• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Heterogeneous dual memristive circuit: Multistability,symmetry,and FPGA implementation?

    2021-12-22 06:46:10YiZiCheng承亦梓FuHongMin閔富紅ZhiRui芮智andLeiZhang張雷
    Chinese Physics B 2021年12期
    關(guān)鍵詞:張雷

    Yi-Zi Cheng(承亦梓), Fu-Hong Min(閔富紅), Zhi Rui(芮智), and Lei Zhang(張雷)

    School of Electrical and Automation Engineering,Nanjing Normal University,Nanjing 210023,China

    Keywords: memristive circuit,chaos,multistability,FPGA implementation

    1. Introduction

    Memristor,the 4th basic circuit element,[1]which reveals the relationship between flux and charge, has great application potentials in the fields of neural network,[2]nonlinear circuit design,[3]image encryption,[4]etc. In recent years, various novel memristor-based circuits were widely built, and the complex dynamical behaviors of such memristive systems have been also studied. For example, a Duffing oscillator with memristor was experimentally realized in Ref. [5],and a Chua’s circuit with memristor, which shows extreme multistability and other complex dynamics, was proposed in Ref. [6]. In Ref. [7], a discrete memristor model was defined and applied to H′enon map. An Sr0.95Ba0.05TiO3(SBT)memristor is a new kind of physical memristor, and the complex behaviors of memristive circuit based on SBT was studied in Ref. [8]. A variety of autonomous or non-autonomous oscillators based on memristors expanded the research areas for these nonlinear systems.[9–11]Compared with the conventional chaotic circuits,[12]the memristor-based circuits can easily procduce diverse nonlinear motions,such as self-excited chaotic behaviors,[13]hidden attractors,[14]hyperchaos,[15]and anti-monotonic properties.[16]Because the memristive circuit is sensitive to initial values, the multistability, a typical behavior of such circuits, has become a research hotspot in recent years. The multistability in circuits with single or multiple memristors has been reported by a large number of researches.[17–21]For example, the serial-parallel memristor was introduced into the Chua’s circuit, and the influence of memristor polarity and series-parallel structure on mutistability phenomenon was explored and concluded.[2]The memristive Chua’s circuit based on active band-pass filter (BPF)was studied,in which the stable distribution of the equilibrium points was divided to confirm the trace of memristive circuit starting from different initial states.[21]And then,the extreme multistability of infinite coexistence attractors was observed,which provides the guidance for further exploring the relationship between the equilibrium points and the multistability.

    To make in depth analysis of the multistability, a new modeling method called state variable mapping (SVM) was proposed.[22]However, the SVM has its disadvantages: it is suitable only for the normalized state equation and those memristive systems with only simple nonlinear terms. To improve SVM, Chenet al.proposed a method of combining the incremental integral change with linear state variable,[23]which was named hybrid state variable incremental integral(HSVII).As the dimensionality reduction methods mentioned above still cannot directly simplify the model, in the light of flux–charge analysis method(FCAM)[24]which offers an effective way to analyze the infinite many dynamics caused by memristor, a dimensionality reduction analysis was carried out in the memeristive circuits in Ref.[25]. However,because of the complexity of the equation derivation and state variable selection, the application of FCAM in memristive systems has rarely been reported.

    In this paper, a heterogeneous DMC with two different memristors, based on Chua’s circuit, is constructed, and its nonlinear dynamical behaviors are investigated from multiple perspectives. This DMC can be used for encrypting an image.The rest of this paper is organized as follows. In Section 2,the DMC schematics are presented, and their mathematical models in the voltage–current domains and the flux–charge domains are established respectively. In Section 3, the symmetrical bifurcation and the parameter mappings with specific parameters are discussed by the 5th-order model(5OM)in the volt–ampere domain. Subsequently in Section 4, the dimensionality reduction model, 3rd-order model (3OM) in flux–charge domain,is derived by FCAM,and its hardware circuit is realized through field-programmable gate array (FPGA).Then,the multistability is illustrated through attraction basins and phase diagrams in 3OM and 5OM.Finally,some conclusions are drawn in Section 6.

    2. Circuit modeling

    In this section, a memristive circuit with two different memristors is proposed based on Chua’s circuit. The voltage–ampere model of heterogeneous dual memristive circuit is derived by Kirchhoff’s law and the volt–ampere relationship,and the flux–charge model is subsequently obtained through flux–charge analysis method to make it more controllable.

    2.1. Voltage–ampere model

    The heterogeneous DMC is constructed based on memristive Chua’s circuit[26]as shown in Fig. 1, where the circuit consists of two capacitorsC1andC2, an inductorL, a linear negative conductance-G, a third-order nonlinear flux–controlled memristorW, and a charge-controlled memristorMdescribed by absolute value. For the rationality of the mathematical model,the flux–controlled memristorW(?)and the capacitorC1are connected in parallel, while the chargecontrolled memristorM(q)and the inductorLare in series.

    Fig.1. Heterogeneous DMC.

    According to Kirchhoff’s law and the volt–ampere relationship, the state equation of the DMC can be derived into five first-order differential equations:

    where the flux-controlled memristor is described asW(?)=a+3b?2,the charge-controlled memristorM(q)=?c+d|q|,v1andv2represent the voltage of capacitorC1andC2,ithe current through the parallel branch of the charge-controlled memristor and the inductanceL,?the internal flux of the cubic memristor,qthe internal charge of the quadratic memristor. Assumingv1=x,v2=y,i=z,?=w,q=v,1/C1=α,1/C2=β,1/L=η,G=γ,we can obtain 5OM from Eq.(1)as follows:

    whereW(w)=a+3bw2andM(v)=?c+d|v|. For convenience,the system parameters are taken as

    2.2. Flux–charge model

    Through the flux–charge method, the increment of flux and charge from 0 totare defined as?(t;0)=?(t)??(0)andq(t;0) =q(t)?q(0), respectively, where?(0,0) = 0 andq(0,0)=0, the flux increments are?M1(t;0),?M2(t;0),?C1(t;0),?C2(t;0),?L(t;0), and?G(t;0). The charge increments areqM1(t;0),qM2(t;0),qC1(t;0),qC2(t;0),qL(t;0),andqG(t;0),and the reference directions are shown in Fig.2.

