• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Transient transition behaviors of fractional-order simplest chaotic circuit with bi-stable locally-active memristor and its ARM-based implementation

    2021-12-22 06:40:42ZongLiYang楊宗立DongLiang梁棟DaWeiDing丁大為
    Chinese Physics B 2021年12期
    關(guān)鍵詞:李浩

    Zong-Li Yang(楊宗立) Dong Liang(梁棟) Da-Wei Ding(丁大為)

    Yong-Bing Hu(胡永兵)1, and Hao Li(李浩)3

    1School of Electronics and Information Engineering,Anhui University,Hefei 230601,China

    2National Engineering Research Center for Agro-Ecological Big Data Analysis&Application,Anhui University,Hefei 230601,China

    3State Grid Lu’an Electric Power Supply Company,Lu’an 237006,China

    Keywords: fractional calculus,bi-stable locally-active memristor,transient transition behaviors,ARM implementation

    1. Introduction

    Chua has predicted that there is the fourth fundamental circuit element called memristor, which describes the relation between chargeqand magnetic fluxφ.[1]In 2008, HP(Hewlett Packard)Laboratory first fabricated a practical memristor physical device.[2]From then on, the research of the memristor received widespread attention in many fields of academia and industry. Due to its nonlinear and nonvolatile characteristics, memristors can be applied in many scenarios,such as neural networks,[3–5]memory storage,[6–8]chaotic circuit design[9–11]and secure communications.[12–14]

    Researches show that the memristor has many types,and current popular memristors contain the HP memristors,[15–17]piecewise nonlinear memristors,[18–20]continuous nonlinear function memristors,[21–23]locally-active memristors,[24–26]and so on. Recently, the research of locally-active memristors has attracted wide attention because it has the capability of a nonlinear dynamical system to amplify infinitesimal energy fluctuations.[27–29]According to the principle of energy conservation, if a nonlinear dynamical system can produce and maintain oscillations, a locally-active element is essential. Oscillations occur only in locally-active regions.[30]As a novel memory device, the locally-active memristor is first proposed by Chua,[31]and it is considered to be the origin of complexity.[32]Chua proposed a corsage memristor with one pinched hysteresis loop and locally-active ranges, which was analyzed from complex frequency domain.[33]Oscillation of the circuit on the corsage memristor was analyzed via an application of the theory of local activity, edge of chaos and the Hopf-bifurcation.[34]A novel bi-stable nonvolatile locallyactive memristor model was introduced,and the dynamics and periodic oscillation were analyzed using the theory of local activity, pole-zero analysis of admittance functions, Hopf bifurcation and the edge of chaos.[35]Jinet al. proposed a novel locally-active memristor based on a voltage-controlled generic memristor, analyzed its characteristics and illustrated the concept of local activity via the DCV–Iloci of the memristor and nonvolatile memory via the power-off plot of the memristor.[36]Yinget al. proposed a nonvolatile locallyactive memristor, and the edge of chaos was observed using the method of the small-signal equivalent circuit.[37]Wanget al. proposed a locally-active memristor with two pinched hysteresis loops and four locally-active regions,and the effect of locally-active memristors on the complexity of systems was discussed.[38]

    Fractional calculus is a generalization of the integer-order calculus,and it has the same historical memory characteristic as memristor with respect to time, therefore memristor and memristive system can be extended to fractional-order. Ivo Petr′aˇset al. firstly proposed the conception of the fractionalorder memristor.[39]Yuet al. demonstrated that fractionalorder system can describe memory effect better than integer order system in frequency domain.[40]Foudaet al. discussed the response of the fractional-order memristor under the DC and periodic signals.[41]A fractional-order HP TiO2memristor model was proposed, and the fingerprint analysis of the new model under periodic external excitation was made.[42]Wanget al. studied the properties of a fractional-order memristor, and the influences of parameters were analyzed and compared. Then the current–voltage characteristics of a simple series circuit that is composed of a fractional-order memristor and a capacitor were studied.[43]

    Nowadays, there are many researches on locally-active memristor.[44–47]Fractional-order locally-active systems can generate more complex dynamic behaviors.However,there are few researches on the nonlinear characteristics of fractional-order locally-active memristor. Our objective is to propose a novel fractional-order continuous nonlinear bistable locally-active memristor model,and study its nonlinear characteristics and conclude that the fractional-order memristor is a bi-stable locally-active memristor in certain conditions.Then, we analyze the features of the fractional-order locallyactive memristor by time domain waveforms and pinched hysteresis loop at different frequencies, different amplitudes and different orders. In order to verify that the fractional-order memristor is locally-active, we design a fractional-order simplest circuit system using the designed memristor, a linear passive inductor and a linear passive capacitor in series. It is observed that the circuit can produce oscillation and its dynamical behavior is abundant. Particularly, the fractionalorder simplest nonlinear circuit using bi-stable locally-active memristor exhibits discontinuous coexisting phenomenon and rich transient transition phenomenon. Moreover, in order to verify the correctness of the theoretical analysis and numerical simulation, the fractional-order simplest chaotic system is implemented by ARM-based MCU. The contributions of this paper are listed as follows: (1) We design and analyze a fractional-order bi-stable locally-active memristor. (2) We build a fractional-order chaotic system based on the proposed memristor and discover its discontinuous coexisting dynamical behaviors and transient transition behaviors. (3)The proposed memristor and chaotic system are implemented digitally by ARM-based hardware.

    The structure of this paper is organized as follows: Section 2 introduces the mathematical model of the fractionalorder bi-stable locally-active memristor and the power-off plot(POP)and DCV–Iloci are used to verify the nonvolatile and the locally-active characteristics. In Section 3, a fractionalorder nonlinear circuit using the proposed memristor is established, and the stability of the system is discussed. In Section 4,the nonlinear dynamics and transient transition behaviors of this system are revealed numerically using bifurcation diagrams, Lyapunov exponent spectrum, and phase portraits and so on. In Section 5,the circuit implement is carried out by ARM-based MCU in order to verify the validity of the numerical simulation results. Finally, some concluding remarks are given in the last short section.

    2. Preliminaries

    In this section,the mathematical definition of the Caputo fractional derivatives and Adomian decoposition method are introduced.

    2.1. Fractional calculus

    Definition 1[48]The Caputo fractional derivation definition of fractional-orderαis

    2.2. Adomian decomposition method

    For a fractional-order chaotic systemDαt0x(t) =f(x(t)) +g(t), herex(t) = [x1(t),x2(t),...,xn(t)]Tare the state variables of the given function, andg(t) =[g1,g2,...,gn]Tare the constants for the autonomous system,and the functionfcan be divided into linear and nonlinear termsk

    3. Bi-stable locally-active memristor

    3.1. Memristor model

    Based on Chua’s unfolding theorem,[50]a generic current-controlled memristor can be described by

    wherevandiare the input and output of the memristor,respectively,xis the state variable, andg(·) andG(·) are functions related to a specific memristor.

