• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Theoretical verification of intermolecular hydrogen bond induced thermally activated delayed fluorescence in SOBF-OMe?

    2021-12-22 06:44:02MuZhenLi李慕臻FeiYanLi李飛雁QunZhang張群KaiZhang張凱YuZhiSong宋玉志JianZhongFan范建忠ChuanKuiWang王傳奎andLiLiLin藺麗麗
    Chinese Physics B 2021年12期
    關(guān)鍵詞:飛雁張凱麗麗

    Mu-Zhen Li(李慕臻), Fei-Yan Li(李飛雁), Qun Zhang(張群), Kai Zhang(張凱), Yu-Zhi Song(宋玉志),Jian-Zhong Fan(范建忠), Chuan-Kui Wang(王傳奎), and Li-Li Lin(藺麗麗)

    Shandong Key Laboratory of Medical Physics and Image Processing&Shandong Provincial Engineering and Technical Center of Light Manipulations,School of Physics and Electronics,Shandong Normal University,Jinan 250358,China

    Keywords: organic light-emitting diodes,thermally activated delayed fluorescence,intermolecular hydrogen bond,decay rates

    1. Introduction

    Compared with the liquid crystal display(LCD),organic light-emitting diodes(OLEDs)display,which are thinner provide better image quality and contrast.[1]On the basis of the spin-statistics,the ratio of singlet excitons produced in organic electroluminescent materials is one-quarter, and the ratio of triplet excitons is three-quarters.[2,3]For conventional fluorescent OLEDs, the internal quantum efficiency (IQE) is much lower than other OLDEs due to the unavailability of triplet excitons. Since OLEDs with thermally activated delayed fluorescence (TADF) emitters which can obtain luminous singlet and triplet excited states through an effective reverse intersystem crossover (RISC) process were reported to achieve nearly 100%exciton efficiency,TADF materials have attracted widespread attention.[4–6]Although the current application of TADF-OLEDs is still far inferior to phosphorescent OLEDs,due to the high cost and limited resources of phosphorescent materials, TADF-OLEDs still has a lot of room for development as next-generation electroluminescent material.[7–11]For TADF molecules, the most common structure is the donor–acceptor (D–A) or D–A–D configuration. The separation of highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital(LUMO)relies on such twisted,spiral or bulky connection structures, which will effectively reduce the overlap between HOMO and LUMO,and thus reduce the energy gap between S1and T1(?EST).[12–14]There is also TADF produced in the host–guest doped system.[15–17]The characteristics of the host can directly affect the energy of the charge transfer (CT) state and the the ?ESTof the singlet state and the triplet state.[18]As host usually has a large energy gap, the vibration of singlet excitons on the TADF guest are generally well restricted.[19]Recent studies have found that the production of TADF can be assisted by intramolecular or intermolecular hydrogen bonds,[20,21]which indicates that intra-or intermolecular interactions can also promote the formation of TADF,while lack of theoretical verification made it difficult to be understood. Therefore,theoretical studies of the photophysical properties of TADF molecules with intra- or intermolecular hydrogen bonds will contribute to the understanding of the TADF luminescence mechanism. In this paper, we focus on 4-(4-((4-methoxyphenyl)sulfonyl) phenyl) dibenzo[b,d]furan (SOBF-OMe) and 4-(4-(phenylsulfonyl)phenyl)dibenzo[b,d]furan (SOBF-H) (as shown in Fig. 1(a), Fig. S1(a)) reported by Chi’s group.[22]Therein, the TADF is observed for the SOBF-OMe in crystalline state, while no TADF is observed for it in solvent or for SOBF-H in crystalline state. It is deduced that the TADF for SOBF-OMe is generated through intermolecular hydrogen bond. To verify the generation mechanism of TADF in SOBF-OMe, adopting the quantum mechanics and molecular mechanics (QM/MM) method to simulated the lightemitting property of two molecules in crystalline state.[23]Both monomers and dimers are used as models to exploring the origin of TADF.Our results will help to better understand the TADF phenomenon in SOBF-OME crystals, and expand the luminescence mechanism of TADF molecules, thus promoting the development of new multifunctional luminescent TADF molecules.