    Fig.2. DMC with reference directions.

    where the constitutive relationships of the elements can be obtained as follows:

    The initial values of the above elements are expressed asqC1(0) =C1uC1(0),qC2(0) =C2uC2(0),?L(0) =LiL(0),anduC1(0),uC2(0),iL(0) are equivalent to the initial values of the first three equations in Eq. (1). The model of fluxcontrolled memristor can thus be expressed asqM1(t;0) =f[?M1(t;0)+?M1(0)]?qM1(0), and the charge-controlled memristor?M2(t;0) =h[qM2(t;0)+qM2(0)]??M2(0), in whichqM1(0)=f[?M1(0)],?M2(0)=h[qM2(0)]. According to the actual circuit, the mathematical model of two memristors can be described as

    Here,we seta=?0.3,b=0.6,c=0.03,andd=0.02.

    According to Kirchhoff’s law and the circuit model in Fig.2,it follows that

    and the third-order differential equation

    Substituting Eq.(9)into Eq.(10),we obtain in the flux–charge domain

    Compared with the 5OM, the 3OM converts the initial values into the system parameters,thereby improving the controllability of the circuit.

    3. Symmetry sensitive to parameters

    In this section,the symmetric dynamical behavior which depends on the system parameters is analyzed. Firstly, based on the volt–ampere model (2), the symmetric coexistence bifurcation behaviors under special conditions are studied.Then, aiming at the dimensionality reduction model(12), the motions with corresponding parameters are simulated,and the differences between the above two models are compared.

    3.1. Symmetry in voltage–current domain

    For the parameters in Eq. (3) and the initial conditions(±10?9,0,0,0,0),the bifurcation diagrams and Lyapunov exponent spectrumsversus γandηare calculated and depicted in Fig.3,where the blue represents the coexisting bifurcation diagram with (10?9,0,0,0,0), red denotes the coexisting bifurcation diagram with(?10?9,0,0,0,0),two superposed bifurcation trajectories ofxmaxcan be observed. As the variation trend of Lyapunov exponent spectrums under two opposite initial conditions are almost the same,only the Lyapunov exponent spectrums at positive initial condition are exhibited in Fig.3.

    As can be seen from Fig.3,there are four symmetric motions, that is the following: ‘SP (stable point)’, ‘period(periodic state)’,‘CM(complex motion)’,and‘LP(large period)’.Forγincreasing in Fig. 3(a) andγ ∈(0.45,0.85), the system moves from SP to period, then to CM through perioddoubling bifurcation, and finally jumps to LP. Forηincreasing in Fig.3(b)andη ∈(0.65,1.95),the motion is exactly the opposite, starting from LP, then moving into CM and entering into period by reverse period-doubling bifurcation,finally dropping to SP. It should be noted that in the CM area, there appears mainly chaos with different periodic windows in the middle. Although the phase trajectories of the conventional period-1 and the large period are all limit cycles, while their Lyapunov exponents are different. When the large period appears,the minimum Lyapunov exponent will suddenly drop to an abnormally small value. In order to distinguish it between“period”and“LP”,the minimum Lyapunov exponent is used as a criterion.

    Fig.3. Bifurcation and Lyapunov exponent spectrum versus(a)γ and(b)η.

    To intuitively show the distribution characteristics of the dynamical behaviors for varying parametersγandη, the parameter mappings (γ,α) and (η,α) are depicted respectively in Fig. 4, where four colors are used to mark four motions: ‘blue-SP’, ‘orange-period’, ‘purple-CM’, and ‘yellow-LP’.From Fig.4,we can see that the symmetric characteristic still exist within the attraction basins,and it is not affected by other parameters. The whole evolution of “SP–period–CM–LP”, in positive or reverse order, can be fully presented for 1.4≤α ≤6. Ifαis less than 1.4,no matter how other parameters are changed,the circuit always goes through two states,SP and period,in which the system is extremely stable. Phase diagrams of each motion are given in Fig. 5 withα=2.66 and(10?9,0,0,0,0)as verification. When the specific chaotic signals need to be used,it is necessary to avoid fixing the parameter range within this range. It can been seen thatγandηhave good symmetry, for theGand 1/Lhave opposite trends in circuit evolution while other parameters have little effect on the symmetry.

    Fig.4. Parameter mappings with(10?9,0,0,0,0)on(a)γ–α plane and(b)η–α plane.

    Fig.5. Coexisting attractors with α =2.66 and(10?9,0,0,0,0).

    3.2. Symmetry in flux–charge domain

    After the dimensionality reduction by FCAM, the initial values are converted into the system parameters in flux–charge model(12), which can make the in-depth analysis of the heterogeneous dual memristive circuit. The original system (2)has symmetrical characteristics,which should not be changed by the dimensionality reduction model(12). To validate this,the bifurcation trajectory and Lyapunov exponent spectrums of 3OM are calculated and illustrated in Figs. 6(a) and 6(b),

    where the initial condition is (0,0,0), and the parameters are from Eq.(13).

