• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Conditional autoregressive negative binomial model for analysis of crash count using Bayesian methods

    2014-09-17 06:00:46XuJianSunLu

    Xu Jian Sun Lu

    (1School of Transportation, Southeast University, Nanjing 210096, China)

    (2Center for Transportation Research, University of Texas at Austin, Austin 78712, USA)(3Department of Civil Engineering, Catholic University of America, Washington DC 20064, USA)

    W ith the increase in the number of vehicles,it is interesting and commendable that currently fatalities are decreasing every year in China,the reason of which can be attributed to the optimization of roadway designs,more safety vehicles,as well as many researches of crashes and the contributing factors.However, still 210 812 reported crashes and 62 387 reported fatalities occurred on roadways in 2011 in China according to official reports[1], demanding the further improvement of transportation safety to reduce the traffic accidents and fatalities.

    The possible access to understand the elements of crashes is to develop statistical analysis methods used to distinguish the significant factors,which can be utilized to provide an optimality criterion to policy makers.During the past several years,numerous methods for analyzing crash counts were proposed[2-6].The earliest approach for crash count data is the Poisson model[7], and then it gives rise to more flexible alternatives, e.g., the negative binomial(NB)model[8], the GIS-based Bayesian approach[9], the finite mixture regression model[10], and the quantile regression method[11].Most of the regression methods applied to model crash counts, however, are focused on aspatial(i.e.non-spatial)analysis.Applied work in aspatial models may not be able to capture spatial heterogeneity and spatial dependence at neighborhood areas, a frequently happening issue in crash counts.This leads to the development of alternative methodologies that focus on spatial modeling in the past few decades.Early pioneering work on spatial modeling is reported by Besag[12], and is further enriched by LeSage et al[13-16].Anselin[17]provided two specifications of spatial models,spatial error model(SEM)(i.e., the spatial autocorrelation model(SAC))and the spatial lag model(SLM)(i.e., the spatial autoregressive model(SAR))that is a special type of conditional autoregressive(CAR)model,at least in a continuous-response setting.

    The primary objective of this study is to develop associations between crash counts on homogeneous segments and the contributing factors,using a negative binomial(NB)-based conditional autoregressive model(CAR)which allows for overdispersion,unobserved heterogeneity and spatial autocorrelation.The Bayesian estimation is employed,using Markov chain Monte Carlo methods and the Gibbs sampler.The independent variables consist of traffic characteristics,roadway design and built environments,and the data are derived from on-system highways of Austin, TX, USA in the year 2010.Meanwhile, the exposure variable and the dummy variable are also considered.

    1 Model Structure

    As described before,there are two specifications of spatial models:the spatial autocorrelation model and the spatial autoregressive model.The general formulation of the spatial autoregressive model for cross-sectional spatial data is

    where yicontains ann×1 vector of dependent variables;ρ is the spatial lag coefficient;W1is the spatial weights matrix;φ is the error term for spatial dependence;xirepresents the matrix of independent variables.

    where λ is the spatial autoregressive coefficient;W2is a known spatial weights matrix like W1,usually containing the first-order contiguity relationships; ε ~N(0,σ2In).The SAR model tends to be difficult to develop for limited-response frameworks,especially when dealing with large scale problems involving a large amount of observations,and yields parameter estimates similar to those estimated from the CAR model.Moreover, due to faster computation,the CAR model is preferred in spatial analysis over the SAR model.Under the MRF assumption, the conditional probability density function of the univariate CAR model is[18]

    The joint probability density function is

    whereEiis the exposure variable,which represents vehicle miles traveled(VMT)in this study;τ denotes an unknown parameter for the exposure measure;β0is the intercept term;βkdenotes the coefficient of thek-th covariate;Xikare indicators for thek-th covariate for segmenti;ψifollows the proper CAR prior,as described before;εiis a random error that has a gamma distribution,that is,εi~ Γ(θ,θ).

    2 Data Description

    In this study,roadways and crash data sets of Austin City in USA in 2010 are used to examine the associations between crash counts on mainlanes and the contributing factors.The roadways in this study are on-system highways, containing interstate highways, US highways,state highways,farm-to-market roadways,etc.In order to avoid the modifiable areal unit problem(MAUP)[19],roadways are split into 1 824 homogeneous segments where geometric characteristics are coincident,as shown in Fig.1.Most segments have a length of 0 to 1.6 km and occupy more than 90%of the whole sample.The average of the segment length on mainlanes is 0.459 km.After merging crashes and segments,1 413 crashes on mainlanes are matched.