    A novel generic memristor model is proposed as follows:

    Based on Eqs. (12) and (13), when the unfolding parameters are set asa=4,b=?1,the POP of Eq.(13)with the arrowheads is shown in Fig. 1. Observing the trajectory of motion of the state variablex, we find that there are three intersections with thex-axis located atx1=?2,x2=0,x3=2. The dynamic route identifies that the equilibrium points?E1andE1are asymptotically stable, whereas the equilibrium pointE0is unstable, and the attraction domains of?E1andE1are(?∞,0)and(0,∞),respectively.

    Fig.1. Power-off plot(POP)of Eq.(13).

    3.2. Pinched hysteresis loops

    A sinusoidal signal source with amplitudeAand frequenciesωis designed to drive the memristor. The dynamical trajectory displays one monostable or bi-stable pinched hysteresis loop as the amplitudeAand frequencyωof the sinusoidal signal source take different values.

    Let the amplitudeA=4 V,α=0.9, and the frequencyωis changed. Whenω> 3.5 rad/s, the dynamical trajectory displays double coexisting pinched hysteresis loops as many initial valuesx0are situated on two sides of the origin.Letx0=1 andx0=?1,double coexisting pinched hysteresis loops can be obtained as shown in Figs. 2(a)–2(c). It can be found from Fig.2 that the double coexisting pinched hysteresis loops of the memristor are located in at least three quadrants.Forω>35 rad/s, although the dynamical trajectory displays double coexisting pinched hysteresis loops, the memristor is non-active.

    Let the frequencyω=6 rad/s,α=0.9, and the amplitudeAis changed. WhenA<6.4 V,the dynamical trajectory displays one bi-stable pinched hysteresis loop as many initial valuesx0are situated on two sides of the origin. Letx0=1 andx0=?1, double coexisting pinched hysteresis loops can be obtained as shown in Figs.2(d)–2(f). The same conclusion can be obtained as above.

    Let the amplitudeA=5 V,α=0.9,and the frequencyωis changed. When 1.4 rad/s≤ω<3.5 rad/s,the pinched hysteresis loops have a pinch-off point. When 0 ≤ω<1.4 rad/s,the pinched hysteresis loops have two pinch-off points,and all of the pinched hysteresis loops are symmetric abouti=0,the memristor is monostable memristor. The pinched hysteresis loops and corresponding time domain diagram are shown in Figs.3(a)–3(d).

    Fig. 2. Double coexisting pinched hysteresis loops when α =0.9, where red curves indicate initial value is x0 =1, blue curves indicate the initial value is x0=?1: (a)A=4 V,ω =4 rad/s,(b)A=4 V,ω =7 rad/s,(c)A=4 V,ω =10 rad/s,(d)A=3 V,ω =6 rad/s,(e)A=4.5 V,ω =6 rad/s,(f)A=5.5 V,ω =6 rad/s.

    Fig.3. The time-domain wave and pinched hysteresis loops of monostable memristor: (a)the time-domain diagram when A=5 V,ω =2.1 rad/s,(b)the pinched hysteresis loops when A=5 V,ω =2.1 rad/s,(c)the time-domain diagram when A=5 V,ω =1.5 rad/s,(d)the pinched hysteresis loops when A=5 V, ω =1.5 rad/s, (e) the time-domain diagram when A=6.7 V, ω =3 rad/s, (f) the pinched hysteresis loops when A=6.7 V,ω =3 rad/s,(g)the time-domain diagram when A=8 V,ω =3 rad/s,(h)the pinched hysteresis loops when A=8 V,ω =3 rad/s.

    In the same way, let the frequencyω=5 rad/s, and the amplitudeAis changed. WhenA>6 V,the pinched hysteresis loops have one pinch-off point. When 6.85 V≤A<10.5 V,the pinched hysteresis loop has two pinch-off points, and all of the pinched hysteresis loops are symmetric abouti=0,the memristor is monostable memristor. The pinched hysteresis loops and corresponding time domain diagram are shown in Figs.3(e)–3(h).

    Let the amplitudeA=4 V,ω=5 rad/s, and the orderαis changed. When 0.787 ≤α<1, the pinched hysteresis loop has two pinch-off points. With the orderαincreasing,the non-origin pinch-off point moves from left to right until it disappears. Whenα<0.787,the pinched hysteresis loop has a pinch-off point of the origin,and it is symmetric abouti=0.The pinched hysteresis loops are shown in Fig.4.

    Fig. 4. The pinched hysteresis loops when A=4, ω =5, where red curve indicates the order of α =0.9,green curve indicates the order of α =0.8,blue curve indicates the order of α =0.7.

    3.3. DC V–I plots

    DCV–Iplot is the Ohm’s law of the memristor, which can clearly show the intrinsic features of the memristor. Letx=X, dx/dt|x=X=0,Eq.(13)can be described as follow:

    Solving Eq. (14) for the equilibrium point (X,I), a function between the stateXand the applied DC currentIcan be derived,and we have

    Fig.5. DC X–I and V–I loci. (a)The equilibrium state curve on the X–I plane for the DC current on interval ?6 A

    Then settingk=1 and substituting Eq.(15)into Eq.(12),the DC voltageVcan be calculated as

    Based on Eqs. (15) and (16), when the parametercis set as 0.4, the DCX–IandV–Iplots of the memristor can be obtained, as shown in Figs. 5(a) and 5(b), respectively. When the parametercis set as different values,the DCV–Iplots are drawn as shown in Figs. 5(c) and 5(d). It can be seen from Fig.5 that the slopes of three parts of the DCV–Icurves are negative,hence the designed memristor is locally active.

    4. Fractional-order bi-stable memristive system

    The well-known simplest chaotic system was presented by Chua.[51]The system contains three circuit elements,a resistance, an inductance and a memristor. When the memristor is replaced by a bi-stable locally-active memristor,a novel 3D autonomous fractional-order memristive chaotic system is given by

    The parameter values areC=1,L=1,a=4,b=?1.The state variables in terms of circuit variables arex(t)=vC(t)(voltage across capacitorC),y(t)=iL(t)(current through inductorL)andz(t)is the internal state of the bi-stable locallyactive memristor.

    From basic circuit theory,it is not possible to have an oscillation with three independent state variables if we use the non-active memristor. However,if we use a bi-stable locallyactive memristor in the circuit, the autonomous system can generate oscillation.

    4.1. The stability of the equilibria

    To evaluate the equilibrium points,let

    The asymptotically stable regions and unstable regions in thek–cplane are separated by the curves ofk(2z??cz?3)=2 andk(2z??cz?3)=?2,which are shown as the red curves and blue curves in Fig.6,respectively.

    Fig.6. Asymptotically stable and unstable regions of the system(16)in the k–c plane.

