最新中文字幕久久久久| 国内精品宾馆在线| kizo精华| 99热网站在线观看| 狂野欧美激情性bbbbbb| 国产伦理片在线播放av一区| av又黄又爽大尺度在线免费看| 黄色 视频免费看| 久久久久久久久久久久大奶| 精品午夜福利在线看| 欧美日韩亚洲高清精品| 男的添女的下面高潮视频| 一区二区三区四区激情视频| 日韩电影二区| 午夜av观看不卡| 国产片特级美女逼逼视频| 国产精品国产av在线观看| 菩萨蛮人人尽说江南好唐韦庄| 亚洲欧美一区二区三区国产| 国产一区二区激情短视频 | 黄色配什么色好看| 爱豆传媒免费全集在线观看| 啦啦啦啦在线视频资源| 中文字幕人妻丝袜制服| 欧美国产精品一级二级三级| 人妻系列 视频| 伦理电影大哥的女人| 夫妻午夜视频| av在线app专区| 欧美日韩视频精品一区| a 毛片基地| 精品少妇黑人巨大在线播放| 一级片'在线观看视频| 国产精品久久久久久久久免| 永久免费av网站大全| 亚洲 欧美一区二区三区| 久久精品熟女亚洲av麻豆精品| 亚洲精品乱码久久久久久按摩| 亚洲综合精品二区| 亚洲精品一二三| 一区在线观看完整版| 成人无遮挡网站| 精品人妻在线不人妻| 精品一区二区三区四区五区乱码 | 老司机亚洲免费影院| 精品人妻在线不人妻| 蜜臀久久99精品久久宅男| 咕卡用的链子| 成年人免费黄色播放视频| 国国产精品蜜臀av免费| 乱人伦中国视频| 日韩人妻精品一区2区三区| 日本av手机在线免费观看| 中文字幕亚洲精品专区| av网站免费在线观看视频| 毛片一级片免费看久久久久| 久久国产精品男人的天堂亚洲 | 人妻系列 视频| 人成视频在线观看免费观看| 久久97久久精品| 国产成人一区二区在线| 黑人猛操日本美女一级片| 乱码一卡2卡4卡精品| 日本色播在线视频| 亚洲国产色片| 日本免费在线观看一区| 在线观看免费高清a一片| 高清视频免费观看一区二区| 色吧在线观看| 香蕉精品网在线| 亚洲精品视频女| 精品卡一卡二卡四卡免费| 国产成人一区二区在线| 美女国产视频在线观看| 黄色 视频免费看| 久久久久久久久久久久大奶| 午夜福利影视在线免费观看| 久久久久视频综合| 在线观看www视频免费| 男的添女的下面高潮视频| 亚洲高清免费不卡视频| 99re6热这里在线精品视频| 五月玫瑰六月丁香| 另类精品久久| 天天操日日干夜夜撸| 亚洲欧美清纯卡通| 伦理电影大哥的女人| 黑人欧美特级aaaaaa片| 久久这里有精品视频免费| 精品久久久久久电影网| 99热全是精品| 在线看a的网站| 91精品国产国语对白视频| 18+在线观看网站| 性色av一级| 一区二区三区精品91| 飞空精品影院首页| freevideosex欧美| 国产精品嫩草影院av在线观看| 国产男女超爽视频在线观看| 看免费av毛片| 亚洲国产精品999| 亚洲欧洲日产国产| 欧美精品高潮呻吟av久久| 极品人妻少妇av视频| 欧美3d第一页| 国产精品国产三级专区第一集| 黄色视频在线播放观看不卡| 天堂中文最新版在线下载| 国产免费一区二区三区四区乱码| 岛国毛片在线播放| 色视频在线一区二区三区| 国产精品人妻久久久久久| 亚洲精品乱久久久久久| 极品少妇高潮喷水抽搐| 国产一区二区在线观看日韩| 在线观看www视频免费| 日韩av在线免费看完整版不卡| 99久久精品国产国产毛片| 精品国产一区二区三区久久久樱花| 最近中文字幕高清免费大全6| 少妇被粗大的猛进出69影院 | 国产精品嫩草影院av在线观看| 最近中文字幕2019免费版| 久久热在线av| 在线观看免费视频网站a站| 高清av免费在线| 美女中出高潮动态图| 国产一区亚洲一区在线观看| 亚洲国产毛片av蜜桃av| 99久久中文字幕三级久久日本| 天天躁夜夜躁狠狠躁躁| 免费观看a级毛片全部| 啦啦啦啦在线视频资源| 黄片无遮挡物在线观看| 人妻系列 视频| 欧美日韩成人在线一区二区| 曰老女人黄片| 国产成人精品久久久久久| 国内精品宾馆在线| 亚洲欧美精品自产自拍| 性色avwww在线观看| 日本免费在线观看一区| 99久国产av精品国产电影| 制服丝袜香蕉在线| 亚洲国产色片| 日本-黄色视频高清免费观看| 春色校园在线视频观看| 精品国产一区二区三区久久久樱花| videossex国产| 香蕉丝袜av| 亚洲欧美清纯卡通| 在线看a的网站| 9热在线视频观看99| 国产女主播在线喷水免费视频网站| 成年人午夜在线观看视频| 精品国产一区二区三区久久久樱花| 久久精品国产综合久久久 | 日日爽夜夜爽网站| 国产精品.久久久| 嫩草影院入口| 欧美最新免费一区二区三区| 成人无遮挡网站| 一级毛片黄色毛片免费观看视频| 最近手机中文字幕大全| 免费女性裸体啪啪无遮挡网站| 大香蕉97超碰在线| 伊人亚洲综合成人网| 97精品久久久久久久久久精品| freevideosex欧美| 日韩 亚洲 欧美在线| 欧美日韩成人在线一区二区| 久久久久国产精品人妻一区二区| 欧美亚洲 丝袜 人妻 在线| 国产日韩欧美视频二区| 久久99蜜桃精品久久| 香蕉精品网在线| 久久这里只有精品19| 一个人免费看片子| 一级片'在线观看视频| 成年女人在线观看亚洲视频| 丰满乱子伦码专区| 亚洲精华国产精华液的使用体验| xxx大片免费视频| 免费少妇av软件| 亚洲内射少妇av| 国产不卡av网站在线观看| 天美传媒精品一区二区| 国产成人精品在线电影| 亚洲欧美清纯卡通| 欧美精品人与动牲交sv欧美| 国产黄色视频一区二区在线观看| 久久99蜜桃精品久久| 18禁观看日本| 少妇的丰满在线观看| 成年女人在线观看亚洲视频| 亚洲国产精品一区三区| 国产探花极品一区二区| 大片免费播放器 马上看| 免费观看在线日韩| 欧美日韩av久久| 国产精品偷伦视频观看了| 久久久久久久大尺度免费视频| 日韩不卡一区二区三区视频在线| av在线app专区| 少妇的逼好多水| 亚洲,欧美精品.| av在线播放精品| 精品国产露脸久久av麻豆| 欧美日韩av久久| av播播在线观看一区| 老熟女久久久| 啦啦啦在线观看免费高清www| 宅男免费午夜| 中文字幕av电影在线播放| 国产一区二区激情短视频 | 日本wwww免费看| 国产成人精品一,二区| 欧美精品av麻豆av| 免费看光身美女| 欧美日韩国产mv在线观看视频| 高清黄色对白视频在线免费看| 少妇 在线观看| 免费人妻精品一区二区三区视频|