    Fig.1 Distribution of homogeneous segments in Austin(Spots are the center points of segments)

    In this study,the dependent variable is the number of crashes,while the exposure variable captures VMT,which is a key crash exposure term(since crash counts closely correlate with VMT,everything else remaining constant),and simply the product of AADT,segment length,and 365 days per year.The dependent variable set contains both continuous and categorical variables,as shown in Tab.1.The indicator for curvature is a dummy variable,that is,if the answer is yes,it equals 1,and 0 otherwise.In addition,traffic characteristics allow for AADT,speed limit,and the percentage of truck AADT.In the past research,environments,especially distances to the nearest hospitals,were rarely employed for the contributing factors to analyze the associations of crash counts.In this study,hospitals are collected for analysis;meanwhile,the distances of which to segments are computed by ArcGIS,as shown in Fig.2.The data of annual rainfall obtained from the US Natural Resources Information System are also collected for analysis.It is noted that it would be best to match the year 2010 crashes to the same year rainfall data,however such information is unavailable,and we cannot find out the data.According to theclimate history in Texas,the annual rainfall changed a little,so 1961—1990 average rainfall is used instead.Fig.3 depicts the distribution of the annual rainfall in Austin.

    Tab.1 Summary statistics of variables for segments

    Fig.2 Distribution of hospitals in Austin

    Fig.3 Distribution of annual rainfall in Austin

    3 Estimation Results and Discussion

    This section discusses the results of the associations between the contributing factors and the crash counts on mainlanes in Austin.Tab.2 shows the parameter estimates of the CAR model for crash counts,based on a total number of 5 000 draws in WinBUGS.

    The association between crash exposure(VMT)and crash rates is estimated to be nonlinear(average exponent τ=0.658 for mainlanes),which follows prior expectations.After controlling the exposure variable(VMT),other covariates regardingcrash rates are estimated,which can be seen in Tab.2.

    Elasticities for total crash counts and fatal crash counts are computed as the average percentage change in the mean crash rate per 1%change in thek-th variable.As shown in Tab.2,crash counts are estimated to have a statistically and practically significant spatial autocorrelation coefficient of 0.624(that is α =0.624).The number of lanes,curve length,AADT per lane,and rainfall have positive impacts on the mean crash rates for mainlanes,while the remaining variables all exhibit negative impacts on the mean crash rates.The elasticity of - 0.123 is found to be that of the curve indicator variables,implying that,holding everything else constant at their means,the mean crash rate is estimated to drop by 0.123 when the indicator variable switches from 0 to 1.The result confirms that the roadway curvature has negative effects on crash rates,which is consistent with the findings of some other studies[5-6].

    Interestingly,the speed limit on mainlanes exhibits negative mean elasticities,implying that higher speed limits are associated with lower mean crash rates,as found in Ref.[4].However,the speed limit has a positive effect on fatality rates,as shown in Tab.2.Rainfall intensity is estimated to be positively associated with crash rates,and an increase of 1%rainfall will result in an increase of 8.622 in crash rates and an increase of 0.283 in fatality rates.As discussed previously,the distances to hospitals rarely appear as contributing factors in the crash modeling literature.It is found that the distances to the nearest hospitals have a negative impact on the mean crash rates,which suggests that shorter distances lead to higher crash rates,however,as expected,positive associations with fatal crash rates(presumably due to more severe collision impacts at higher speeds and time lost in transporting crash victims to an emergency room).

    Tab.2 Estimation results of CAR-NB model for crash and fatal counts

    In this study,the CAR-NB model is compared with another spatial model(CAR-Poisson)and some aspatial models(NB,zero-inflated NB and zero-inflated Poisson),as shown in Tab.3.

    Tab.3 Comparison of results using aspatial models and spatial models

    The deviance information criterion(DIC),as a generalization of the Akaike information criterion(AIC),can be used to compare the goodness-of-fit and complexity of different models estimated under a Bayesian framework.The DIC equation is

    whereD(θˉ)is the deviance evaluated atθˉ which is the posterior mean of the parameters;pDis the effective number of parameters in the model;Dˉ is the posterior mean of the deviance statisticD(θ).With regards to the model superiority and complexity,the lower the DIC,the better the model[20].Tab.3 also presents the log likelihood values,which are used in the likelihood ratio chi-square to test whether all predictors'regression coefficients in the model are simultaneously zero.Meanwhile,Moran'sIis also considered,which is a measure of spatial autocorrelation developed by Moran[21].Negative(positive)values indicate negative(positive)spatial autocorrelation and the values range from -1(indicating perfect dispersion)to+1(perfect correlation).