    4.2. Solution of the fractional-order bi-stable simplest memristive system

    According to Eqs. (32)–(37), we can obtain the solutions of the proposed system,then analyze the dynamical characteristics of the system.

    4.3. Analysis of complex dynamical behaviors

    Coexisting phase diagrams, coexisting bifurcation diagrams,basins of attractor and coexisting Lyapunov exponents are applied to analyze the dynamical behaviors of system(17).

    4.3.1. Bifurcation analysis and Lyapunov exponents

    4.3.1.1. Two-parameter bifurcation

    In order to show parameter-related dynamical behaviors of the proposed system, a two-parameter bifurcation diagram should first be computed. We know that there is a fractionalorder bi-stable memristor used in system (17), whena=4,c=0.5,α=0.8,two examples of two-parameter bifurcation diagrams for different initial conditions (x0,y0,z0)=(1,1,1)and (x0,y0,z0) = (?1,?1,?1) are shown in Figs. 7(a) and 7(b), respectively. The regions marked with different colors represent different attractor types and the navy blue regions imply the orbit tending to infinite. In addition, for different parameters, many classes of attractors cannot be completely distinguished, such as limit cycles with different periodicity and chaotic attractors with different topologies. The twoparameter bifurcation diagrams show rich dynamical behaviors and coexisting phenomenon in our system.

    Fig.7. Two-parameter bifurcation diagrams(a)in k–b plane for initial value(1, 1, 1), (b)in k–b plane for initial value(?1, ?1, ?1), (c)in α–b plane for initial value(1,1,1),(d)in α ?k plane for initial value(1,1,1).

    In Fig.7(a),there are many regions marked with different colors,corresponding to the four different attractor types(navy blue region indicates the attractor tending to infinite),namely,cyan area, light area and yellow area indicate point attractor,limit cycle and chaos,respectively. Comparing Fig.7(b)with Fig. 7(a), it is easily seen that the two-parameter bifurcation diagram from system(17)is almost completely asymmetric.

    As shown in Fig. 7(c), there are three different attractor types,which are marked by three different colors,namely,the blue area indicates point attractors, light blue area indicates period attractors and the yellow area indicates chaotic attractors. In contrast, the period attractors have very small area marked by light blue,and the point attractors have biggest area marked by blue. In Fig. 7(d), there are three regions marked with different colors, corresponding to the three different attractor types. The blue area indicates point attractors,the light blue area indicates period attractors,and the yellow area indicates chaotic attractors.From Fig.7,stable point,periodic and chaotic areas can be easily identified.

    4.3.1.2. Coexisting bifurcation

    Lyapunov exponents are considered as one of the most useful diagnostic tools for analyzing dynamical behaviors of nonlinear system,and coexisting bifurcation analysis can compare the characteristics of a nonlinear system in different initial values. The method of Ref.[54]is used to solve the Lyapunov exponents in this paper. Based on the two-parameter bifurcation diagram,we can trace the dynamics to compute a single-parameter bifurcation diagram, i.e.,b=1.5,b=?1.5 andk=0.5,k=?0.5. We choose two sets of different initial values (1, 1, 1) and (?1,?1,?1), and plot coexisting bifurcation diagrams ofxversusb,xversuskandzversusα. The corresponding bifurcation diagrams and Lyapunov exponents are shown in Figs.8–10,respectively.

    Fig.8. Bifurcation diagrams with respect to x and Lyapunov exponents.(a) k=0.5, xmax excited by two sets of initial value (1,1,1) (red) and initial value(?1,?1,?1)(blue),(b)k=0.5,coexisting bifurcation of xmax for initial value(1,1,1)(red)and initial value(?1,?1,?1)(blue),(c)k=0.5,Lyapunov exponents corresponding to(a),(d)k=0.5,coexisting Lyapunov exponents corresponding to(b), (e)k=?0.5, xmax excited by two sets of initial value(1,1,1)(red)and initial value(?1,?1, ?1)(blue), (f)k=?0.5, coexisting bifurcation of xmax for initial value(1,1,1)(red)and initial value(?1,?1,?1)(blue),(g)k=?0.5,Lyapunov exponents corresponding to(e),(h)k=?0.5,coexisting Lyapunov exponents corresponding to(f).

    It is found from Fig.8 that system(17)occurs alternately the phenomenon of period and chaos with the increase of parameter. Whenk=0.5,b ∈[?8.2,?2.33], system (17) produces chaotic oscillation and period oscillation only in initial value (1, 1, 1). Whenk= 0.5,b ∈[?2.34,1.59], system (17) undergoes coexisting chaos and period-1 states, coexisting point attractor and period-1 states,coexisting point attractor and chaos states. Whenk=0.5,b ∈[1.6,13],the coexisting oscillation disappears and system(17)alternately occurs period and chaos oscillation only in initial value(?1,?1,?1).Whenk=?0.5,b ∈[?8.2,13],system(17)undergoes almost the same process ask=0.5, shown in Figs. 8(a), 8(b), 8(e),and 8(f). Symmetry reflects the beauty of harmony and unity.In general, if a system manifests a symmetric transformationT:(x,y,z)→(?x,?y,?z),it can be found that the system is invariant underT,and emerges dynamic behaviors in pairs. In contrast, our system does not satisfy the condition of a symmetric transformationT,we still find that the bifurcation plots are not perfectly symmetrical with respect tob-axis,xmax-axis and center. This indicates that system(17)with the proposed bi-stable locally-active memristor possesses the unique characteristics.The corresponding Lyapunov exponents are shown in Figs.8(c),8(d),8(g),and 8(h).

    Fig.9. Coexisting bifurcation diagrams with respect to x and Lyapunov exponents. (a)b=1.5,coexisting bifurcation of xmax for initial value(1,1,1)(red)and initial value(?1,?1,?1)(blue),(b)b=?1.5,coexisting bifurcation of xmax for initial value(1,1,1)(red)and initial value(?1,?1,?1)(blue),(c)b=1.5,Lyapunov exponents corresponding to(a),(d)b=?1.5,coexisting Lyapunov exponents corresponding to(b).

    It is found from Fig.9 that with the increase of parameterk, system (17) alternately occurs the phenomenon of periods and chaos. Whenb= 1.5,k ∈[?4,?0.5329], system (17)produces a stable point attractor only in initial value (1,1,1).Whenb=1.5,k ∈[?0.5328,?0.3], system (17) undergoes coexisting chaos and point attractor states,coexisting period-1 and point attractor states,whenk ∈[?0.3,0.3],the coexisting phenomenon disappears and system (17) undergoes chaos to period to chaos. Whenk ∈[0.3,0.5328], the coexisting phenomenon appears again, and system (17) undergoes a symmetrical process withk ∈[?0.5328,?0.3]. Whenb= 1.5,k ∈[0.5329,4], system (17) produces stable point attractor only in initial value (?1,?1,?1). Whenb=?1.5,k ∈[?0.5328,0.5328], system (17) undergoes coexisting chaos and point attractor states. Whenk ∈[?4,?0.5328]∪k ∈[0.5328,4], the coexisting phenomenon disappears and system (17) only appears stable point attractor. We find that the bifurcation plots are not perfectly symmetrical with respect tok-axis,xmax-axis and center. The corresponding Lyapunov exponents are shown in Figs.9(c)and 9(d).