    From Fig.6,we know that the diagrams,such as symmetric bifurcation and four motions,look similar to those in Fig.3,which means that Eq. (12) is consistent with system (1). Forγ1∈(0.45,0.5),g1=±10?9, andg2=g3=0, as shown in Fig.6(a),the corresponding maximum Lyapunov exponentL1is less than zero,and the system is in the stable state. With increasingγ1∈(0.5,0.85), the system enters into the period 1,then changes to period 2 through the period-doubling bifurcation,subsequently moves into complex motion through saddle junction bifurcation,in which several periodic windows exist,finally,suddenly jumps into a large period withL1returning to zero,andL2showing a steep drop. However,forηincreasing,η1∈(0.65,1.95), the movement trend of Fig. 6(b) is almost opposite to that of Fig.6(a).The system first moves from LP to chaos,and then enters into multi-period from the saddle junction bifurcation. Finally,it goes into period 1 through reverse period-doubling bifurcation and then remains stable.

    Comparing with the above analysis, it can be seen that the five-dimensional model in thev–idomain has been transformed into a three-dimensional model in the?–qdomain via FCAM.Although the system dimension decreases and the mathematical model changes,the dynamical behavior with the corresponding parameters does not change, and the special symmetric coexistence bifurcation still exists.

    Fig. 6. Bifurcation diagrams and Lyapunov exponent spectra for (a) γ1 ∈(0.45, 0.85)and(b)η1 ∈(0.65, 1.95).

    4. Multistability sensitive to initial conditions

    In this section, the multistability of the system with the initial values is analyzed based on the system model(Eqs.(2)and (13)), the similarities and differences among the multistable behaviors are studied through bifurcation diagrams and attraction basins.

    4.1. Bifurcation structures with initial conditions

    The different initial values each as a single variable will cause the system to exhibit bifurcation structures. The voltage–current model of the dual memristive system in Eq.(2)is described by the fifth-order equation,which has five initial conditions:x(0),y(0), andz(0) corresponding to the voltage ofC1,C2, and the current ofL, named “conventional initial value”;w(0)andv(0)corresponding to the internal variables ofM1,M2,as“memristive initial value”. To compare the influences of two kinds of initial values on multistability, the conventional initial values are firstly discussed.

    Fig. 7. Bifurcation diagrams with (a) (x(0), 0, 0, 0, 0), x(0)∈(?1.3,1.3), (b) (0, y(0), 0, 0, 0), y(0)∈(?0.5,0.5); and (c) (0, 0,z(0), 0, 0),z(0)∈(?0.7,0.7),respectively.

    Assume that the system parameters are from expression(3),then the bifurcation diagrams of the conventional initial values will be calculated and depicted in Fig. 7, where we can see that although the initial terms and the ranges of its variation are different,the system motion types look similar,i.e., the motion evolves from the LP into the chaos, then back to the LP. The structure of chaotic band in Fig. 7(a) is almost the same as that in Fig. 7(b), and the chaotic band in Fig.7(c)is like a mirror image of the structure of chaotic band in Fig. 7(a) or Fig. 7(b). The difference in the chaotic zone will cause chaotic attractors of different topological structures.Considering that three conventional initial values represent the voltage or current values of different components,it is believed that the difference in the structure of the chaotic zone is caused by the nature of each dynamic element. In addition, the corresponding Lyapunov exponents are also calculated and illustrated,where the curves are similar to those in Fig.8,since the Lyapunov exponents of the LP and chaos are (0,?,?,?,?)and(+,0,?,?,?),respectively.

    Fig. 8. Lyapunov exponent spectra with: (a) (x(0), 0, 0, 0, 0), x(0)∈(?1.3,1.3); (b) (0, y(0), 0, 0, 0), y(0)∈(?0.5,0.5); and (c) (0, 0,z(0), 0, 0),z(0)∈(?0.7,0.7),respectively.

    4.2. Multistability via voltage–current model

    In this subsection, the multistable characteristics of the system are revealed through the basin of attraction corresponding to the voltammetry model. The initial terms with different properties are selected as bivariate combinations to obtain the attraction basins as shown in Fig. 9, where dark blue, green and red color respectively represent the coexisting motions as“stable point”, “period”, and “complex motion” respectively.As the motions corresponding to the conventional initial values are similar, the motion ofxis taken for example. The periodic states include a variety of coexisting periodic states,such as coexisting left and right small period and large periodic limit cycles.

    As can be seen from Fig.9,the multistable diagrams symmetric with respect to the origin are observed,which is consistent with the system symmetric characteristic and the motion states withinx(0)∈(?1.3,1.3) in Figs. 9(a), 9(b), and 9(d)are the same as in Fig.9(a). The motion in Fig.9(a)shows a“reverse S”shape,and the state distribution in Fig.9(b)shows some distortions with respect to the origin. The chaotic attractors in Figs. 9(a) and 9(b) are mainly distributed near the origin, and the motions switch quickly. On the contrary, the distribution in Fig.9(d)is in the strip-type,i.e.,the system has a stable and wide chaotic band. Distinguishingly, the stable points disappear and the color boundary is fuzzy,which means that the system is more sensitive to the memristive initial values. From Fig.9(c), the symmetry of the motion distribution about the origin disappears in the attraction basin,meanwhile,the color boundary is more blurred and a stable fixed point appears,which indicates that the system that relies on the change of the initial value of dual memristance has more complex dynamical behavior.

    Fig.9. Attraction basins in voltage–current domain with(a)(x(0), 0, 0, w(0), 0);(b)(x(0), 0, 0, 0, v(0));(c)(0, 0, 0, w(0), v(0));and(d)(x(0), 0, z(0), 0, 0).