    2. Theoretical methods

    In this work, density functional theory (DFT) was used to optimize the ground state (S0). We used the DFT method to optimize the ground state structures of molecules SOBFOMe and SOBF-H.In addition,the excited state properties of TADF molecules directly determine the luminescence properties, the time-dependent density functional theory (TD-DFT)to optimize the excited states. The frequency calculation of the optimized structure confirms the stability of the obtained geometric structure. In order to simulate the solvent of toluene,we used the polarizable continuum model(PCM),which can accurately predict the effect of solvents on TADF molecules.[24–26]The combination of quantum mechanics and molecular mechanics(QM/MM)is used to simulate the properties of molecules in the aggregation state which has been proven reliable.[27–30]Meanwhile,we use a two-layer ONIOM model(as shown in Fig.1(b),and Fig.S1(b))with the center as the high layer and the surrounding as the low layer,where the high layer is calculated using the QM method and the low layer is calculated using the MM method. Further more,we use the universal force field(UFF)and TD-DFT methods for the components of MM and QM,respectively.[31–33]Three functionals(TPSSH, B3LYP, BMK) and two range separation functionals(CAM-B3LYP,ωB97XD)are tested and the 6-31G(d)basis set is used (as listed in Table 1). For dimers, the above functional combined with the empirical dispersion correlation(GD3)is calculated.[34]The calculated emission wavelengths of SOBF-OMe and SOBF-H in the solid phase calculated with the B3LYP functional are found to be similar to the experimental results.Therefore,the subsequent calculations were carried out at the level of B3LYP/6-31G(d). Perform the above calculation process in the Gaussian 16 program.[35]

    Table 1. Emission wavelengths calculated value with different functionals for SOBF-H and SOBF-OMe in aggregation state(in unit nm).

    Fig.1. (a)Chemical structures of SOBF-OMe. (b)ONIOM model of SOBFOMe: the center molecule is the high layer,and the others molecules are the low layer.

    For the radiative decay rate, the Einstein’s spontaneous emission formula is

    whereistands for the atomic ordinal number and ?ρrepresents the gradient vector;abs(?ρ)is that every component of?ρvector takes the absolute value.

    Besides, energy decomposition analysis based on the molecular force field is performed to characterize various weak interactions.[41]Most molecular force fields use the form of pair potential to calculate the electrostatic,exchange repulsion and dispersion attraction parts of the non-bonded interaction between atoms.[42]The relevant formula applied is as follows:

    where A and B are the atomic labels,qstands for the atomic charge,ris the distance between atoms,εis the depth of the van der Waals potential well, andR0is the non-bonded distance between atoms.

    3. Results and discussion

    The light-emitting properties of monomers are studied first to check its possible contribution for TADF.Based on the initial structure in crystal, we optimized the geometry of the molecule in the ground state(S0),the first singlet excited state(S1), and the triplet excited state (TN) in the toluene and aggregation state respectively. At the same time,the root-meansquare displacement (RMSD) method in Multiwfn is combined to show the structural differences between the different states(ground and excited). Moreover,due to different restriction conditions, there is a difference between the optimized molecular geometry in toluene and the optimized molecular geometry in the aggregate state as shown in Fig. 2. It can also be found that there are significant differences between the dibenzofuran and benzene rings. The RMSD values in toluene is much larger than that in aggregation state, indicating that intermolecular interaction could limit the motion of the units in aggregation when they are excited. For TADF molecules,the up-conversion process is closely related to the energy difference between S1and T1(?EST).

    Therefore, the adiabatic excitation energies for SOBFOMe in toluene and aggregation state are calculated respectively (see Fig. 3). Further more, the calculated ?ESTin toluene and aggregation state is 1.22 eV and 1.08 eV respectively, indicating that ?ESTcan be reduced by intermolecular interaction. It also indicates that it is difficult for them to realize up-conversion from T1to S1. In addition,the comparison of excited state energy levels in toluene shows that T2,T3,T4,and T5are not only lower than S1but also close to S1in terms of energy. It is suggested that not only T1but also T2, T3,T4,and T5may participate in ISC and RISC processes. In the aggregation state(as shown in Fig.3(b)),we find that the energy of S1is 0.01 eV lower than that of T5. The higher triplet states that close to S1in energy may favor the ISC process,which would be disadvantage to the emission. By comparing the energy structures of molecules in toluene and aggregation state,it is concluded that the interaction between molecules in aggregation state will affect the energy level structure and the ISC and RISC processes of the excited state.

    Fig. 2. Geometry difference between S (blue), S1 (red), and T1 (black) in toluene[(a),(b),(c)]and in aggregation state[(d),(e),(f)].

    Fig.3. Energy levels for SOBF-OMe in toluene(a)and in aggregation state(b)respectively.

    In order to further elucidate the excited state transition properties of SOBF-OMe,we analyzed the natural transition orbital(NTO)and the corresponding transition properties of SOBF-OMe(as shown in Fig.4). Through the transformation of molecular orbital,we qualitatively describe the mechanism of electron excitation.[43,44]The local excited(LE)state(with the LE components are 75%–100%)predicts a large orbital overlap. While the charge transfer(CT)state with strong charge transfer properties(with the LE components are 0%–40%)leads to a small S1–T1energy gap due to significant orbital separation. The hybridized local and charge transfer(HLCT)excited state(with the LE components are 40%–75%)is the LE and CT are mixed,with both LE and CT properties.[45–47]Figures 4(a)and 4(b)show the NTOs of S1and TNobtained by Multiwfn in toluene and aggregated state. We can intuitively see that S1is a typical hybridized local and charge-transfer excited state,there is significant overlap in the conjugation chain between electron and hole,whether it is in toluene or in aggregation state. However,the transitions of the triplet state are mainly distributed in the benzene ring and the dibenzofuran group,except for the T3state. The aggregation state has little effect on the transition properties,compared with that in toluene.