    It is found from Fig. 10(a) that with the increase of parameterα,system(17)alternately occurs the phenomenon of stable point, periods and chaos. Whenb=?1.5,k= 0.5,α ∈[0.5,0.63], system (17) produces stable point attractor in all values. Whenb=?1.5,k= 0.5,α ∈(0.63,0.78],system (17) produces chaos oscillation in all values. Whenb=?1.5,k=0.5,α ∈(0.78,1],system(17)undergoes coexisting chaos and period states. The corresponding Lyapunov exponents are shown in Fig.10(b).

    Fig.10. Coexisting bifurcation diagrams with respect to z versus α and Lyapunov exponents. (a) k=0.5, b=?1.5, coexisting bifurcation of zmax for initial value(1,1,1)(red)and initial value(?1,?1,?1)(blue),(b)k=0.5,b=?1.5,Lyapunov exponents corresponding to(a).

    4.3.2. Coexisting attractors and attraction basins

    If a nonlinear system with bi-stable memristor can produce oscillation, it must have coexisting attractors. Based on bifurcation plots in Figs. 7–10, we set parametersa=4,c=0.5,α=0.8,h=0.001 and change parametersbandk,then,we can draw phase diagrams as shown in Fig.11.We find that there are two kinds of chaotic attractors and two kinds of period-I cycles in the system,and called chaotic attractor I and chaotic attractor II, cycle I and cycle II. Figure 11(a) shows the coexistence of cycle I and chaotic attractor I.Figures 11(b)and 11(c)only show cycle I and attractor I,respectively. Figure 11(d) shows the coexistence of attractor I and pointer attractor. Figure 11(e)shows the coexistence of two pointer attractors in the system. Figure 11(f) shows the coexistence of chaotic attractor II and pointer attractor. Figure 11(g) shows the coexistence of cycle II and pointer attractor. Figure 11(h)shows the coexistence of cycle II and pointer attractor. From Fig. 11, we also can see the coexisting phenomenon of system(17)is intermittent.

    The different types of attractors coexist stably in the proposed simple chaotic system, their basins of attraction represent the states of the attractors in the initial state space.When we set parametersa=4,c=0.5,α=0.8,h=0.001 and change parametersb, we can draw basins of attraction as shown in Fig. 12. In Fig. 12, the basins of attraction of the point and chaos attractors of system(17)are indicated by blue and yellow, respectively. The light blue region indicates the attractor tending to infinite. Comparing Fig. 12(b) with Fig. 12(a), it is easily seen that the basins of attraction from system(17)have similar area shapes when the parameterbis set as 1 and?1.

    Fig. 11. Coexisting attractor, red curves indicate initial value of (1, 1,1), blue curves indicate the initial value of (?1, ?1, ?1); (a) k=0.5,b=?2.33, (b) k=0.5, b=?2, (c) k=0.5, b=?1.3, (d) k=0.5,b=?0.8,(e)k=0.5,b=0.4,(f)k=0.5,b=0.6,(g)k=0.5,b=1.2,(h)k=?1.5,b=1.15.

    Fig.12. Attractor basins for(a)b=1,(b)b=?1.

    4.4. Transient transition

    Transient chaos and transient period are unique phenomenon in nonlinear systems with locally-active memristor.[55,56]This section will focus on the transient transition behaviors of the proposed system,and study the transient transition phenomena with changing parameters of the system and initial value.

    4.4.1. Transient transition when parameter k changes

    To research the rich transient behaviors when the parameterkchanges, we firstly fix the parametersα=0.8,a=4,c=0.5,b=1.5 and initial value (1, 1, 1), then choose the parameterk ∈(0.01,0.51).

    Settingk= 0.06, the simulation timet ∈(0,300), the time-domain wave and phase diagram of the state variablezare shown in Figs. 13(a) and 12(b). Whent ∈(0,140), the time-domain wave is shown in the blue domain of Fig.13(a),in this time,LE1=0.0220,LE2=0.0073,LE3=?10.6775,so the system is chaos. Whent ∈(141,165),the time-domain wave is shown in the green domain of Fig. 13(a), the system displays an unstable chaotic state. Whent ∈(166,300), the system displays a period state, which is shown in the red domain of Fig.13(a).The corresponding phase diagram is shown in Fig. 13(b). Whenk= 0.13,t ∈(0,150), the system is chaotic state,which is shown in the blue domain of Fig.13(c),thent ∈(150,200), the system jumps from a chaotic state to another chaotic state, which is shown in the green domain of Fig.13(c). In this time,LE1=0.051,LE2=0.0062,LE3=?0.035,LE1+LE2+LE3>0,the system is an unstable chaotic state. Whent ∈(200,600),the system displays a clear three periods,which is shown in the red domain of Fig.13(c).The corresponding phase diagram is shown in Fig.13(d).With the parameterkincreasing, whenk=0.47,t ∈(0,220), the system is a single period state,which is shown in the blue domain of Fig. 13(e). Thent ∈(220,600), the system jumps from chaos I to chaos II state, which is shown in green and red domains of Fig.13(e). The corresponding phase diagram is shown in Fig.13(f).

    Fig. 13. The time-domain waveform and phase diagram of variable z, (a) k =0.06 time-domain waveform, (b) k =0.06 phase diagram,(c) k=0.15 time-domain waveform, (d) k=0.15 phase diagram, (e)k=0.47 time-domain waveform,(f)k=0.47 phase diagram.

    4.4.2. Transient transition when parameter b changes

    When the parameterbchanges,we firstly fix the parametersα=0.8,a=4,c=0.5,k=0.5 and initial value(1,1,1),then vary the parameterb ∈(?8,1.59).

    Settingb=?5.4, the simulation timet ∈(0,600), the time-domain wave and phase diagram of the state variablezare shown in Figs.14(a)and 14(b).Whent ∈(0,60),the timedomain wave is shown in the blue domain of Fig.14(a),which indicates that the system is in cycle state,and the range of amplitude is(?1.5,1.5).

    Fig. 14. The time-domain waveform and phase diagram of variable z,(a)b=?5.4 time-domain waveform,(b)b=?5.4 phase diagram,(c)b=?0.73 time-domain waveform, (d) b=?0.73 phase diagram, (e)b=0.556 time-domain waveform,(f)b=0.556 phase diagram.

