• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Computational ghost imaging with deep compressed sensing?

    2021-12-22 06:42:56HaoZhang張浩YunjieXia夏云杰andDeyangDuan段德洋
    Chinese Physics B 2021年12期
    關(guān)鍵詞:張浩

    Hao Zhang(張浩) Yunjie Xia(夏云杰) and Deyang Duan(段德洋)

    1School of Physics and Physical Engineering,Qufu Normal University,Qufu 273165,China

    2Shandong Provincial Key Laboratory of Laser Polarization and Information Technology,Research Institute of Laser,Qufu Normal University,Qufu 273165,China

    Keywords: computational ghost imaging, compressed sensing, deep convolution generative adversarial network

    1. Introduction

    Ghost imaging (GI) uses the spatial correlation of the light field to indirectly obtain the object’s information.[1–3]In the GI setup, the light source is divided into two spatially related light beams: the reference beam and the object beam. The reference beam, which never interacts with the object, is measured by a multipixel detector with a spatial resolution (e.g., a charge-coupled device), and the object beam after illuminating the object is collected by a bucket detector without spatial resolution. By correlating the photocurrents from the above two detectors, the image of the object can be retrieved. GI has attracted considerable attention from researchers because it has many peculiar features,such as turbulence-free,[4,5]medical imaging,[6–8]and night vision.[9,10]

    However, the two optical paths of the conventional GI limit its application. In 2008,Shapiro creatively proposed the computational ghost imaging(CGI)that simplified the original light paths.[11]In the scheme of CGI,the spatial distribution of the light field is modulated by a spatial light modulator(SLM).The distribution of the light field in the object plane can be calculated according to the diffraction theory.Thus,the reference light path is omitted.Because of the simple light path and high quality,[12]CGI is the most potential imaging scheme for the applications of radar[13,14]and remote sensing.[15,16]

    After more than ten years,the theory and experiments of CGI have become mature. However, a crucial disadvantage hinders the application of CGI, i.e., CGI needs to process a large quantity of data to obtain a high-quality reconstructed image. Compressed sensing (CS) provides an elegant framework to improve the performance of CGI, but its application has been restricted by the strong assumption of sparsity and costly reconstruction process.[17–20]Recently, deep learning(DL) has removed the constraint of sparsity, but reconstruction remains slow.[21–24]

    In this article, we propose a novel CGI scheme with a deep compressed sensing (DCS) framework to improve the imaging quality. Compared with the conventional DL algorithm,neural networks in the DCS can be trained from scratch for both measuring and online reconstruction.[25]Here, we choose a CS based on a deep convolution generative adversarial network(DCGAN)to illustrate this method. Furthermore,we show a useful phenomenon in which background-noisefree images can be obtained by our method.

    2. Theory

    We depict the scheme of computational ghost imaging with deep compression sensing in Fig.1. In the setup,a quasimonochromatic laser is modulated by an SLM and then an objectT(ρ)is illuminated,and the reflected light carrying the object information is modulated by a spatial light modulator.A bucket detector collects the modulated lightEdi(ρ,t). Correspondingly,the calculated lightEci(ρ′,t)can be obtained by diffraction theory. By calculating the second-order correlation between the signal output by the bucket detector and the calculated signal, the object’s image can be reconstructed,[26,27]i.e.,

    where〈·〉denotes an ensemble average. The subscripti=1,2,...,ndenotes theith measurement,andndenotes the total number of measurements. For simplicity, the object functionT(ρ)is contained inEdi(ρ,t).

    Fig. 1. Setup of the computational ghost imaging system with a deep compressed sensing network.SLM:spatial light modulator,BD:bucket detector.

    The flowchart of the DCS is shown in Fig.2. The model consists of four parts: (i) a CS program to compress the data collected by the CGI device,(ii)a conventional CGI algorithm,(iii)a generator G of DCGAN converts random data into sample images through continuous training;and(iv)a discriminator D of DCGAN distinguishes sample images from the real images.

    Fig. 2. Network structure of the DCS. z represents random data; G(z)represents sample images; x represents real images, and the dotted arrows represent the iterative optimization process for the generator G and the discriminator D.