    In summary, the dual memristive system in Eq. (2) is more sensitive to the initial value of memristive resistance.When the conventional initial value is changed,the nonlinear behavior of the system is relatively simple,and it cannot fully reflect the multistable characteristics of the system. However,the change of the initial conditions of the memristive element causes the system to produce a variety of and even an infinite number of different types of attractors, which presents better multistable characteristics.

    4.3. Multistability via flux–charge model

    To validate the consistency between multistabilities before and after dimensionality reduction, the attraction basin in flux–charge domain is calculated by 3OM (12) and illustrated in Figs.10,12(a),and 13(a),in which eight coexistence attractor types are observed as listed in Table 1. Figure 10 shows that the symmetry with respect to the origin still exists in Fig.10(a),but the motion distribution is distorted about the origin in Fig.10(b). The initial values of circuit elements have different effects on the motion distribution,e.g., the initial value of memristor can make the system produce more coexisting structures. With the conventional initial values varying,the chaotic behaviors are observed within a larger parameter range,but the phenomenon of multistability cannot be fully reflected. Comparing with the charge-controlled memristorM2,the motion distribution of the flux-controlled memristorM1has a wide parameter range and concentrates near the origin,so the attractor structure is more stable.

    Fig.10. Two-dimensional initial value plane attraction basin for(a)uC1(0)–qM2(0)and(b)?M1(0)–qM2(0).

    Table 1. Types of attractors in different attraction domains.

    Fig.11. Chaotic attractors in planes of(a)x–z and(b)y–z.

    The existence of multistability needs to be verified by the trajectory of phase plane.The chaotic attractors of 3OM under parameters in Eq.(13)are given in Fig.11 with initial conditions(0,0,0),g1=10?9,andg2=g3=0,and the coexisting attractors are also shown in Figs. 12 and 13, where different kinds of attractors can be captured by attraction basins. In Fig. 12(a), the coexistence behavior presents an ‘S’ type. In Fig.13(a),the motion distribution looks like bands and strips,which is consistent with that observed in voltage–current domain. The evolution process of the coexisting attractor corresponding to Fig. 12(a) is given in Fig. 12(b). With the increase ofuC1(0), the system trajectory changes from a large period (type 3) to a left-side cycle 1 limit cycle (type 2), and then enters into the left-side chaotic state (type 6) after multiple period bifurcation. With the increase ofuC1(0), the left chaotic attractor changes into the right chaotic attractor(type 7), then it becomes the right cycle 1 (type 1) and eventually evolves back into a large cycle limit cycle(type 3)after multiple inverse cycle bifurcations. Similarly, the coexistent attractor change process corresponding to theuC2(0)–iL(0)twodimensional initial value plane is shown in Fig.13(b). WhenuC2(0) increases from?1 to 1, the system first stabilizes in the large-cycle state(type 3), then changes into a small cycle on the left(cycle 2,type 4),and then enters into the complex motion after bicyclic cycle bifurcation has evolved into a left chaotic attractor(type 6). Subsequently,repeating the foregoing process, the attractor structure changes again into a right chaotic attractor (type 7), and then enters into a small period state (right period 2, type 5) and eventually jumps to a large period(type 3). It should be pointed out that there is a transition state of cycle 1(types 1, 2)in the movement state of the system from large cycle to small cycle.

    Fig.12. Evolution process of corresponding coexisting attractors in attraction basin: (a)?M1(0)versus uC1(0)and(b)coexisting attractors.

    Fig.13. Evolution process of corresponding coexisting attractors in the attraction basin: (a)uC2(0)versus iL(0)and(b)coexisting attractors.

    Therefore, in contrast with 5OM (in Eq. (2)), by using 3OM(in Eq.(12)),more precise and effective discussion of infinite many coexisting attractors can be obtained for the transform from initial conditions to system parameters.The motion distribution trend of the circuit on the two-dimensional initial plane before and after dimension reduction are roughly the same,in which the multistable phenomenon shows the consistency.

    4.4. FPGA implementation of coexisting multistability

    In this subsection, equation (12) is transformed by the FCAM, which is beneficial to the study of multistability that depends on the initial values,and its hardware memristive circuit is realized via FPGA. Analog equivalent circuit is also a way to realize the chaotic system,[27]but the setting of initial conditions is not an easy task in practice.Such a digital experiment platform can set system parameters or initial values more quickly and accurately,and is suitable for implementing memristive chaotic circuits with higher precision requirements.[28]The digital implementation of the 3OM (12) is given as follows:

    The iteration stephis set to be 0.01, andKi j(i,j=1,2,3,4)are expressed as follows:

    Fig. 14. FPGA implementation, showing (a) connection diagram, (b)chaotic attractor in x–z plane.

    The physical connection diagram and the chaotic attractor are shown in Fig. 14. The trajectory is corresponding to that of in Fig.11(a),which verifies the correctness of numerical results. Subsequently, to reduce the multistability in the heterogeneous dual memristive circuit, a series of symmetrical coexistence attractors is presented in Fig.15,which physically realizes the unique multistability phenomenon as those shown in Figs.12 and 13. Therefore,the FPGA-based digital implementation of 3OM has high stability,good accuracy,and certain portability and universality.

    Fig.15. Coexisting attractors,showing(a)left-right-period 2,(b)left-right-period 3,and(c)left-right-chaos.