    Fig.4. NTOs for S1 and TN sates of SOBF-OMe for monomer in toluene(a)and aggregation state(b)respectively(isovalue is 0.02).

    Based on the energy levels of excited states,the ISC processes from S1to TNshould be quite possible in both toluene and aggregation state. The ISC process is not only related to?EST,but also to the spin–orbit coupling(SOC)constant. Table 2 lists the SOC values in toluene and aggregation state,calculated with the quadratic response function method in Dalton package.[48]In aggregation state, the ISC rate between S1and T1(2.03×107s?1) is greater than that in toluene(8.89×105s?1), may be induced by the small SOC constant in toluene. The RISC rates are also calculated based on the SOC values calculated in triplet states. The values are all quite small due to the large energy gap between them. Although the RISC values from T5to S1is comparable to the ISC value,it is meaningless since little excitons would distribute on T5.It proves that it is impossible for the RISC process to happen in the single molecule. Moreover, the radiation decay rate in toluene is 4.43×108s?1, which is larger than that in aggregate state (5.23×107s?1). The main reason should be that the energy difference between S1and S0in aggregate state(3.69 eV) is smaller than that of toluene (3.75 eV). The nonradiation rate in aggregation(1.06×1011s?1)is a little lower than that in toluene(2.92×1011s?1),which may be induced by the confinement of the surroundings.

    Table 2. Spin–orbit coupling (SOC) constant, intersystem crossing (ISC)rate,and reverse intersystem crossing(RISC)rate between S1 and TN.

    The photophysical properties for SOBF-H are also studied in both toluenet and aggregation state. From the energy level of the excited state(see Fig.S2),we find that the excited state energy level of SOBF-H is similar to the SOBF-OMe molecule. In aggregation state, the energy gap between S1and T1(1.18 eV) is slightly larger than that for SOBF-OMe(1.08 eV).The transition orbitals change slightly between the two molecules (see Fig. S3), where the LE component for SOBF-H decreases in S1and increases in T1. In addition,the SOC constant between S1and T5in aggregate state is decreased to (0.368 cm?1) and the ISC rate is increased to(4.30×107s?1) (see Table S1). The RISC rate between S1and T5of SOBF-H(4.44×101s?1)is so small, it is difficult to produce thermally activated delayed fluorescence.

    Fig.5. Intermolecular interactions for several dimers described[SOBF-H(a)and SOBF-OMe(b)]through the IGM method.

    In experiment, TADF was found for the SOBF-OMe in aggregation. Our calculation results of single molecules indicates that TADF could not be contributed by single molecules.Thus dimers which may contribute to TADF emission are studied. Based on the crystal structure of SOBF-H and SOBFOMe,several dimers are studied,and the interaction between molecules was analyzed by the IGM method (see Fig. 5).Based on the energy decomposition of the AMBER force field, the interaction energy between neighboring molecules is shown in Table 3. For SOBF-OMe it can be seen that the intermolecular interaction of dimer-2 and dimer-4 is weaker,and the intermolecular interaction of dimer-1 is the strongest.Through further analysis, it is found that the dispersion between the two molecules dominates the intermolecular interaction. In addition,there is aπ–πinteraction in dimer-5,it is mainly theπ–πinteraction between dibenzofuran groups. In the same way,π–πinteraction also exists in dimer-3,and theπ–πstacking exists in the donor benzene ring. For SOBF-H the intermolecular interaction of dimer-1 and dimer-2 is weak.Through further analysis,we find that the dispersion between the two molecules dominates the intermolecular interaction.Using IGM analysis,it is found that SOBF-OMe dimer-2 and dimer-4 have obvious intermolecular hydrogen bond interactions.It is also found that dimer-3 and dimer-5 have significantπ–πinterraction. Then several pairs of dimers for SOBF-H and SOBF-OMe are optimized with the QM/MM model. The emission wavelengths and the S1–T1energy gap for all the dimers are shown in Table 4. It can be seen that the calculated emission wavelengths of dimer-2 and dimer-4 for SOBF-OMe consistent with the experimental results of TADF.In addition,the ?ESTof S1and T1in dimer-2 is also much smaller than other dimers, which also predicts the possible up-conversion from triplest states to S1. The NTOs of SOBF-H and SOBFOMe dimer are also analyzed (see Fig. S4). It is found that both two dimers of SOBF-H have delocalized NTOs with electron distributed on both two molecules and significant overlap can be found for transition orbitals. However, the NTOs for dimers except for dimer-5 of SOBF-OMe indicate that electrons transit from one molecule to the other when they are excited. Although dimer-5 has strongπ–πinteraction, it is meaningless to the TADF emission. It favors the emission of phosphorescence.For the energy diagram of excited states,we can find that there are several states lying between S1and T1,which may favor the ISC process and the emission of phosphorescence(see Figs.S5 and S6). The calculated wavelength of T1for all the dimers is also in consistent with the experimental result,which further illustrates that dimers except those with H-bond may favor the phosphorescence emission(see Table S2). Therefore,we believe that the intermolecular H-bond could induce smaller S1–T1energy gap,thus the TADF could be generated. Dimers withπ–πinteraction would favor the phosphorescence emission.