    In the conventional CGI setup,a bucket detector collects a set of data(n). Correspondingly,the distribution of the idle light field in the object plane can be calculated according to the diffraction theory. Here, we can obtainn200×200 data points,and each data point can be divided into 20×20 blocks without overlapping. Under the CS theory,[17–19]the random Gaussian matrix is used to process the 20×20 data blocks,and a 400-dimensional column vector is obtained. In our scheme,the measurement rate is MR=0.25,so the size of the measurement matrix is 100×400. The process of CS can be expressed as

    whereφ ∈RM×N(M ?N) is the measurement basis matrix,x ∈RNrepresents the vectorized image block, andy ∈RMis the measurement vector.N/Mrepresents the measurement rate. Finally, we can obtain a 100-dimensional measurement vectorz.

    By processing the above data with a conventional CGI algorithm,a new set of data(n)is obtained. Then,we train the data through a generator G of DCGAN. The network structure of generator G is shown in Fig. 3. The input is a 100-dimensional random vectorz. The first layer is the fully connected layer, and it turnszinto a 4×4×512-dimensional vector. The 2–5 layers are transposed convolution layers,and the number of channels is gradually reduced through the upsampling operation of transposed convolutions. In the second layer (a transposed convolution layer), 512×5×5 convolution kernels are used to generate 256×8×8 feature maps.The third network layer (a transposed convolution layer) is connected to the second layer, and 256×5×5 convolution kernels are used to generate128×16×16 characteristic graphs.The third layer of the network is connected to the fourth layer(a transposed convolution layer),and 128×5×5 convolution kernels are used to generate 64 32×32 feature maps.

    Fig.3.Network structure of the generator G.FC:fully connected layer;TCONV:transposed convolution layer;512×5×5,represents the number and size of the convolution kernel; s represents stride(s); and pr represents pruning.

    All the above processes are performed by batch normalization and the activation function is a ReLU(rectified linear unit) function. The fifth network layer (a transposed convolution layer) is connected to the fourth layer, and 64×5×5 convolution kernels are used to generate 3×64×64 feature maps. The activation function of the fifth layer is a tanh function. Finally,the sample images are output.

    The sample images(3×64×64)obtained by the generator are used as input to the first layer. Then, the images go through a 50% dropout process to prevent overfitting so that the size of the image remains unchanged. The 3–7 layers are convolution layers. Figure 4 shows the discriminator network structure. In the third layer (a convolution layer), 3×5×5 convolution kernels are used to generate 64×32×32 feature maps. The third network layer is connected to the fourth layer(a convolution layer), and 64×5×5 convolution kernels are used to generate 128×16×16 feature maps.The fifth network layer(a convolution layer)is connected to the fourth layer,and 64×5×5 convolution kernels are used to generate 256×8×8 feature maps. The sixth network layer(a convolution layer)is connected to the fifth layer, and 256×5×5 convolution kernels are used to generate 512×4×4 feature maps. All the above processes are performed by batch normalization, and the activation function is a leaky ReLU function. The seventh network layer (a convolution layer) is connected to the sixth layer,and 512×5×5 convolution kernels are used to generate 1 scalar value.In this article, we choose TensorFlow as the learning framework and train the DCS model based on the TensorFlow learning framework. The learning rate is set to 0.0002,and the number of epochs is 500. The cyclic process can be described as follows: firstly, generatorGgenerates the sample images,then discriminatorDdiscriminates, and the loss is calculated by the output of generatorGand discriminatorD. Therefore,the loss function can be expressed as

    Fig.4.Network structure of discriminator D.CONV:convolution layer;3×5×5 represent the number and size of the convolution kernel;s represents stride(s); pa represents padding.

    whereDrepresents discriminatorD,Grepresents generatorG,xis the input to the model,G(x)represents the sample images andD(x) represents the probability thatxcomes from a real sample and does not come from a sample. Finally, the back-propagation algorithm is used to optimize the weight parameters, and then the next cycle is started. The test images are output every 25 epochs.

    3. Results

    The experimental setup is schematically shown in Fig.1.A standard monochromatic laser(30 mW,Changchun New Industries Optoelectronics Technology Co.,Ltd. MGL-III-532)with wavelengthλ= 532 nm illuminates a cube. A twodimensional amplitude-only ferroelectric liquid crystal spatial light modulator(Meadowlark Optics A512-450-850)with 512×512 addressable 15μm×15μm pixels through the lens collects the reflected light from the object. A bucket detector collects the modulated light. Correspondingly, the reference signal can be obtained through MATLAB software. The ghost image is reconstructed by the DCS. In this experiment, the sampling rate is MR=0.25 and the number of frames is 100.