    5. Conclusions

    In this paper, a dual-memristor-based Chua’s circuit,which shows good symmetry and multistability,is constructed by introducing two memristors with different structures. To analyze its dynamical behaviors, such as the system mechanism and the influences of the initial conditions,two analysis models,i.e.,5OM in the voltage–current domain and 3OM in the flux–charge domain, are compared with each other. The symmetric bifurcation behaviors of the DMC are first investigated in the 5OM via parameter mappings to confirm the existence of symmetry under some special system parameters.By using the 3OM, a similar symmetry with corresponding parameters is also illustrated, which partly confirms the effectiveness and correctness of FCAM in the proposed circuit.Moreover,the multistabilities in two models are observed and compared to show the coexistence of complex multiple attractors in DMC. The reliability of FCAM is validated by both numerical simulations and FPGA implementation. For engineering applications,the analysis model selection shall depend on the practical situation.

    猜你喜歡
    張雷
    漲渡湖濕地冬韻
    A new stage of the Asian laser-induced breakdown spectroscopy community
    In-plane optical anisotropy of two-dimensional VOCl single crystal with weak interlayer interaction
    Measurement and analysis of species distribution in laser-induced ablation plasma of an aluminum–magnesium alloy
    黃科院田世民、呂錫芝、張雷入選水利青年拔尖人才
    人民黃河(2022年4期)2022-04-07 09:03:16
    張雷詠
    登銅雀臺
    Dynamic and inner-dressing control of four-wave mixing in periodically-driven atomic system?
    關(guān)于“見元る”的“自發(fā)”與“可能”
    耳邊不停的嘶喊
    女性天地(2018年3期)2018-03-27 09:55:22
    av欧美777| 久久草成人影院| 18禁美女被吸乳视频| 亚洲黑人精品在线| 亚洲人成电影免费在线| 国产精品一区二区免费欧美| 久久久久国产精品人妻aⅴ院| 精品国产亚洲在线| 国产不卡一卡二| 叶爱在线成人免费视频播放| 久久久国产成人免费| 亚洲男人的天堂狠狠| 亚洲av片天天在线观看| 999久久久国产精品视频| 午夜a级毛片| 黄色视频不卡| 亚洲一卡2卡3卡4卡5卡精品中文| 国产激情欧美一区二区| 悠悠久久av| 日韩精品免费视频一区二区三区| 午夜福利欧美成人| 亚洲欧美日韩无卡精品| 免费在线观看完整版高清| 日韩欧美三级三区| 久久久久久国产a免费观看| 嫩草影院精品99| av视频在线观看入口| 69av精品久久久久久| 丝袜人妻中文字幕| 午夜老司机福利片| 欧美一级毛片孕妇| 国产久久久一区二区三区| 法律面前人人平等表现在哪些方面| 国产精品影院久久| 亚洲片人在线观看| 亚洲精品粉嫩美女一区| 99国产综合亚洲精品| 日韩欧美一区二区三区在线观看| 国产一卡二卡三卡精品| 琪琪午夜伦伦电影理论片6080| cao死你这个sao货| 国产精品日韩av在线免费观看| 黑丝袜美女国产一区| 男女之事视频高清在线观看| 免费av毛片视频| 夜夜看夜夜爽夜夜摸| 老司机靠b影院| 老司机靠b影院| 丁香欧美五月| 一区二区日韩欧美中文字幕| 亚洲第一青青草原| 神马国产精品三级电影在线观看 | 波多野结衣高清无吗| 亚洲全国av大片| 亚洲国产高清在线一区二区三 | 