    Table 3. Intermolecular interaction energy including electronic, repulsion,and dispersion interactions in several dimers studied.

    Table 4.Calculated fluorescence wavelength,?EST and oscillator strength of SOBF-OMe and SOBF-H for dimer based on their single crystal structures using TD-DFT method.

    4. Conclusion

    The excited state properties and decay rates of SOBFOMe in toluene and aggregation state are studied respectively.The results show that the intermolecular interaction could limit the geometric change of molecules when they are excited in aggregation state. The energy gaps between S1and T1are reduced to some extent, while the transition properties have little changed. Theoretical simulation of the single molecular emission in toluene and in aggregation state agrees well the prompt fluorescence and phosphorescence. It is also indicated that TADF could not be generated by single SOBF-OMe molecules but dimers with intermolecular H-bond in crystal.In addition, emission properties of SOBF-H are also investigated for comparison,which shows that dimers without intermolecular H-bond are unable to generate TADF.Our calculation results confirms experimental results that TADF could be induced by dimers with intermolecular H-bond,although that single molecules with large S1–T1energy gap have no contribution to it. The results would favor the development of new type light-emitting molecules with TADF emission.

    猜你喜歡
    飛雁張凱麗麗
    茄子
    快點(diǎn) 快點(diǎn)
    基于改進(jìn)Mask RCNN的俯視群養(yǎng)豬圖像的分割
    軟件(2020年3期)2020-04-20 01:44:52
    畫一畫
    減蘭·秋游王家河
    Pressure characteristics of hydrodynamic cavitation reactor due to the combination of Venturi tubes with multi-orifice plates *
    荷塘秋色
    飛雁
    憶長征
    I love my family