    Whent ∈(60,180), the time-domain wave is shown in the green domain of Fig.14(a),the system is in chaotic state.Whent ∈(180,600), the time-domain wave is shown in the red domain of Fig. 14(a). The corresponding phase diagram is shown in Fig. 14(b). Whenb=?0.73, the time-domain wave int ∈(0,50)is shown in the blue domain of Fig.14(c),and the system is in cycle state,the rang of amplitude is(1.1,1.5). Thent ∈(50,250), the time-domain wave is shown in the green domain of Fig. 14(c), the system is chaotic state.Whent ∈(250,600), the time-domain wave is shown in the red domain of Fig.14(c),which shows the system jumps from one chaotic state to another chaotic state. The corresponding phase diagram is shown in Fig.14(d).With the parameterbincreasing,whenb=0.556,t ∈(0,150),the time-domain wave is in a single period state,which is shown in the blue domain of Fig.14(e),thent ∈(150,450),the system jumps from one period to chaos I state,which is shown in the green domain of Fig.14(e). Whent ∈(450,600),the system changes from one chaotic state to another chaotic state, which is shown in the red domain of Fig.14(e). The corresponding phase diagram is shown in Fig.14(f).

    4.4.3. Transient transition when parameter α changes

    To study the rich transient behavior when the parameterαchanges,we firstly fix the parametersa=4,c=0.5,k=0.5,b=1.5 and initial value(1,1,1),then choose the parametersα ∈(0.5,1).

    Fig. 15. The time-domain waveform and phase diagram of variable z, (a) α = 0.6 time-domain waveform, (b) α = 0.6 phase diagram,(c)α =0.77 time-domain waveform, (d)α =0.77 phase diagram, (e)α =0.79 time-domain waveform,(f)α =0.79 phase diagram.

    Settingα= 0.6, the simulation timet ∈(0,150), the time-domain wave and phase diagram of the state variablezare shown in Figs. 15(a) and 15(b). Whent ∈(0,5), the time-domain wave is shown in the blue domain of Fig.15(a),which indicates that the system is in a chaotic state. Whent ∈(5,25), the time-domain wave is shown in the green domain of Fig.15(a),and the system is in second type of chaotic state. Whent ∈(25,110),the time-domain wave is shown in the red domain of Fig. 15(a), the system is in third type of chaotic state. Whent ∈(110,150), the time-domain wave is shown in the pink domain of Fig. 15(a), and the system converges to a point. The corresponding phase diagram is shown in Fig.15(b). Whenα=0.77,att ∈(0,20),the time-domain wave is shown in the blue domain of Fig.15(c),and the system is in a single period state. Whent ∈(20,70),the time-domain wave is shown in the green domain of Fig.15(c),and the system is in a chaotic state. Thent ∈(70,150),the time-domain wave is shown in the red domain of Fig.15(c),and the system is in another chaotic state. The corresponding phase diagram is shown in Fig.15(d). With the parameterαincreasing,whenα=0.79,t ∈(0,150),the time-domain wave is shown in the blue domain of Fig.15(e),and the system is in a single period state. Whent ∈(150,320),the time-domain wave is shown in the green domain of Fig.15(e),and the system is in a chaotic state. Thent ∈(320,500), the time-domain wave is shown in the red domain of Fig. 15(e), and the system is in another chaotic state. The corresponding phase diagram is shown in Fig.15(f).

    It can be seen that system(17)transits from a state to another state, and finally stabilizes under the above parameters.There are two, three or four states from the beginning to the stable state,which is different from the transient transition behaviors reported in the literature.

    5. Implementation on ARM

    We implement the fractional-order bi-stable memristive simplest chaotic system on ARM platform. For hardware design, the block diagram of the working principle is shown in Fig. 16. In the experiments, the ARM-based MCU STM32F750 is employed. STM32F750 is a 32-bit ARMbased MCU running at 216 MHz with floating-point calculation unit. The processor comes with a 12-bit/8-bit dual channels digital-to-analog converter(DAC).Phase portraits of the system are captured randomly by an analog oscilloscope. The platform to implement the chaotic system (17) is shown in Fig.17.

    Fig.16. Block diagram for ARM implementation of a fractional-order chaotic system.

    Fig.17. Platform to implement a fractional-order chaotic system.

    The operational procedure of software design is shown in Fig. 18. After initializing ARM, we set the initial values(x0,y0,z0),parametersh,αand iteration number. Before iterative computation, we calculate all Γ(·) andhnα. Finally, all the data is transferred to DAC and shown in oscilloscope.

    Fig. 18. Flow chart for ARM implementation of a fractional-order chaotic system.

    Fig.19. Phase diagrams realized by ARM platform and recorded by the oscilloscope in x–z plane: (a)k=0.1,(b)k=0.15,(c)k=0.2,(d)k=0.45.

    We seta=4,c=0.5,b=1.5,α=0.8,h=0.01, initial values(x0,y0,z0)=(1,1,1), and change the parameterk.Phase portraits of the system are captured by the oscilloscope as shown in Fig.19. The experimental results qualify the simulation analysis. It indicates that the fractional-order bi-stable memristive simplest chaotic system is realized successfully on ARM platform.

    6. Conclusion

    In this paper,a bi-stable locally-active memristor is firstly proposed, which has double coexisting pinched hysteresis loops and locally-active regions. Then, a fractional-order chaotic system based on the bi-stable locally-active memristor is explored, and the stability of equilibrium points of the system is analyzed. It is found that oscillations occur only within the locally-active region. By bifurcation analysis and Lyapunov exponent spectrum analysis, we find that the system has extremely rich dynamics, such as transient transition behaviors. Finally, the circuit simulation of the fractionalorder bi-stable locally-active memristive chaotic system is implemented on ARM-based MCU to verify the validity of the numerical simulation results.