精品乱码久久久久久99久播| 国产成人精品无人区| 热99re8久久精品国产| 亚洲国产中文字幕在线视频| 国产伦在线观看视频一区| 一区二区三区激情视频| 日韩欧美一区视频在线观看| 亚洲成av片中文字幕在线观看| 少妇裸体淫交视频免费看高清 | 亚洲av电影在线进入| 最近最新免费中文字幕在线| av福利片在线| 夜夜夜夜夜久久久久| 国产高清videossex| 欧美久久黑人一区二区| 亚洲午夜理论影院| 在线观看www视频免费| 啦啦啦免费观看视频1| АⅤ资源中文在线天堂| 欧美黑人精品巨大| 午夜福利欧美成人| 久久久国产精品麻豆| 最近最新免费中文字幕在线| 制服人妻中文乱码| 免费女性裸体啪啪无遮挡网站| 日韩免费av在线播放| 男男h啪啪无遮挡| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲第一av免费看| 国产午夜精品久久久久久| 黄频高清免费视频| 99久久综合精品五月天人人| 日本成人三级电影网站| 日韩欧美一区视频在线观看| 午夜精品在线福利| 午夜日韩欧美国产| 色哟哟哟哟哟哟| 一区二区日韩欧美中文字幕| 黄频高清免费视频| 黄色片一级片一级黄色片| 精品卡一卡二卡四卡免费| 精品人妻1区二区| 国产精品九九99| 免费在线观看成人毛片| www日本在线高清视频| 18禁黄网站禁片免费观看直播| 大型av网站在线播放| 首页视频小说图片口味搜索| 我的亚洲天堂| 99久久久亚洲精品蜜臀av| 两个人免费观看高清视频| 欧美日韩中文字幕国产精品一区二区三区| 日韩一卡2卡3卡4卡2021年| 亚洲国产精品久久男人天堂| 黄网站色视频无遮挡免费观看| 香蕉av资源在线| 十八禁人妻一区二区| 老司机午夜福利在线观看视频| 国产成+人综合+亚洲专区| 亚洲成人精品中文字幕电影| 精品乱码久久久久久99久播| 在线观看免费视频日本深夜| 亚洲成a人片在线一区二区| 在线播放国产精品三级| 亚洲人成伊人成综合网2020| 精品无人区乱码1区二区| 亚洲国产精品久久男人天堂| 欧美日韩福利视频一区二区| 国产精品av久久久久免费| 国产精品久久久av美女十八| 在线观看舔阴道视频| av福利片在线| 亚洲成a人片在线一区二区| 99久久综合精品五月天人人| 人人澡人人妻人| 9191精品国产免费久久| 12—13女人毛片做爰片一| 久久精品人妻少妇| 久久午夜综合久久蜜桃| 黄色毛片三级朝国网站| 日本黄色视频三级网站网址| 一区二区日韩欧美中文字幕| 亚洲九九香蕉| 精品国产乱码久久久久久男人| 给我免费播放毛片高清在线观看| 男人操女人黄网站| 欧美一级毛片孕妇| netflix在线观看网站| 婷婷精品国产亚洲av在线| 日日干狠狠操夜夜爽| 久久久久国产一级毛片高清牌| 欧美乱码精品一区二区三区| 亚洲成人精品中文字幕电影| 久久精品91无色码中文字幕| 国产成人精品久久二区二区免费| 美女午夜性视频免费| 中国美女看黄片| 99精品在免费线老司机午夜| 亚洲真实伦在线观看| 国产一区二区三区在线臀色熟女| 97超级碰碰碰精品色视频在线观看| 美女扒开内裤让男人捅视频| 国产午夜福利久久久久久| 香蕉av资源在线| 麻豆国产av国片精品| 久久久久久久久中文| 亚洲第一av免费看| 久9热在线精品视频| 一级毛片精品| 亚洲国产日韩欧美精品在线观看 | 国产成人精品无人区| а√天堂www在线а√下载| 一进一出好大好爽视频| 国产成人系列免费观看| 国产野战对白在线观看| 一区二区三区高清视频在线| 两性午夜刺激爽爽歪歪视频在线观看 | 黄频高清免费视频| 一边摸一边抽搐一进一小说| 精品无人区乱码1区二区| 黄片播放在线免费| 国产精品98久久久久久宅男小说| 不卡一级毛片| 国产精品免费一区二区三区在线| 满18在线观看网站| 亚洲成国产人片在线观看| 成人永久免费在线观看视频| 宅男免费午夜| 国产成人av教育| 亚洲专区字幕在线| 一区福利在线观看| 一本一本综合久久| 岛国在线观看网站| 2021天堂中文幕一二区在线观 | 国产av又大| 女性生殖器流出的白浆| 制服丝袜大香蕉在线| 欧美色视频一区免费| 成年女人毛片免费观看观看9| 99国产精品99久久久久| 动漫黄色视频在线观看| 久久婷婷人人爽人人干人人爱| 久久精品国产亚洲av高清一级| 精品日产1卡2卡| 欧美成人午夜精品| av有码第一页| 成人亚洲精品av一区二区| 久久精品91蜜桃| av在线天堂中文字幕| 首页视频小说图片口味搜索| 亚洲人成网站高清观看| 色播亚洲综合网| 午夜老司机福利片| 在线观看日韩欧美| 国产单亲对白刺激| 欧美日韩福利视频一区二区| 中文字幕人妻熟女乱码| 老司机午夜十八禁免费视频| 亚洲色图 男人天堂 中文字幕| 日韩av在线大香蕉| 18禁美女被吸乳视频| 国产一区二区激情短视频| 久久久精品欧美日韩精品| 国产一区二区三区在线臀色熟女| a在线观看视频网站| 日韩欧美在线二视频| 欧美日韩精品网址| 婷婷六月久久综合丁香| 夜夜爽天天搞| 国内精品久久久久久久电影| 欧美最黄视频在线播放免费| 国产真人三级小视频在线观看| 两性夫妻黄色片| 亚洲国产日韩欧美精品在线观看 | svipshipincom国产片| 亚洲 国产 在线| 亚洲av熟女| 美女 人体艺术 gogo| 欧美黑人欧美精品刺激| www.www免费av| 夜夜夜夜夜久久久久| 看片在线看免费视频| 国产爱豆传媒在线观看 | 国产蜜桃级精品一区二区三区| 一边摸一边抽搐一进一小说| 