    好男人电影高清在线观看| 精品国产三级普通话版| ponron亚洲| 精品国产亚洲在线| 最好的美女福利视频网| 国产精品久久久久久精品电影| 一二三四社区在线视频社区8| 乱人视频在线观看| 亚洲五月天丁香| 久9热在线精品视频| 中出人妻视频一区二区| 天堂影院成人在线观看| 欧美一级a爱片免费观看看| 久久久久久久久中文| 757午夜福利合集在线观看| 欧美区成人在线视频| 波野结衣二区三区在线 | 最近最新中文字幕大全电影3| 一级毛片高清免费大全| 国产aⅴ精品一区二区三区波| 国产在视频线在精品| 成人一区二区视频在线观看| 午夜福利成人在线免费观看| 久久久国产成人精品二区| 国产精品久久久久久久久免 | 亚洲五月天丁香| 久久久国产成人免费| 一级作爱视频免费观看| 国产精品美女特级片免费视频播放器| 亚洲av免费高清在线观看| 在线免费观看不下载黄p国产 | 97人妻精品一区二区三区麻豆| 精品国产超薄肉色丝袜足j| 高清在线国产一区| 日日干狠狠操夜夜爽| 日韩av在线大香蕉| 叶爱在线成人免费视频播放| 深爱激情五月婷婷| 欧美性猛交黑人性爽| 欧美日本亚洲视频在线播放| 欧美色欧美亚洲另类二区| 露出奶头的视频| 久久久久亚洲av毛片大全| 国产精品1区2区在线观看.| 亚洲欧美日韩东京热| 国产 一区 欧美 日韩| 欧美日韩乱码在线| 丁香欧美五月| 手机成人av网站| 国产色婷婷99| 欧美乱妇无乱码| 国产精品三级大全| 哪里可以看免费的av片| 国产午夜精品久久久久久一区二区三区 | 在线观看66精品国产| 亚洲久久久久久中文字幕| 欧美zozozo另类| av欧美777| 日本五十路高清| 国产精品一区二区三区四区免费观看 | 女警被强在线播放| 国产成人啪精品午夜网站| 国产精品亚洲美女久久久| 手机成人av网站| 在线观看av片永久免费下载| 国产午夜精品久久久久久一区二区三区 | 日韩欧美国产在线观看| 亚洲欧美日韩高清在线视频| 18+在线观看网站| 成人永久免费在线观看视频| 国产av一区在线观看免费| 可以在线观看的亚洲视频| 亚洲av不卡在线观看| 怎么达到女性高潮| 精品国内亚洲2022精品成人| 国产精品乱码一区二三区的特点| 国产爱豆传媒在线观看| 在线观看一区二区三区| 久久精品影院6| 一区二区三区免费毛片| 久久性视频一级片| 亚洲最大成人手机在线| 麻豆国产av国片精品| 国产亚洲欧美98| 精品久久久久久久久久免费视频| 一级毛片高清免费大全| 国产探花极品一区二区| 免费无遮挡裸体视频| 亚洲国产精品合色在线| 久久久久久九九精品二区国产| 最新中文字幕久久久久| 黄色女人牲交| 男人舔女人下体高潮全视频| 五月伊人婷婷丁香| 中文字幕人妻丝袜一区二区| 午夜福利免费观看在线| 乱人视频在线观看| 天天躁日日操中文字幕| 91久久精品国产一区二区成人 | 香蕉丝袜av| avwww免费| 看片在线看免费视频| 国产成人欧美在线观看| av视频在线观看入口| 久久6这里有精品| 天天添夜夜摸| 国产精品精品国产色婷婷| av在线天堂中文字幕| 18禁美女被吸乳视频| 国产精品久久视频播放| 国产精品一区二区三区四区久久| 精品国产美女av久久久久小说| 九九久久精品国产亚洲av麻豆| 国产一区二区在线观看日韩 | 听说在线观看完整版免费高清| 亚洲精品粉嫩美女一区| 乱人视频在线观看| 免费看美女性在线毛片视频| 老汉色av国产亚洲站长工具| 免费看美女性在线毛片视频| 俺也久久电影网| 国产精华一区二区三区| 黄色片一级片一级黄色片| 亚洲一区高清亚洲精品| 一卡2卡三卡四卡精品乱码亚洲| 很黄的视频免费| 欧美极品一区二区三区四区| 欧美另类亚洲清纯唯美| av片东京热男人的天堂| 久久九九热精品免费| 一夜夜www| 日韩欧美免费精品| 中文字幕熟女人妻在线| 国产一区二区激情短视频| 99在线人妻在线中文字幕| 2021天堂中文幕一二区在线观| 午夜两性在线视频| www日本在线高清视频| 色综合婷婷激情| 9191精品国产免费久久| 国产淫片久久久久久久久 | 久久久久久久久中文| 国产高清videossex| 欧美3d第一页| 精品一区二区三区视频在线 | 搞女人的毛片| 久久久久免费精品人妻一区二区| 亚洲国产精品合色在线| 国产极品精品免费视频能看的| 又粗又爽又猛毛片免费看| 搡老岳熟女国产| 国产av不卡久久| 黄色视频,在线免费观看| 性色avwww在线观看| 免费观看的影片在线观看| 久久午夜亚洲精品久久| 夜夜夜夜夜久久久久| 欧美中文综合在线视频| 精品久久久久久久久久免费视频| 国产伦精品一区二区三区四那| 国产亚洲精品综合一区在线观看| 国产黄片美女视频| h日本视频在线播放| 国产精品1区2区在线观看.