    猜你喜歡
    李浩
    “算兩次”法在數(shù)學(xué)解題中的應(yīng)用
    Quantum estimation of rotational speed in optomechanics
    Theory of multiphoton photoemission disclosing excited states in conduction band of individual TiO2 nanoparticles?
    李浩:防治新冠肺炎,科學(xué)利用藥膳
    李浩作品
    國畫家(2017年5期)2017-10-16 06:26:25
    李浩:總有那么一股勁兒——走進(jìn)空軍某試驗訓(xùn)練基地?zé)o人機飛行員李浩
    那個叫李浩的兄弟
    這個李浩
    楊班侯大功架四十二式太極拳(四)
    少林與太極(2016年4期)2016-06-16 00:47:47
    《二次根式的乘除》測試題
    免费观看性生交大片5| 日本av手机在线免费观看| 青青草视频在线视频观看| 人人澡人人妻人| 偷拍熟女少妇极品色| 亚洲av电影在线观看一区二区三区| 久久午夜综合久久蜜桃| 十分钟在线观看高清视频www | 国产精品国产三级专区第一集| 日日啪夜夜撸| 久久国产乱子免费精品| 七月丁香在线播放| 国产亚洲91精品色在线| 国产精品一区二区在线不卡| av国产精品久久久久影院| 热99国产精品久久久久久7| 免费在线观看成人毛片| 18禁动态无遮挡网站| 国产免费又黄又爽又色| 在线播放无遮挡| 成人亚洲欧美一区二区av| 日韩人妻高清精品专区| 成人黄色视频免费在线看| av免费在线看不卡| 黑人猛操日本美女一级片| 日日爽夜夜爽网站| 国产在视频线精品| 99热6这里只有精品| 免费黄网站久久成人精品| 久久狼人影院| 一个人看视频在线观看www免费| 成人亚洲精品一区在线观看| 22中文网久久字幕| 免费观看a级毛片全部| 各种免费的搞黄视频| 欧美日韩视频高清一区二区三区二| 91久久精品国产一区二区成人| 日韩亚洲欧美综合| 日本黄色片子视频| 精品人妻一区二区三区麻豆| kizo精华| 美女脱内裤让男人舔精品视频| 亚洲激情五月婷婷啪啪| 久久久久精品久久久久真实原创| 久久人人爽人人爽人人片va| 国产av国产精品国产| 久久久久精品性色| 极品教师在线视频| 一区二区三区四区激情视频| 毛片一级片免费看久久久久| 一本大道久久a久久精品| 热re99久久精品国产66热6| 老女人水多毛片| 亚洲无线观看免费| 在线天堂最新版资源| 黄片无遮挡物在线观看| 最近最新中文字幕免费大全7| 天堂8中文在线网| 夜夜骑夜夜射夜夜干| 超碰97精品在线观看| 精品久久久噜噜| 十八禁网站网址无遮挡 | 精品久久久精品久久久| 亚洲精品成人av观看孕妇| 乱人伦中国视频| 国产毛片在线视频| 久久国产精品大桥未久av | 亚洲av综合色区一区| 亚洲av成人精品一区久久| 人妻制服诱惑在线中文字幕| 伊人亚洲综合成人网| 国产一区二区在线观看av| 伦理电影免费视频| 色视频在线一区二区三区| 性色avwww在线观看| 日本黄色片子视频| 欧美97在线视频| 久久久久久久久久久免费av| 成人毛片a级毛片在线播放| 精品国产乱码久久久久久小说| 成人特级av手机在线观看| 王馨瑶露胸无遮挡在线观看| 欧美3d第一页| 午夜免费观看性视频| 久久国产精品大桥未久av | 久久久久久久大尺度免费视频| 久久久a久久爽久久v久久| 国产精品99久久久久久久久| 亚洲av日韩在线播放| 婷婷色综合大香蕉| 黑人猛操日本美女一级片| 午夜老司机福利剧场| 欧美 日韩 精品 国产| 人妻 亚洲 视频| 全区人妻精品视频| 少妇被粗大猛烈的视频| 午夜激情久久久久久久| 久久国产亚洲av麻豆专区| 97精品久久久久久久久久精品| 国产高清三级在线| 欧美日本中文国产一区发布| 男女啪啪激烈高潮av片| www.色视频.com| 久久久久久久精品精品| 黄色视频在线播放观看不卡| 九九爱精品视频在线观看| 熟女av电影| 日韩一本色道免费dvd| 一级毛片 在线播放| 日本爱情动作片www.在线观看| 国产中年淑女户外野战色| 久久国产精品男人的天堂亚洲 | 三上悠亚av全集在线观看 | 欧美日韩视频高清一区二区三区二| 乱系列少妇在线播放| 亚洲国产毛片av蜜桃av| 国产欧美亚洲国产| 黄片无遮挡物在线观看| 一级毛片电影观看| 最近手机中文字幕大全| 国产爽快片一区二区三区| 在线播放无遮挡| 久久久亚洲精品成人影院| 成人国产av品久久久| 国产在线免费精品| 免费高清在线观看视频在线观看| 国产成人精品婷婷| 亚洲国产最新在线播放| 亚洲人成网站在线播| 午夜福利,免费看| 亚洲av国产av综合av卡| 国产男女内射视频| 日本欧美国产在线视频| 九九爱精品视频在线观看| 久久久久国产网址| 日本与韩国留学比较| a级毛片免费高清观看在线播放| 国产亚洲精品久久久com| 精品亚洲乱码少妇综合久久| 久久久久国产网址| 如日韩欧美国产精品一区二区三区 | 精品久久久久久久久av| 国产视频首页在线观看| 老司机亚洲免费影院| 亚洲国产精品国产精品| 成年人免费黄色播放视频 | 国产av国产精品国产| 国产精品伦人一区二区| 亚洲欧美成人精品一区二区| 在线观看av片永久免费下载| 免费不卡的大黄色大毛片视频在线观看| 91精品伊人久久大香线蕉| 亚洲成人一二三区av| 国产又色又爽无遮挡免| 国内少妇人妻偷人精品xxx网站| 国产亚洲91精品色在线| 亚洲综合精品二区| 久久久久久人妻| 国产欧美亚洲国产| 精品国产乱码久久久久久小说| 天美传媒精品一区二区| 国产乱来视频区| 国产伦精品一区二区三区四那| 亚洲欧美一区二区三区黑人 | 国产 精品1| 精品久久久噜噜| 国产女主播在线喷水免费视频网站| 18禁裸乳无遮挡动漫免费视频| 日韩免费高清中文字幕av| 国产在线一区二区三区精| 久久久久久久久久久免费av| 精品国产乱码久久久久久小说| 精品少妇久久久久久888优播| 啦啦啦啦在线视频资源| a级片在线免费高清观看视频| 亚洲精品aⅴ在线观看| 国产一区亚洲一区在线观看| 夜夜骑夜夜射夜夜干| av在线app专区| 