    Figure 5 shows a series of reconstructed images. Figure 5(a) is the object. Figures 5(b)–5(e) represent reconstructed ghost images with different numbers of frames. The experimental results obviously show that the reconstructed image quality is improved significantly with the increase in frames. The high-quality reconstructed ghost images are comparable to those of classical optical imaging with very little sample data.

    Fig.5. The ghost image reconstructed by computational ghost imaging with compressed sensing based on a deep convolution generative adversarial network (DCS). (a) Real image. The numbers of frames in the reconstructed ghost images are(b)20,(c)40,(d)60,(e)80.

    Fig. 6. Detailed comparison between reconstructed ghost images using the conventional compressed sensing (CS) algorithm, deep learning(DL)algorithm and deep compressed sensing algorithm(DCS).The numbers of frames in the reconstructed ghost images are(a)20,(b)40,(c)60,and(d)80.

    We compare the conventional CS, DL, and DCS algorithms based on the same experimental data. The conventional CS algorithm and DCS algorithm have the same sampling rate,i.e.,MR=0.25. The DL algorithm and DCS algorithm set the same training times, i.e., 100 times. Figure 6 shows that the reconstructed images obtained by our scheme have the best quality under the same number of frames. Figure 6 clearly shows that the background noise can be eliminated by the DCS scheme, which is better than the CS and DL methods.In the generated network, the background noise is eliminated by full convolution. After each convolution, the noise information is reduced, and the details of the image will be lost accordingly. However, the transposed convolution layers in generatorGcompensate for the detailed information. Moreover, because of the existence of a discriminatorDthat can distinguish the “true” image, this causes the generatorGto constantly adjust the parameters to produce images with high reconstruction quality and low background noise.[28]

    The peak signal-to-noise ratio(PSNR)and structural similarity index(SSIM)are used as evaluation indexes to quantitatively analyse the reconstructed image quality. The quantitative results(Fig.7)show that the PSNR of CGI with DCS is on average 57.69%higher than that of CGI with DL under the same reconstructed frame number, SSIM increased by 125%on average. More important, the image quality reconstructed by this method is much higher than that of the other two methods.

    Fig.7. The(a)PSNR and(b)SSIM curves of reconstructed images of CS,DL and DCS with different numbers of frames,respectively.

    4. Summary

    Computational ghost imaging with deep compressed sensing is demonstrated in this article. We show that the imaging quality of CGI can be significantly improved by our approach. More important, this method can eliminate background noise very well,which is difficult for CS and conventional DL methods. The effect is more obvious, especially when the number of samples is small. Consequently, our scheme is more suitable for application in some special cases.For example, for fast-moving objects, we cannot collect a lot of data in a very short time.