| 日韩中文字幕欧美一区二区| 一区二区三区激情视频| 91字幕亚洲| 婷婷精品国产亚洲av在线| 欧美日韩亚洲国产一区二区在线观看| tocl精华| 非洲黑人性xxxx精品又粗又长| 国产97色在线日韩免费| 欧美一级毛片孕妇| 熟女少妇亚洲综合色aaa.| 日韩欧美在线二视频| 久久人妻av系列| 一级毛片女人18水好多| 国产精品电影一区二区三区| 韩国av一区二区三区四区| 欧美精品啪啪一区二区三区| 成人高潮视频无遮挡免费网站| 无限看片的www在线观看| 成年版毛片免费区| 两个人的视频大全免费| 久久欧美精品欧美久久欧美| 午夜a级毛片| 一二三四社区在线视频社区8| 欧美性猛交╳xxx乱大交人| 免费看十八禁软件| 亚洲国产中文字幕在线视频| 国产色爽女视频免费观看| 亚洲国产欧美网| 色老头精品视频在线观看| 精品一区二区三区人妻视频| 亚洲美女黄片视频| www.999成人在线观看| 国产精品三级大全| 久久久久国内视频| 精品熟女少妇八av免费久了| 久久草成人影院| 国产aⅴ精品一区二区三区波| 色老头精品视频在线观看| 久久久久久人人人人人| avwww免费| 国产精品日韩av在线免费观看| 国内毛片毛片毛片毛片毛片| 久久久久国内视频| 日本在线视频免费播放| 老司机在亚洲福利影院| 国产一区二区在线观看日韩 | 99久久成人亚洲精品观看| 看片在线看免费视频| 人人妻,人人澡人人爽秒播| 成年女人永久免费观看视频| 国产日本99.免费观看| 亚洲在线观看片| 国产精品久久久久久亚洲av鲁大| 免费av毛片视频| 国产精品 国内视频| 欧美成人免费av一区二区三区| 真人做人爱边吃奶动态| 国产老妇女一区| 国产三级在线视频| 婷婷亚洲欧美| 欧洲精品卡2卡3卡4卡5卡区| 看免费av毛片| 小说图片视频综合网站| 人人妻,人人澡人人爽秒播| 久久久久久久久久黄片| 国产精品久久久久久人妻精品电影| 少妇人妻精品综合一区二区 | 精品福利观看| av在线蜜桃| 国产主播在线观看一区二区| 九色成人免费人妻av| 日日干狠狠操夜夜爽| av片东京热男人的天堂| 国产精品电影一区二区三区| 一区二区三区激情视频| www日本黄色视频网| 亚洲18禁久久av| 男人的好看免费观看在线视频| 欧美3d第一页| 一区二区三区国产精品乱码| 99久久久亚洲精品蜜臀av| 此物有八面人人有两片| 国产精品一及| 在线观看午夜福利视频| 美女高潮的动态| 91在线观看av| 麻豆久久精品国产亚洲av| 亚洲激情在线av| 免费观看人在逋| 欧美色视频一区免费| 国内久久婷婷六月综合欲色啪| 少妇的逼水好多| 悠悠久久av| 国产国拍精品亚洲av在线观看 | 亚洲国产精品成人综合色| 熟女人妻精品中文字幕| 精品午夜福利视频在线观看一区| 婷婷亚洲欧美| 亚洲专区中文字幕在线| 国产真人三级小视频在线观看| 亚洲精品粉嫩美女一区| 麻豆成人午夜福利视频| 国产av麻豆久久久久久久| 91久久精品电影网| av中文乱码字幕在线| 亚洲精品成人久久久久久| 久久久精品欧美日韩精品| 别揉我奶头~嗯~啊~动态视频| 国产欧美日韩精品一区二区| 国产精品99久久99久久久不卡| 一区二区三区高清视频在线| 成年女人永久免费观看视频| 亚洲人与动物交配视频| 天堂av国产一区二区熟女人妻| 精品久久久久久久人妻蜜臀av| 亚洲无线观看免费| 久久香蕉精品热| 国产精品影院久久| 美女免费视频网站| 国产精品三级大全| 欧美成人一区二区免费高清观看| 少妇人妻精品综合一区二区 | 91在线观看av| 美女cb高潮喷水在线观看| 看片在线看免费视频| 国产三级在线视频| 免费观看的影片在线观看| 久久久久免费精品人妻一区二区| 日韩 欧美 亚洲 中文字幕| a在线观看视频网站| 99热这里只有是精品50| 神马国产精品三级电影在线观看| 午夜亚洲福利在线播放| 最新美女视频免费是黄的| 午夜福利在线在线| 18禁裸乳无遮挡免费网站照片| 国产精品一区二区免费欧美| 悠悠久久av| 97人妻精品一区二区三区麻豆| 欧美绝顶高潮抽搐喷水| 国产午夜福利久久久久久| 亚洲美女黄片视频| 观看美女的网站| 日韩欧美在线二视频| av在线蜜桃| 国产黄a三级三级三级人| 亚洲国产色片| 成人一区二区视频在线观看| 久久久久亚洲av毛片大全| 免费高清视频大片| 高清毛片免费观看视频网站| 久久久久精品国产欧美久久久| 