欧美区成人在线视频| 精品久久久久久电影网| 精品少妇内射三级| 中文字幕制服av| 一个人看视频在线观看www免费| 欧美日韩视频精品一区| 校园人妻丝袜中文字幕| 国产精品国产三级国产专区5o| 99久久精品一区二区三区| 国内少妇人妻偷人精品xxx网站| 国产精品免费大片| 国产精品久久久久成人av| 新久久久久国产一级毛片| 九九在线视频观看精品| 成人国产av品久久久| 免费人妻精品一区二区三区视频| 伦理电影免费视频| 丰满饥渴人妻一区二区三| 国产成人一区二区在线| 欧美精品一区二区免费开放| 久久午夜综合久久蜜桃| 人妻系列 视频| 国产精品不卡视频一区二区| 最新的欧美精品一区二区| 成人18禁高潮啪啪吃奶动态图 | 中文字幕精品免费在线观看视频 | 婷婷色综合www| 亚洲av成人精品一区久久| 午夜福利网站1000一区二区三区| 久久久国产一区二区| 中文乱码字字幕精品一区二区三区| 亚洲国产毛片av蜜桃av| 寂寞人妻少妇视频99o| 大码成人一级视频| av女优亚洲男人天堂| 亚洲第一av免费看| 五月开心婷婷网| 国产免费福利视频在线观看| 各种免费的搞黄视频| 亚洲av电影在线观看一区二区三区| 亚洲精品aⅴ在线观看| 丰满人妻一区二区三区视频av| 99久国产av精品国产电影| 免费少妇av软件| 中文天堂在线官网| 亚洲内射少妇av| 最近的中文字幕免费完整| 国产成人午夜福利电影在线观看| 欧美亚洲 丝袜 人妻 在线| 黄色怎么调成土黄色| 狠狠精品人妻久久久久久综合| 黄色日韩在线| 亚洲av.av天堂| 国产在视频线精品| 国产淫语在线视频| 亚洲精品日韩在线中文字幕| 色视频在线一区二区三区| 午夜精品国产一区二区电影| 黑丝袜美女国产一区| 十分钟在线观看高清视频www | av在线老鸭窝| 亚洲av日韩在线播放| 国产精品免费大片| 亚洲精品成人av观看孕妇| 日日摸夜夜添夜夜添av毛片| 亚洲美女黄色视频免费看| 亚洲欧美日韩卡通动漫| 中文字幕人妻熟人妻熟丝袜美| 寂寞人妻少妇视频99o| 久久久久人妻精品一区果冻| 91精品国产九色| 久久久国产精品麻豆| 亚州av有码| 国产黄色视频一区二区在线观看| 91精品一卡2卡3卡4卡| 99久久中文字幕三级久久日本| 亚洲综合精品二区| 男人添女人高潮全过程视频| 在线看a的网站| 多毛熟女@视频| 久久99热6这里只有精品| 久久鲁丝午夜福利片| 菩萨蛮人人尽说江南好唐韦庄| 日韩免费高清中文字幕av| 日韩一区二区视频免费看| av在线观看视频网站免费| 久久 成人 亚洲| 亚洲国产毛片av蜜桃av| 91午夜精品亚洲一区二区三区| 天美传媒精品一区二区| 99久久人妻综合| 寂寞人妻少妇视频99o| 久久久久人妻精品一区果冻| 香蕉精品网在线| 黑丝袜美女国产一区| 久久人人爽人人爽人人片va| 麻豆精品久久久久久蜜桃| 日本黄色日本黄色录像| av免费在线看不卡| 最近2019中文字幕mv第一页| 久久精品国产亚洲av涩爱| 一区二区av电影网| 国产老妇伦熟女老妇高清| 日韩在线高清观看一区二区三区| 69精品国产乱码久久久| 亚洲成人手机| 成人美女网站在线观看视频| 一级,二级,三级黄色视频| 人人妻人人添人人爽欧美一区卜| 国产精品久久久久久久久免| 色网站视频免费| 亚洲自偷自拍三级| 国产日韩欧美视频二区| 成年人免费黄色播放视频 | 狂野欧美激情性bbbbbb| www.av在线官网国产| 爱豆传媒免费全集在线观看| 少妇熟女欧美另类| 久久女婷五月综合色啪小说| 国产国拍精品亚洲av在线观看| 免费看日本二区| 肉色欧美久久久久久久蜜桃| 免费av中文字幕在线| 如何舔出高潮| 欧美xxⅹ黑人| 国产亚洲最大av| 中文字幕制服av| 中文天堂在线官网| av国产精品久久久久影院| 在线观看一区二区三区激情| 免费人妻精品一区二区三区视频| videossex国产| 国产精品人妻久久久久久| 亚洲欧美成人综合另类久久久| 男人爽女人下面视频在线观看| 亚洲性久久影院| www.色视频.com| 一级黄片播放器| 免费av不卡在线播放| 日韩av免费高清视频| 免费看日本二区| 成年美女黄网站色视频大全免费 | av不卡在线播放| 日韩成人伦理影院| 亚洲怡红院男人天堂| 欧美xxxx性猛交bbbb| 久久久久久久久久久免费av| 亚洲欧洲日产国产| 欧美 日韩 精品 国产| 亚洲国产精品一区二区三区在线| 国产高清国产精品国产三级| 乱人伦中国视频| 婷婷色麻豆天堂久久| 大片免费播放器 马上看| 午夜视频国产福利| 亚洲欧洲国产日韩| 亚洲欧美中文字幕日韩二区| 岛国毛片在线播放| 自拍欧美九色日韩亚洲蝌蚪91 | 免费观看a级毛片全部| 国产片特级美女逼逼视频| 精品人妻熟女毛片av久久网站| 午夜激情久久久久久久| 亚洲国产欧美日韩在线播放 | 少妇人妻精品综合一区二区| 三级经典国产精品| a级毛片免费高清观看在线播放| 九九爱精品视频在线观看| 亚洲精品亚洲一区二区| 国产免费一区二区三区四区乱码| 80岁老熟妇乱子伦牲交| 日韩不卡一区二区三区视频在线| 欧美xxxx性猛交bbbb| 亚洲成人av在线免费| 一级毛片电影观看| 涩涩av久久男人的天堂| 国产精品成人在线| 一本大道久久a久久精品| 伊人久久精品亚洲午夜| 高清av免费在线| 99热这里只有精品一区| 男的添女的下面高潮视频| 91久久精品国产一区二区成人| 午夜视频国产福利| www.