    猜你喜歡
    張浩
    峽谷中的小鎮(zhèn)
    Effect of rotating liquid samples on dynamic propagation and aqueous activation of a helium plasma jet
    海綿拖鞋的因果律
    小小說月刊(2022年6期)2022-06-14 10:08:29
    燃燒吧,少年
    Numerical simulations of partial elements excitation for hemispherical high-intensity focused ultrasound phased transducer*
    守護(hù)平安守護(hù)你
    參花(上)(2020年11期)2020-11-02 02:21:12
    瑕疵女友自殺墜亡,“氣死她”也擔(dān)責(zé)?
    商量
    張浩關(guān)注原因
    中國畫畫刊(2017年3期)2017-03-23 07:49:20
    淘出來的好運(yùn)
    故事林(2014年9期)2014-05-08 05:15:10
    少妇熟女aⅴ在线视频| 欧美午夜高清在线| 亚洲人成77777在线视频| 18美女黄网站色大片免费观看| 精品一区二区三区四区五区乱码| 夜夜躁狠狠躁天天躁| 一二三四在线观看免费中文在| www.自偷自拍.com| 嫩草影院精品99| 嫁个100分男人电影在线观看| 久久久久国产一级毛片高清牌| 热re99久久国产66热| 老汉色∧v一级毛片| 国产av一区二区精品久久| 久久中文字幕人妻熟女| 别揉我奶头~嗯~啊~动态视频| 国产高清videossex| 久久精品国产综合久久久| 一区二区三区高清视频在线| 日韩欧美三级三区| 亚洲精华国产精华精| 成人三级做爰电影| 欧美乱码精品一区二区三区| 悠悠久久av| 在线免费观看的www视频| 母亲3免费完整高清在线观看| av片东京热男人的天堂| 欧美绝顶高潮抽搐喷水| 在线观看一区二区三区| 1024视频免费在线观看| 亚洲欧洲精品一区二区精品久久久| www日本在线高清视频| 国产男靠女视频免费网站| 19禁男女啪啪无遮挡网站| 青草久久国产| 亚洲情色 制服丝袜| 一级黄色大片毛片| 欧美激情 高清一区二区三区| 1024视频免费在线观看| 国产日韩一区二区三区精品不卡| 变态另类成人亚洲欧美熟女 | 免费看十八禁软件| 天堂影院成人在线观看| 国产亚洲精品久久久久久毛片| 两个人免费观看高清视频| cao死你这个sao货| 中出人妻视频一区二区| 成人国产综合亚洲| 久久国产精品男人的天堂亚洲| 精品国产乱码久久久久久男人| 免费在线观看亚洲国产| 日韩国内少妇激情av| 国产成人系列免费观看| 一个人观看的视频www高清免费观看 | 欧美日韩亚洲综合一区二区三区_| 国产国语露脸激情在线看| 脱女人内裤的视频| 97碰自拍视频| 国产一区二区三区在线臀色熟女| 97超级碰碰碰精品色视频在线观看| 精品卡一卡二卡四卡免费| www.自偷自拍.com| 欧美成人性av电影在线观看| www.精华液| 手机成人av网站| 日韩 欧美 亚洲 中文字幕| 狠狠狠狠99中文字幕| 性欧美人与动物交配| 在线观看舔阴道视频| 乱人伦中国视频| 90打野战视频偷拍视频| 久久久久国产一级毛片高清牌| 久久精品亚洲熟妇少妇任你| 午夜a级毛片| 日本 欧美在线| 久久伊人香网站| 一二三四在线观看免费中文在| 国产精品久久久人人做人人爽| 中国美女看黄片| 国产片内射在线| 在线观看免费视频日本深夜| 国产精品二区激情视频| 国产精品美女特级片免费视频播放器 | 天天躁狠狠躁夜夜躁狠狠躁| 亚洲一码二码三码区别大吗| 国内久久婷婷六月综合欲色啪| 午夜激情av网站| 两个人免费观看高清视频| 又大又爽又粗| 夜夜躁狠狠躁天天躁| 女人被躁到高潮嗷嗷叫费观| 一个人免费在线观看的高清视频| 欧美黄色淫秽网站| www日本在线高清视频| 亚洲精品久久成人aⅴ小说| 色播亚洲综合网| www.