最近最新中文字幕大全电影3 | 午夜福利一区二区在线看| 国产主播在线观看一区二区| 国产蜜桃级精品一区二区三区| 免费看美女性在线毛片视频| 91国产中文字幕| 一进一出抽搐动态| 国产精品久久电影中文字幕| netflix在线观看网站| 久久久久久免费高清国产稀缺| 97人妻精品一区二区三区麻豆 | 久久久精品国产亚洲av高清涩受| 高潮久久久久久久久久久不卡| 国产精品98久久久久久宅男小说| 夜夜夜夜夜久久久久| 可以免费在线观看a视频的电影网站| 成人三级做爰电影| 可以在线观看毛片的网站| 日韩一卡2卡3卡4卡2021年| 国产精品永久免费网站| 欧美乱码精品一区二区三区| 亚洲五月色婷婷综合| 欧美亚洲日本最大视频资源| АⅤ资源中文在线天堂| 精品免费久久久久久久清纯| 国产亚洲精品久久久久5区| 欧美日韩一级在线毛片| 欧美一级毛片孕妇| 中文字幕精品免费在线观看视频| 国产视频一区二区在线看| 男人舔奶头视频| 哪里可以看免费的av片| 亚洲av电影在线进入| 男人操女人黄网站| 又黄又爽又免费观看的视频| 一进一出好大好爽视频| 国产精品 国内视频| 欧美激情 高清一区二区三区| 女人高潮潮喷娇喘18禁视频| 宅男免费午夜| 久久精品国产亚洲av香蕉五月| 99在线视频只有这里精品首页| 制服人妻中文乱码| 91老司机精品| 成人国产综合亚洲| 色综合亚洲欧美另类图片| 宅男免费午夜| 中出人妻视频一区二区| 在线观看免费视频日本深夜| 亚洲九九香蕉| 欧美日本视频| 哪里可以看免费的av片| 最近最新中文字幕大全电影3 | 手机成人av网站| 身体一侧抽搐| 免费av毛片视频| 日韩欧美一区二区三区在线观看| 曰老女人黄片| 久久久久久免费高清国产稀缺| 午夜免费观看网址| 一本久久中文字幕| 狂野欧美激情性xxxx| 亚洲三区欧美一区| 天堂√8在线中文| 一夜夜www| 好看av亚洲va欧美ⅴa在| 国产免费男女视频| 欧美成人午夜精品| 国产精品综合久久久久久久免费| 波多野结衣av一区二区av| 久久久久久大精品| 欧美黑人精品巨大| 国产男靠女视频免费网站| 亚洲精品在线观看二区| 国产又爽黄色视频| 一区二区日韩欧美中文字幕| 国产精品免费一区二区三区在线| 长腿黑丝高跟| 亚洲 国产 在线| 亚洲第一av免费看| 亚洲久久久国产精品| 日韩视频一区二区在线观看| 一个人观看的视频www高清免费观看 | 在线视频色国产色| 久久久久久久久久黄片| 中文字幕另类日韩欧美亚洲嫩草| 少妇的丰满在线观看| 国产伦在线观看视频一区| 欧美黄色片欧美黄色片| 成人国语在线视频| 丁香六月欧美| 欧美日本亚洲视频在线播放| av超薄肉色丝袜交足视频| 色av中文字幕| 高潮久久久久久久久久久不卡| 好男人电影高清在线观看| 久久精品国产亚洲av高清一级| 午夜成年电影在线免费观看| 老司机深夜福利视频在线观看| 日韩精品免费视频一区二区三区| 国产精品日韩av在线免费观看| 午夜免费激情av| 特大巨黑吊av在线直播 | 国产成人精品久久二区二区91| 亚洲第一电影网av| 精品高清国产在线一区| 又紧又爽又黄一区二区| 国产精品久久久久久精品电影 | 日本黄色视频三级网站网址| 亚洲成av片中文字幕在线观看| 午夜福利视频1000在线观看| 久久精品亚洲精品国产色婷小说| avwww免费| 一本一本综合久久| 亚洲一区中文字幕在线| 久久久久久国产a免费观看| 午夜免费激情av| 亚洲avbb在线观看| 老司机深夜福利视频在线观看| 精华霜和精华液先用哪个| 久99久视频精品免费| 不卡av一区二区三区| 午夜福利欧美成人| 国内精品久久久久久久电影| 白带黄色成豆腐渣| av有码第一页| 亚洲第一欧美日韩一区二区三区| 免费在线观看影片大全网站| av福利片在线| 精品电影一区二区在线| 一夜夜www| 欧美性长视频在线观看| 男女之事视频高清在线观看| 亚洲色图av天堂| a级毛片在线看网站| netflix在线观看网站| 天天添夜夜摸| 亚洲精品av麻豆狂野| 91九色精品人成在线观看| 丰满的人妻完整版| 欧美日韩一级在线毛片| 美女国产高潮福利片在线看| 亚洲九九香蕉| 亚洲中文日韩欧美视频| 美女大奶头视频| 久9热在线精品视频| 久久香蕉精品热| 免费搜索国产男女视频| 中文资源天堂在线| www.999成人在线观看| 精品欧美国产一区二区三| 国产aⅴ精品一区二区三区波| 男女午夜视频在线观看| 亚洲欧美精品综合一区二区三区| 国产一区二区三区视频了| 亚洲美女黄片视频| 国产成人影院久久av| 日日摸夜夜添夜夜添小说| 国产av在哪里看| 国产精品久久视频播放| 欧美日本视频| 亚洲七黄色美女视频| 欧美精品啪啪一区二区三区| 搡老妇女老女人老熟妇| 国产伦在线观看视频一区| 日韩视频一区二区在线观看| 在线十欧美十亚洲十日本专区| 大型av网站在线播放| 亚洲精品一卡2卡三卡4卡5卡| 久久久久国内视频| 悠悠久久av| 国产真实乱freesex| 男人舔奶头视频| 十分钟在线观看高清视频www| 天天躁狠狠躁夜夜躁狠狠躁| √禁漫天堂资源中文www| 精品国产美女av久久久久小说| 国产精品永久免费网站| 亚洲av成人av| 91九色精品人成在线观看| 黄频高清免费视频| 757午夜福利合集在线观看| 女生性感内裤真人,穿戴方法视频| 91大片在线观看| 久久婷婷成人综合色麻豆| 不卡一级毛片| 国产伦人伦偷精品视频| 亚洲人成网站高清观看| 精品一区二区三区四区五区乱码| 