国内精品美女久久久久久| 国产av不卡久久| 久99久视频精品免费| 国产伦一二天堂av在线观看| 91久久精品电影网| АⅤ资源中文在线天堂| 国产精品嫩草影院av在线观看 | 亚洲欧美日韩高清在线视频| 在线a可以看的网站| 一a级毛片在线观看| 女人十人毛片免费观看3o分钟| 女人被狂操c到高潮| 亚洲av中文字字幕乱码综合| 中文亚洲av片在线观看爽| 黄片小视频在线播放| 午夜福利视频1000在线观看| 尤物成人国产欧美一区二区三区| 国产精品乱码一区二三区的特点| 免费av毛片视频| 欧美在线一区亚洲| 99久久成人亚洲精品观看| 老熟妇乱子伦视频在线观看| 免费看a级黄色片| 噜噜噜噜噜久久久久久91| 国产精品嫩草影院av在线观看 | 婷婷精品国产亚洲av| www日本黄色视频网| 中亚洲国语对白在线视频| 最近最新中文字幕大全电影3| 亚洲成人免费电影在线观看| 国产真实伦视频高清在线观看 | 亚洲无线观看免费| 在线观看一区二区三区| a在线观看视频网站| 黑人欧美特级aaaaaa片| 人妻夜夜爽99麻豆av| 国产一区二区三区在线臀色熟女| 成年女人毛片免费观看观看9| 国产黄片美女视频| 亚洲av美国av| 久9热在线精品视频| 麻豆一二三区av精品| 日本免费一区二区三区高清不卡| 亚洲精品色激情综合| 亚洲国产色片| netflix在线观看网站| 婷婷精品国产亚洲av在线| 九九热线精品视视频播放| 婷婷丁香在线五月| 亚洲专区国产一区二区| 色噜噜av男人的天堂激情| 18美女黄网站色大片免费观看| 天堂网av新在线| 日韩欧美 国产精品| 90打野战视频偷拍视频| 欧美一级毛片孕妇| 三级男女做爰猛烈吃奶摸视频| 久久精品国产清高在天天线| 国产成人av教育| 成人永久免费在线观看视频| 少妇人妻一区二区三区视频| 男人的好看免费观看在线视频| 免费人成在线观看视频色| 欧美不卡视频在线免费观看| 岛国视频午夜一区免费看| 老鸭窝网址在线观看| 亚洲欧美精品综合久久99| 日韩国内少妇激情av| 午夜福利欧美成人| 天美传媒精品一区二区| 最新在线观看一区二区三区| 国产欧美日韩精品一区二区| 麻豆久久精品国产亚洲av| 他把我摸到了高潮在线观看| а√天堂www在线а√下载| 夜夜夜夜夜久久久久| 成人永久免费在线观看视频| 国产野战对白在线观看| 亚洲av日韩精品久久久久久密| 日本 欧美在线| 国产视频内射| 桃色一区二区三区在线观看| netflix在线观看网站| ponron亚洲| 亚洲精品美女久久久久99蜜臀| 午夜老司机福利剧场| 亚洲不卡免费看| av天堂中文字幕网| 久久中文看片网| 十八禁人妻一区二区| 亚洲天堂国产精品一区在线| 99久久九九国产精品国产免费| 日韩欧美国产一区二区入口| 精品乱码久久久久久99久播| 久久九九热精品免费| 丰满人妻熟妇乱又伦精品不卡| 亚洲av五月六月丁香网| 一区福利在线观看| 夜夜爽天天搞| 国产伦精品一区二区三区四那| 国产真人三级小视频在线观看| 国产精品久久久久久人妻精品电影| 欧美成人免费av一区二区三区| 久久精品91蜜桃| 国产一区二区三区在线臀色熟女| av黄色大香蕉| 日本免费一区二区三区高清不卡| 亚洲av第一区精品v没综合| 国产av一区在线观看免费| 国内少妇人妻偷人精品xxx网站| 欧美在线一区亚洲| 99热精品在线国产| 国产成人系列免费观看| 色精品久久人妻99蜜桃| 午夜视频国产福利| 国产精品香港三级国产av潘金莲| 国产成人影院久久av| 人人妻人人看人人澡| 久久亚洲精品不卡| 好男人在线观看高清免费视频| 精品久久久久久久人妻蜜臀av| 一级a爱片免费观看的视频| 俺也久久电影网| 亚洲av中文字字幕乱码综合| 成人三级黄色视频| 久久性视频一级片| 人人妻人人看人人澡| 日韩 欧美 亚洲 中文字幕| 亚洲最大成人手机在线| 日韩欧美在线乱码| 国产伦精品一区二区三区视频9 | 亚洲人成伊人成综合网2020| 老司机在亚洲福利影院| 国产精品女同一区二区软件 | www.999成人在线观看| 欧美中文日本在线观看视频| svipshipincom国产片| 非洲黑人性xxxx精品又粗又长| 成人高潮视频无遮挡免费网站| 亚洲av免费在线观看| 最新在线观看一区二区三区| 亚洲中文字幕日韩| 18禁美女被吸乳视频| 亚洲成av人片在线播放无| 免费av毛片视频| 精品日产1卡2卡| 