熟女人妻精品国产| 一进一出抽搐gif免费好疼| 国产亚洲欧美在线一区二区| av片东京热男人的天堂| 在线观看66精品国产| 一进一出好大好爽视频| 日韩有码中文字幕| 在线十欧美十亚洲十日本专区| 亚洲国产看品久久| 午夜福利视频1000在线观看 | 久久久久久大精品| 精品日产1卡2卡| av免费在线观看网站| 欧美黄色片欧美黄色片| 精品欧美国产一区二区三| 久久久久精品国产欧美久久久| 久久精品亚洲熟妇少妇任你| 国产99白浆流出| 国产极品粉嫩免费观看在线| 高清在线国产一区| 亚洲欧美精品综合一区二区三区| 搡老岳熟女国产| 久久中文字幕人妻熟女| 亚洲人成伊人成综合网2020| 丁香六月欧美| 岛国在线观看网站| 悠悠久久av| 日韩欧美一区视频在线观看| 亚洲精品中文字幕一二三四区| 欧美色欧美亚洲另类二区 | 欧美+亚洲+日韩+国产| 欧美黑人欧美精品刺激| 老鸭窝网址在线观看| 国产精品美女特级片免费视频播放器 | 好男人在线观看高清免费视频 | 男女之事视频高清在线观看| 99在线人妻在线中文字幕| 国产精品日韩av在线免费观看 | 免费在线观看日本一区| 手机成人av网站| 美女大奶头视频| 88av欧美| 一边摸一边抽搐一进一小说| 亚洲一区高清亚洲精品| 国产精品日韩av在线免费观看 | 亚洲一区高清亚洲精品| 50天的宝宝边吃奶边哭怎么回事| 久久精品亚洲精品国产色婷小说| 老司机深夜福利视频在线观看| 午夜福利影视在线免费观看| 又紧又爽又黄一区二区| 国产三级在线视频| 岛国视频午夜一区免费看| 男女下面插进去视频免费观看| 无人区码免费观看不卡| 我的亚洲天堂| 久热爱精品视频在线9| 搡老岳熟女国产| 亚洲av电影在线进入| 亚洲色图 男人天堂 中文字幕| 午夜成年电影在线免费观看| 久久精品亚洲熟妇少妇任你| 精品久久久久久,| 国产精品日韩av在线免费观看 | 波多野结衣高清无吗| av视频在线观看入口| 免费久久久久久久精品成人欧美视频| 一区二区三区高清视频在线| 国产成人精品久久二区二区91| 亚洲欧洲精品一区二区精品久久久| 国产精品综合久久久久久久免费 | 高潮久久久久久久久久久不卡| 久久人人97超碰香蕉20202| 成在线人永久免费视频| 国产日韩一区二区三区精品不卡| 久久久久亚洲av毛片大全| 国产成人精品无人区| 人人澡人人妻人| 亚洲精品在线观看二区| av超薄肉色丝袜交足视频| 中文字幕久久专区| 亚洲精品久久成人aⅴ小说| 一区二区三区激情视频| 最好的美女福利视频网| 日韩av在线大香蕉| 精品国产亚洲在线| 18禁国产床啪视频网站| 久久这里只有精品19| 精品一区二区三区av网在线观看| 亚洲精品在线观看二区| 制服诱惑二区| 欧美精品亚洲一区二区| 香蕉丝袜av| 亚洲avbb在线观看| 亚洲av成人不卡在线观看播放网| 高清黄色对白视频在线免费看| 黄色a级毛片大全视频| 涩涩av久久男人的天堂| 香蕉国产在线看| 亚洲专区字幕在线| 老汉色av国产亚洲站长工具| 精品日产1卡2卡| 黄色 视频免费看| 久久人妻福利社区极品人妻图片| 淫妇啪啪啪对白视频| av天堂在线播放| 麻豆av在线久日| 国产激情欧美一区二区| 国产精品久久久人人做人人爽| 国产国语露脸激情在线看| 免费无遮挡裸体视频| 啦啦啦 在线观看视频| 中出人妻视频一区二区| 国产午夜福利久久久久久| 俄罗斯特黄特色一大片| 久久久久久久久免费视频了| 国产又色又爽无遮挡免费看| 免费在线观看亚洲国产| 黑人巨大精品欧美一区二区mp4| 一个人免费在线观看的高清视频| 亚洲情色 制服丝袜| 村上凉子中文字幕在线| av福利片在线| 在线观看免费视频日本深夜| а√天堂www在线а√下载| 