色视频.com| 丰满饥渴人妻一区二区三| 久久99一区二区三区| 美女福利国产在线| 欧美变态另类bdsm刘玥| 久久久久久久久大av| 亚洲成人一二三区av| 成人毛片a级毛片在线播放| 美女内射精品一级片tv| 国产欧美日韩精品一区二区| 精品国产一区二区久久| 最近2019中文字幕mv第一页| 熟女电影av网| 高清不卡的av网站| 日韩欧美一区视频在线观看 | 国产亚洲av片在线观看秒播厂| 亚洲精品日韩在线中文字幕| 夜夜骑夜夜射夜夜干| 黄色配什么色好看| 国产精品欧美亚洲77777| 国产日韩欧美亚洲二区| 国产午夜精品久久久久久一区二区三区| 五月天丁香电影| 亚洲av二区三区四区| 欧美日韩视频高清一区二区三区二| 男女无遮挡免费网站观看| 看非洲黑人一级黄片| 亚洲欧美日韩另类电影网站| 人体艺术视频欧美日本| 青青草视频在线视频观看| 亚洲丝袜综合中文字幕| 国产成人免费观看mmmm| 免费看av在线观看网站| 国产免费一级a男人的天堂| 午夜老司机福利剧场| 日本黄色日本黄色录像| 狂野欧美激情性xxxx在线观看| 中文字幕久久专区| 菩萨蛮人人尽说江南好唐韦庄| 亚洲精品中文字幕在线视频 | 日韩成人av中文字幕在线观看| 国产伦精品一区二区三区四那| 一级毛片 在线播放| 如何舔出高潮| 欧美成人午夜免费资源| 2022亚洲国产成人精品| 久久久久网色| 日本免费在线观看一区| 久久6这里有精品| 熟女av电影| 午夜久久久在线观看| 国产爽快片一区二区三区| 国产精品偷伦视频观看了| 欧美精品亚洲一区二区| 日本-黄色视频高清免费观看| 99九九在线精品视频 | 91久久精品国产一区二区成人| 中国美白少妇内射xxxbb| 高清av免费在线| 精品亚洲成国产av| 久久精品久久久久久噜噜老黄| 国产乱来视频区| 精品人妻偷拍中文字幕| av不卡在线播放| 国产高清不卡午夜福利| 高清不卡的av网站| 麻豆成人av视频| 欧美国产精品一级二级三级 | 啦啦啦在线观看免费高清www| 中文字幕人妻熟人妻熟丝袜美| 久久精品久久久久久噜噜老黄| 丰满饥渴人妻一区二区三| 亚洲精品亚洲一区二区| av不卡在线播放| 熟女电影av网| 嫩草影院入口| 麻豆成人av视频| 精品一区在线观看国产| 成人综合一区亚洲| 七月丁香在线播放| 亚洲精品一区蜜桃| 少妇人妻久久综合中文| 久久久久国产精品人妻一区二区| 午夜福利在线观看免费完整高清在| 大片免费播放器 马上看| 久久久久国产网址| 久久综合国产亚洲精品| 日韩欧美一区视频在线观看 | 亚洲三级黄色毛片| 黑人高潮一二区| 中文在线观看免费www的网站| 亚洲怡红院男人天堂| 精品99又大又爽又粗少妇毛片| 街头女战士在线观看网站| 亚洲欧美一区二区三区国产| 中文天堂在线官网| 亚洲精品日本国产第一区| 精品熟女少妇av免费看| 一本久久精品| 黄色日韩在线| 精品少妇内射三级| 岛国毛片在线播放| 久久精品久久精品一区二区三区| 亚洲精品一二三| 久久久久视频综合| 久久精品国产鲁丝片午夜精品| 精品久久久久久久久亚洲| 嘟嘟电影网在线观看| 如日韩欧美国产精品一区二区三区 | 人人妻人人看人人澡| √禁漫天堂资源中文www| 精品一区二区三卡| 99久久中文字幕三级久久日本| 国产日韩欧美亚洲二区| 桃花免费在线播放| av黄色大香蕉| 日本vs欧美在线观看视频 | 九九久久精品国产亚洲av麻豆| 国产精品伦人一区二区| 69精品国产乱码久久久| 亚洲精品456在线播放app| 如日韩欧美国产精品一区二区三区 | 五月伊人婷婷丁香| 国产精品一二三区在线看| 久久久午夜欧美精品| 97精品久久久久久久久久精品| 91午夜精品亚洲一区二区三区| 久久精品夜色国产| 日产精品乱码卡一卡2卡三| 亚洲欧美日韩另类电影网站| freevideosex欧美| 狂野欧美白嫩少妇大欣赏| 亚洲精品乱码久久久久久按摩| 少妇人妻精品综合一区二区| 国产黄色免费在线视频| 亚洲欧美日韩另类电影网站| 蜜臀久久99精品久久宅男| 麻豆乱淫一区二区| 蜜臀久久99精品久久宅男| 99热全是精品| 91aial.com中文字幕在线观看| 99热这里只有是精品在线观看| 欧美日韩在线观看h| 嘟嘟电影网在线观看| 五月伊人婷婷丁香| 精品99又大又爽又粗少妇毛片| 国产一区二区在线观看av| 91成人精品电影| 午夜激情久久久久久久| 国产欧美日韩精品一区二区| 国产视频首页在线观看| 人人妻人人爽人人添夜夜欢视频 | 日日啪夜夜爽| 日韩大片免费观看网站| 国产色婷婷99| 97在线视频观看| 国产精品不卡视频一区二区| 综合色丁香网| 亚洲中文av在线| 亚洲婷婷狠狠爱综合网| 九九在线视频观看精品| 在现免费观看毛片| 美女大奶头黄色视频| 最近的中文字幕免费完整| av播播在线观看一区| 晚上一个人看的免费电影| 亚洲欧洲国产日韩| 丁香六月天网| 国产成人精品婷婷| 国产又色又爽无遮挡免| 一级毛片久久久久久久久女| 欧美日本中文国产一区发布| 精品少妇内射三级| av.在线天堂| 亚洲国产色片| 亚洲精品乱码久久久久久按摩| 日本黄色片子视频| 哪个播放器可以免费观看大片| 中文字幕免费在线视频6| 国产成人91sexporn| 日本欧美视频一区| 午夜久久久在线观看| 中国美白少妇内射xxxbb| 国精品久久久久久国模美| 黄色日韩在线| 大香蕉97超碰在线| 欧美精品人与动牲交sv欧美| 亚洲欧美日韩另类电影网站| av免费观看日本| 97在线人人人人妻| 高清av免费在线| 日日摸夜夜添夜夜添av毛片| av天堂久久9| 亚洲欧美日韩东京热| 亚洲成人手机| 精品国产露脸久久av麻豆| 老司机亚洲免费影院| 久久久亚洲精品成人影院| 一级黄片播放器| 免费观看a级毛片全部| 伊人久久国产一区二区| 午夜激情久久久久久久| 蜜桃在线观看..| 一二三四中文在线观看免费高清| 国产熟女欧美一区二区| 欧美精品亚洲一区二区| 欧美精品一区二区免费开放| 老熟女久久久| 一边亲一边摸免费视频| 国产伦在线观看视频一区| 嫩草影院入口| 永久免费av网站大全| 久久99热6这里只有精品| 精品国产一区二区久久| 国产色婷婷99| 18禁在线播放成人免费| 青春草亚洲视频在线观看| 在线精品无人区一区二区三| 六月丁香七月| 成人毛片60女人毛片免费| 日本黄色片子视频| 亚洲怡红院男人天堂| 免费人成在线观看视频色| 观看美女的网站| 九九在线视频观看精品| 欧美xxxx性猛交bbbb| av福利片在线| 日日啪夜夜爽| 国产亚洲午夜精品一区二区久久| 亚洲在久久综合| 午夜福利影视在线免费观看| 亚洲精品亚洲一区二区| 久久久久久久大尺度免费视频| 爱豆传媒免费全集在线观看| 另类亚洲欧美激情| 美女福利国产在线| 交换朋友夫妻互换小说| 国产精品久久久久久精品古装| 搡女人真爽免费视频火全软件| 精品一区二区三卡| 精品少妇久久久久久888优播| 在线天堂最新版资源| 久久精品国产亚洲网站| 99久久精品热视频| 免费人成在线观看视频色| 久久久久久久精品精品| 免费观看av网站的网址| 青春草国产在线视频| 少妇人妻久久综合中文| 另类亚洲欧美激情| 嫩草影院入口| 男女啪啪激烈高潮av片|