12—13女人毛片做爰片一| 亚洲狠狠婷婷综合久久图片| 欧美3d第一页| 麻豆成人av在线观看| 少妇裸体淫交视频免费看高清| 一本精品99久久精品77| 国产成人系列免费观看| 日日干狠狠操夜夜爽| 欧美最黄视频在线播放免费| 一进一出好大好爽视频| 欧美日韩福利视频一区二区| 亚洲精品一卡2卡三卡4卡5卡| 亚洲国产欧美人成| 国产av一区在线观看免费| 2021天堂中文幕一二区在线观| 亚洲欧美日韩高清专用| 日韩欧美在线乱码| 美女大奶头视频| 欧美色视频一区免费| 国产精品国产高清国产av| 亚洲av成人av| 亚洲国产精品久久男人天堂| av天堂在线播放| 俺也久久电影网| 亚洲色图av天堂| 久久香蕉国产精品| 精品99又大又爽又粗少妇毛片 | 琪琪午夜伦伦电影理论片6080| 99久久综合精品五月天人人| 国产亚洲精品久久久久久毛片| 久久香蕉国产精品| 亚洲欧美日韩高清在线视频| 中文字幕人妻丝袜一区二区| 日本一本二区三区精品| www.999成人在线观看| 亚洲av不卡在线观看| 人人妻人人澡欧美一区二区| 日本 欧美在线| 韩国av一区二区三区四区| 亚洲,欧美精品.| 蜜桃亚洲精品一区二区三区| 国产99白浆流出| 精品久久久久久久末码| 18+在线观看网站| 亚洲精品色激情综合| 校园春色视频在线观看| 午夜福利在线在线| 欧美成狂野欧美在线观看| 日本熟妇午夜| 黄片小视频在线播放| 精品午夜福利视频在线观看一区| 亚洲人成网站在线播放欧美日韩| 免费观看人在逋| 99久久精品一区二区三区| 他把我摸到了高潮在线观看| 又爽又黄无遮挡网站| 麻豆久久精品国产亚洲av| 嫩草影院入口| 岛国在线观看网站| 国产精品爽爽va在线观看网站| 国产色婷婷99| 亚洲成人精品中文字幕电影| 免费观看的影片在线观看| 欧美日韩瑟瑟在线播放| 精品久久久久久久毛片微露脸| 国产高清三级在线| 亚洲欧美成人综合另类久久久| 欧美丝袜亚洲另类| 亚洲精品456在线播放app| 精品国产一区二区三区久久久樱花 | av在线蜜桃| 18禁在线无遮挡免费观看视频| 国产精品99久久久久久久久| 国产成年人精品一区二区| 国产乱人偷精品视频| 免费观看a级毛片全部| 99热这里只有是精品在线观看| 国产亚洲5aaaaa淫片| 国产精品美女特级片免费视频播放器| 白带黄色成豆腐渣| 啦啦啦中文免费视频观看日本| 亚洲最大成人中文| 久久97久久精品| kizo精华| 久久综合国产亚洲精品| 国产成人午夜福利电影在线观看| 亚洲内射少妇av| av线在线观看网站| 国产精品av视频在线免费观看| 国产精品久久久久久久久免| 黄片无遮挡物在线观看| 免费在线观看成人毛片| 国内精品美女久久久久久| 国产亚洲精品久久久com| 国产老妇女一区| av在线播放精品| 精品少妇黑人巨大在线播放| 精品久久国产蜜桃| 国产激情偷乱视频一区二区| 亚洲av成人av| 黄色欧美视频在线观看| 国产男人的电影天堂91| 国产免费又黄又爽又色| 又粗又硬又长又爽又黄的视频| 天堂影院成人在线观看| www.色视频.com| 亚洲不卡免费看| 色吧在线观看| 国产综合懂色| av国产免费在线观看| 亚洲成人一二三区av| 国产精品福利在线免费观看| 国产精品蜜桃在线观看| 久久这里只有精品中国| 亚洲av在线观看美女高潮| 亚洲av男天堂| 欧美一级a爱片免费观看看| 国产欧美另类精品又又久久亚洲欧美| 最近最新中文字幕大全电影3| 中文精品一卡2卡3卡4更新| 青春草视频在线免费观看| 国产成人精品婷婷| 免费人成在线观看视频色| 国产精品三级大全| 日日摸夜夜添夜夜添av毛片| 搡老乐熟女国产| 国产精品99久久久久久久久| 两个人视频免费观看高清| 国内精品一区二区在线观看| 成人午夜高清在线视频| 亚洲欧美日韩东京热| 国产综合精华液| 不卡视频在线观看欧美| 免费观看性生交大片5| 黄色一级大片看看| 国产黄片视频在线免费观看| 国产精品.久久久| 亚洲精品影视一区二区三区av| 亚洲经典国产精华液单| 插阴视频在线观看视频| 熟女电影av网| 亚洲精品日本国产第一区| 日韩av在线免费看完整版不卡| 青春草国产在线视频| 又大又黄又爽视频免费| 午夜福利成人在线免费观看| 色综合亚洲欧美另类图片| 中文在线观看免费www的网站| 亚洲一级一片aⅴ在线观看| 男女那种视频在线观看| 精品久久久久久久久av| 欧美潮喷喷水| 男女国产视频网站|