精品国产乱子伦一区二区三区| 村上凉子中文字幕在线| 国产国语露脸激情在线看| 亚洲欧美精品综合一区二区三区| 香蕉丝袜av| 欧美一级a爱片免费观看看 | 自线自在国产av| 母亲3免费完整高清在线观看| 波多野结衣巨乳人妻| 少妇被粗大的猛进出69影院| 操美女的视频在线观看| 国产亚洲av高清不卡| 国产av精品麻豆| 欧美大码av| 欧美av亚洲av综合av国产av| 欧美人与性动交α欧美精品济南到| 色老头精品视频在线观看| 午夜福利一区二区在线看| 成在线人永久免费视频| 麻豆av在线久日| 国产亚洲欧美98| 一级a爱视频在线免费观看| videosex国产| 亚洲天堂国产精品一区在线| 日韩 欧美 亚洲 中文字幕| 一进一出抽搐动态| 久久婷婷成人综合色麻豆| 人成视频在线观看免费观看| 久久精品亚洲精品国产色婷小说| 成人免费观看视频高清| 久久青草综合色| 男女下面进入的视频免费午夜 | 老司机福利观看| 成人av一区二区三区在线看| 久久天躁狠狠躁夜夜2o2o| 久久精品国产综合久久久| 亚洲男人天堂网一区| 欧美成人免费av一区二区三区| 国产高清视频在线播放一区| 1024视频免费在线观看| 亚洲av五月六月丁香网| 亚洲欧美一区二区三区黑人| 国产亚洲精品av在线| 日韩欧美三级三区| 正在播放国产对白刺激| 日韩成人在线观看一区二区三区| 国产欧美日韩综合在线一区二区| 欧美日韩黄片免| 一级片免费观看大全| 韩国av一区二区三区四区| 男女床上黄色一级片免费看| 国产精品 欧美亚洲| 涩涩av久久男人的天堂| 久久这里只有精品19| 又黄又爽又免费观看的视频| 午夜a级毛片| 一夜夜www| 亚洲五月婷婷丁香| 国内久久婷婷六月综合欲色啪| 咕卡用的链子| www.999成人在线观看| 欧美中文日本在线观看视频| 欧美最黄视频在线播放免费| 黄色 视频免费看| 一区二区日韩欧美中文字幕| 十八禁网站免费在线| 亚洲五月天丁香| 精品久久蜜臀av无| 久久久国产欧美日韩av| 精品熟女少妇八av免费久了| 亚洲电影在线观看av| 高清黄色对白视频在线免费看| 中文字幕久久专区| 男女床上黄色一级片免费看| 精品第一国产精品| 久久中文看片网| 免费久久久久久久精品成人欧美视频| 午夜影院日韩av| 无人区码免费观看不卡| 天天躁夜夜躁狠狠躁躁| 在线观看免费午夜福利视频| 亚洲中文字幕一区二区三区有码在线看 | www.熟女人妻精品国产| 男女做爰动态图高潮gif福利片 | 亚洲精品一区av在线观看| 香蕉国产在线看| 麻豆成人av在线观看| 高清黄色对白视频在线免费看| 亚洲国产日韩欧美精品在线观看 | 国产成人影院久久av| 日日夜夜操网爽| 伊人久久大香线蕉亚洲五| 老汉色∧v一级毛片| 午夜亚洲福利在线播放| 最近最新中文字幕大全电影3 | 别揉我奶头~嗯~啊~动态视频| 久久 成人 亚洲| 搡老岳熟女国产| 最近最新免费中文字幕在线| 精品国产乱子伦一区二区三区| 国产亚洲精品第一综合不卡| 1024视频免费在线观看| 日日爽夜夜爽网站| 国产成人系列免费观看| 丝袜人妻中文字幕| 看片在线看免费视频| 啦啦啦免费观看视频1| 久久性视频一级片| 亚洲一区二区三区不卡视频| 1024香蕉在线观看| 国产区一区二久久| 女同久久另类99精品国产91| 国产精品九九99| 国内精品久久久久久久电影| 久久人人97超碰香蕉20202| 99国产精品一区二区蜜桃av| 看免费av毛片| 人人妻人人澡欧美一区二区 | 精品久久久久久久人妻蜜臀av | 两人在一起打扑克的视频| 午夜福利高清视频| 在线观看免费午夜福利视频| 久久人人97超碰香蕉20202| 99香蕉大伊视频| 欧美亚洲日本最大视频资源| 国产熟女午夜一区二区三区| 身体一侧抽搐| 亚洲一卡2卡3卡4卡5卡精品中文| 日本黄色视频三级网站网址| 两性夫妻黄色片| 亚洲国产高清在线一区二区三 | 