欧美久久黑人一区二区| 村上凉子中文字幕在线| 视频在线观看一区二区三区| 亚洲av片天天在线观看| 国产精品一区二区三区四区久久 | 国产国语露脸激情在线看| 国产精品 欧美亚洲| 久久欧美精品欧美久久欧美| 男女视频在线观看网站免费 | 成人欧美大片| 欧美不卡视频在线免费观看 | 999久久久精品免费观看国产| 久久热在线av| 亚洲精品一区av在线观看| 久9热在线精品视频| 日韩中文字幕欧美一区二区| 日韩av在线大香蕉| 一本综合久久免费| 国产成年人精品一区二区| 久9热在线精品视频| 变态另类成人亚洲欧美熟女| av视频在线观看入口| 精品不卡国产一区二区三区| 1024手机看黄色片| 伊人久久大香线蕉亚洲五| 女人被狂操c到高潮| 久久亚洲精品不卡| 久久青草综合色| 欧美性猛交╳xxx乱大交人| 欧美激情久久久久久爽电影| 久久性视频一级片| 午夜视频精品福利| 精品欧美一区二区三区在线| 在线免费观看的www视频| 国产精品电影一区二区三区| 国产黄色小视频在线观看| 久久国产精品影院| 一进一出抽搐动态| 国产不卡一卡二| 日本一本二区三区精品| 亚洲成av片中文字幕在线观看| 亚洲av片天天在线观看| 久久亚洲真实| 亚洲成人免费电影在线观看| 一进一出抽搐动态| avwww免费| 午夜免费鲁丝| 国产亚洲精品久久久久5区| 久久国产精品影院| 三级毛片av免费| 亚洲国产看品久久| 免费观看精品视频网站| 免费女性裸体啪啪无遮挡网站| 亚洲午夜精品一区,二区,三区| 国产色视频综合| av天堂在线播放| 法律面前人人平等表现在哪些方面| 岛国视频午夜一区免费看| 色播在线永久视频| a级毛片在线看网站| 少妇粗大呻吟视频| 特大巨黑吊av在线直播 | 国产激情欧美一区二区| 51午夜福利影视在线观看| 夜夜看夜夜爽夜夜摸| 精品无人区乱码1区二区| av欧美777| 脱女人内裤的视频| 两个人视频免费观看高清| 在线观看www视频免费| aaaaa片日本免费| 国产又色又爽无遮挡免费看| 欧美一级a爱片免费观看看 | bbb黄色大片| 亚洲精品在线观看二区| e午夜精品久久久久久久| 亚洲美女黄片视频| 性欧美人与动物交配| 天天躁狠狠躁夜夜躁狠狠躁| 国产单亲对白刺激| 97碰自拍视频| av片东京热男人的天堂| 一级a爱片免费观看的视频| 午夜福利成人在线免费观看| 人人妻人人澡欧美一区二区| 男人的好看免费观看在线视频 | 成人特级黄色片久久久久久久| av福利片在线| 国产精品香港三级国产av潘金莲| 美女扒开内裤让男人捅视频| 日韩 欧美 亚洲 中文字幕| 日本在线视频免费播放| 久久婷婷人人爽人人干人人爱| 久久久久精品国产欧美久久久| 波多野结衣av一区二区av| 在线av久久热| 亚洲欧美日韩无卡精品| 国产高清videossex| 一个人免费在线观看的高清视频| 一级a爱视频在线免费观看| 午夜免费激情av| 欧美日本亚洲视频在线播放| 精品第一国产精品| 午夜亚洲福利在线播放| 999精品在线视频| 国内精品久久久久久久电影| 亚洲成人精品中文字幕电影| 一卡2卡三卡四卡精品乱码亚洲| 国产精品久久久人人做人人爽| 黄片播放在线免费| 女性生殖器流出的白浆| 久久久久免费精品人妻一区二区 | 美女扒开内裤让男人捅视频| 中出人妻视频一区二区| 国产精品乱码一区二三区的特点| 欧美日韩乱码在线| 不卡av一区二区三区| 免费女性裸体啪啪无遮挡网站| 色婷婷久久久亚洲欧美| 欧美在线一区亚洲| 不卡av一区二区三区| 亚洲精品在线观看二区| 国产精品,欧美在线| 午夜久久久久精精品| 国产亚洲欧美在线一区二区| 欧美精品啪啪一区二区三区| 大香蕉久久成人网| 久久婷婷成人综合色麻豆| 99久久精品国产亚洲精品| 日韩 欧美 亚洲 中文字幕| 亚洲欧洲精品一区二区精品久久久| 一二三四社区在线视频社区8| 91在线观看av| 一个人观看的视频www高清免费观看 | 欧美+亚洲+日韩+国产| 久久性视频一级片| 亚洲精品中文字幕在线视频| 人人妻人人澡人人看| 亚洲 国产 在线| 成年女人毛片免费观看观看9| 久久精品国产清高在天天线| 怎么达到女性高潮| 亚洲人成77777在线视频| 欧美日韩瑟瑟在线播放| 国内毛片毛片毛片毛片毛片| 日韩精品中文字幕看吧| 久久天躁狠狠躁夜夜2o2o| 亚洲电影在线观看av| 欧美成狂野欧美在线观看| 欧美绝顶高潮抽搐喷水| 国产男靠女视频免费网站| 国产精品美女特级片免费视频播放器 | 国产99白浆流出| 最新在线观看一区二区三区| 日韩欧美一区二区三区在线观看| 日本免费a在线| 日韩精品中文字幕看吧| 色精品久久人妻99蜜桃| 国产成人欧美| 青草久久国产| 搡老熟女国产l中国老女人| 99久久无色码亚洲精品果冻| 成人特级黄色片久久久久久久| 国产真实乱freesex| 欧美av亚洲av综合av国产av| 99国产精品99久久久久| 12—13女人毛片做爰片一| xxxwww97欧美| 亚洲第一av免费看| 最新美女视频免费是黄的| 久久久久久久午夜电影| 757午夜福利合集在线观看| 俺也久久电影网| 国产熟女午夜一区二区三区| 国产视频一区二区在线看| 给我免费播放毛片高清在线观看| 老汉色∧v一级毛片| 非洲黑人性xxxx精品又粗又长| 亚洲 国产 在线| 最近最新免费中文字幕在线| 黄色 视频免费看| 久久午夜综合久久蜜桃| 大型av网站在线播放| 999久久久精品免费观看国产| 欧美丝袜亚洲另类 | 精品国产一区二区三区四区第35|