在线观看免费午夜福利视频| 99久久久亚洲精品蜜臀av| tocl精华| 老司机靠b影院| 真人一进一出gif抽搐免费| 一区二区三区激情视频| 真人一进一出gif抽搐免费| 亚洲中文字幕一区二区三区有码在线看 | 亚洲av片天天在线观看| 久久久精品欧美日韩精品| 午夜日韩欧美国产| 成人亚洲精品一区在线观看| 亚洲av成人一区二区三| 国产精品av久久久久免费| 99久久99久久久精品蜜桃| 亚洲av日韩精品久久久久久密| 国产精品野战在线观看| 视频区欧美日本亚洲| 国产99久久九九免费精品| 国产成年人精品一区二区| 欧美大码av| 国产精品,欧美在线| 日韩欧美国产在线观看| 国产成年人精品一区二区| 91老司机精品| 久久久水蜜桃国产精品网| 怎么达到女性高潮| 欧美日韩中文字幕国产精品一区二区三区 | 亚洲精品中文字幕在线视频| 别揉我奶头~嗯~啊~动态视频| 午夜视频精品福利| 国产麻豆69| 日韩精品青青久久久久久| 人人妻人人澡人人看| 久久欧美精品欧美久久欧美| 久久久久久亚洲精品国产蜜桃av| 成人三级黄色视频| 法律面前人人平等表现在哪些方面| 久久精品aⅴ一区二区三区四区| 免费久久久久久久精品成人欧美视频| 国产欧美日韩一区二区三| 亚洲天堂国产精品一区在线| 亚洲精品美女久久久久99蜜臀| 国内精品久久久久精免费| 亚洲成av片中文字幕在线观看| 中文字幕久久专区| 一个人免费在线观看的高清视频| 亚洲自偷自拍图片 自拍| 久久精品国产亚洲av高清一级| 美女国产高潮福利片在线看| 又大又爽又粗| 亚洲成人久久性| 久久香蕉激情| 久久欧美精品欧美久久欧美| 久久草成人影院| 久久国产精品男人的天堂亚洲| 欧美日韩亚洲国产一区二区在线观看| 国产蜜桃级精品一区二区三区| 午夜老司机福利片| 亚洲美女黄片视频| 校园春色视频在线观看| 他把我摸到了高潮在线观看| 黄色a级毛片大全视频| 久久久水蜜桃国产精品网| 男男h啪啪无遮挡| av在线天堂中文字幕| 在线观看舔阴道视频| 制服丝袜大香蕉在线| 激情在线观看视频在线高清| 麻豆av在线久日| 激情视频va一区二区三区| 给我免费播放毛片高清在线观看| 午夜精品国产一区二区电影| 首页视频小说图片口味搜索| 国产主播在线观看一区二区| 我的亚洲天堂| 亚洲人成77777在线视频| 在线观看舔阴道视频| 18禁美女被吸乳视频| 老熟妇乱子伦视频在线观看| 国产精华一区二区三区| 久久久久久人人人人人| 十分钟在线观看高清视频www| 午夜福利成人在线免费观看| 在线永久观看黄色视频| 人妻丰满熟妇av一区二区三区| 亚洲中文av在线| 咕卡用的链子| 中文字幕另类日韩欧美亚洲嫩草| 国产精品99久久99久久久不卡| 嫁个100分男人电影在线观看| 少妇粗大呻吟视频| 欧美黄色淫秽网站| 久久婷婷人人爽人人干人人爱 | 国产三级黄色录像| 好看av亚洲va欧美ⅴa在| 搡老妇女老女人老熟妇| 久久国产精品影院| 欧美日韩一级在线毛片| 最好的美女福利视频网| 国产激情久久老熟女| 亚洲,欧美精品.| 中文字幕av电影在线播放| 99国产综合亚洲精品| 成人国产综合亚洲| 午夜精品在线福利| 国产精品影院久久| 精品久久久久久成人av| 国产精品二区激情视频| 欧美乱码精品一区二区三区| 电影成人av| 欧美成人午夜精品| 国产极品粉嫩免费观看在线| 亚洲国产毛片av蜜桃av| av天堂久久9| 欧美激情极品国产一区二区三区| 欧美绝顶高潮抽搐喷水| a在线观看视频网站| 少妇粗大呻吟视频| 久久草成人影院| 国产欧美日韩一区二区三| 国产99久久九九免费精品| 俄罗斯特黄特色一大片| 变态另类成人亚洲欧美熟女 | 亚洲国产精品sss在线观看| svipshipincom国产片| АⅤ资源中文在线天堂| 女人爽到高潮嗷嗷叫在线视频| 亚洲一码二码三码区别大吗| 国产一级毛片七仙女欲春2 | 91在线观看av| 亚洲黑人精品在线| 麻豆久久精品国产亚洲av| av片东京热男人的天堂| 免费av毛片视频| 免费一级毛片在线播放高清视频 | 亚洲五月色婷婷综合| 精品熟女少妇八av免费久了| 巨乳人妻的诱惑在线观看| 制服人妻中文乱码| 欧美激情极品国产一区二区三区| 欧美国产精品va在线观看不卡| 日韩大码丰满熟妇| 久久久久亚洲av毛片大全| 国产精品久久电影中文字幕| 免费高清视频大片| 国产熟女xx| 国产精品久久久久久人妻精品电影| 久久精品91蜜桃| 免费不卡黄色视频| 少妇被粗大的猛进出69影院| 精品久久久久久久人妻蜜臀av | 国产亚洲精品av在线| 国产精品久久久久久人妻精品电影| 不卡一级毛片| 国产97色在线日韩免费| 国产91精品成人一区二区三区| 国产1区2区3区精品| 满18在线观看网站| 悠悠久久av| 精品久久蜜臀av无| www.999成人在线观看| 国产成+人综合+亚洲专区| 18禁裸乳无遮挡免费网站照片 | 日本欧美视频一区| 91老司机精品| 午夜亚洲福利在线播放| 亚洲国产高清在线一区二区三 | 亚洲国产精品久久男人天堂| 美女高潮到喷水免费观看| 天天一区二区日本电影三级 | 91成人精品电影| av天堂久久9| 国产精品自产拍在线观看55亚洲| 少妇 在线观看| 精品国产一区二区久久| 久久婷婷人人爽人人干人人爱 | 欧美在线一区亚洲| 国产欧美日韩一区二区三区在线| 大码成人一级视频| 亚洲精品美女久久av网站| 少妇熟女aⅴ在线视频| 好男人在线观看高清免费视频 | 亚洲一码二码三码区别大吗| 成人av一区二区三区在线看| 一卡2卡三卡四卡精品乱码亚洲| 日韩欧美三级三区| 老司机深夜福利视频在线观看| 国产色视频综合| 波多野结衣av一区二区av| 最新美女视频免费是黄的| 国产精品av久久久久免费| 午夜两性在线视频| 久久久久久亚洲精品国产蜜桃av| 99热只有精品国产| 日韩国内少妇激情av| 好男人在线观看高清免费视频 | 亚洲av熟女| 色哟哟哟哟哟哟| 老司机福利观看| 久久香蕉国产精品| 国产乱人伦免费视频| 热99re8久久精品国产| 日韩欧美一区二区三区在线观看| 色播在线永久视频| 黄片大片在线免费观看| 亚洲国产精品999在线| 中文字幕久久专区| 免费搜索国产男女视频| 日韩欧美国产一区二区入口| 日韩欧美国产在线观看| 中文字幕另类日韩欧美亚洲嫩草| 色哟哟哟哟哟哟| 一卡2卡三卡四卡精品乱码亚洲| 国产一区二区在线av高清观看| 一边摸一边抽搐一进一出视频| 国产极品粉嫩免费观看在线| 少妇被粗大的猛进出69影院| av电影中文网址| 如日韩欧美国产精品一区二区三区| 国产xxxxx性猛交| 脱女人内裤的视频| 亚洲国产欧美一区二区综合| 人人妻,人人澡人人爽秒播| 久久国产精品人妻蜜桃| 中文字幕另类日韩欧美亚洲嫩草| 免费在线观看影片大全网站| 成人亚洲精品av一区二区| 在线天堂中文资源库| 精品福利观看| 操美女的视频在线观看| 99精品欧美一区二区三区四区| 亚洲国产精品合色在线| 一进一出抽搐动态| 1024香蕉在线观看| 免费在线观看视频国产中文字幕亚洲| 欧美人与性动交α欧美精品济南到| 日韩欧美一区视频在线观看| 女人爽到高潮嗷嗷叫在线视频| 如日韩欧美国产精品一区二区三区| av在线播放免费不卡| 91精品国产国语对白视频| 丝袜人妻中文字幕| 搡老岳熟女国产| 麻豆一二三区av精品| 久久久久九九精品影院| 97人妻精品一区二区三区麻豆 | 不卡av一区二区三区| 久久九九热精品免费| 精品国产一区二区三区四区第35| 热re99久久国产66热| 亚洲五月婷婷丁香| 亚洲国产看品久久| 精品国产国语对白av| 男人操女人黄网站| 国产av一区二区精品久久| 成人永久免费在线观看视频| 在线观看日韩欧美| 国产精品久久久久久精品电影 | 97人妻精品一区二区三区麻豆 | 色婷婷久久久亚洲欧美| 国产成人一区二区三区免费视频网站| 欧美黄色片欧美黄色片|