    It is observed that the CAR-NB model has the lowest DIC and Moran'sIof residuals among these tested models.Meanwhile,mean log likelihood values of the CARNB model are the largest.The statistical tests suggest that the CAR-NB model is preferred over the CAR-Poisson,NB,zero-inflated Poisson,zero-inflated NB models due to its lower prediction errors and more robust parameter inference.It can be found that the negative binomial models in Tab.3 are better than the Poisson models due to the fact that overdispersion actually exists in the data.

    4 Conclusions

    1)Statistical tests of DIC,log likelihood and Moran'sIsuggest that the CAR-NB model is preferred over the CAR-Poisson,NB,zero-inflated Poisson,zero-inflated NB models,while the negative binomial models are better than the Poisson models.

    2)The association between crash exposure(VMT)and crash rates is estimated to be nonlinear(average exponent τ =0.658 for mainlanes),with crash rates effectively falling as VMT rises.

    3)The number of lanes,curve length,AADT per lane,and rainfall have positive impacts on crash count,while the remaining variables all exhibit negative impacts.

    4)The distances to the nearest hospitals and the speed limit have negative associations with segment-based crash counts but positive associations with fatality counts,presumably as a result of time loss during transporting crash victims and worsened collision impacts at higher speeds.

    [1]Traffic Management Bureau of the Ministry of Public Security of the People's Republic of China.Road traffic accident statistics annual report of the People's Republic of China(2010)[R].Wuxi:Traffic Management Research Institute of the Ministry of Public Security,2011.(in Chinese)

    [2]Qu X,Guo T,Wang W,et al.Measuring speed consistency for freeway diverge areas using factor analysis[J].Journal of Central South University:Science and Technology,2013,20(1):837-840.(in Chinese)

    [3]Pei Y L,Ma J.Research on countermeasures for road condition causes of traffic accidents[J].China Journal of Highway and Transport,2003,16(4):77-82.

    [4]Ma J,Kockelman K M,Damien P.A multivariate Poisson-lognormal regression model for prediction of crash counts by severity,using Bayesian methods[J].Accident Analysis and Prevention,2008,40(3):964-975.

    [5]Quddus M A,Wang C,Ison S G.Road traffic congestion and crash severity:econometric analysis using ordered response models[J].Journal of Transportation Engineering,2010,136(5):424-435.

    [6]Wang C,Quddus M A,Ison S G.Predicting accident frequency at their severity levels and its application in site ranking using a two-stage mixed multivariate model[J].Accident Analysis and Prevention,2011,43(6):1979-1990.

    [7]Jovanis P,Chang H L.Modeling the relationship of accidents to miles traveled[J].Transportation Research Record,1986,1068:42-51.

    [8]Lord D.The prediction of accidents on digital networks:characteristics and issues related to the application of accident prediction models[D].Toronto:University of Toronto,2000.

    [9]Li L,Zhu L,Daniel Z S.A GIS-based Bayesian approach for analyzing spatial-temporal patterns of intra-city motor vehicle crashes[J].Journal of Transport Geography,2007,15(4):274-285.

    [10]Park B J,Lord D.Application of finite mixture models for vehicle crash data analysis[J].Accident Analysis and Prevention,2009,41(4):683-91.

    [11]Qin X,Reyes P.Conditional quantile analysis for crash count data[J].Journal of Transportation Engineering,2011,137(9):601-607.

    [12]Besag J E.Nearest-neighbour systems and the auto-logistic model for binary data[J].Journal of the Royal Statistical Society,Series B:Methodological,1972,34(1):75-83.

    [13]LeSage J P.Spatial econometrics[EB/OL].(1999)[2013-03-15].http://www.spatial-econometrics.com/.

    [14]Miaou S,Song J J,Malick B.Roadway traffic crash mapping:a space-time modeling approach[J].Journal of Transportation and Statistics,2003,6(1):33-57.

    [15]Quddus M A.Modeling area-wide count outcomes with spatial correlation and heterogeneity:an analysis of London crash data[J].Accident Analysis and Prevention,2008,40(4):1486-1497.

    [16]Wang Y,Kockelman K M.A conditional-autoregressive count model for pedestrian crashes across neighborhoods[C/CD]//The92nd Annual Meeting of the Transportation Research Board.Washington DC,USA,2013.

    [17]Anselin L.Spatial econometrics:methods and models[M].Dordrecht:Kluwer Academic Publishers,1988.

    [18]Mariella L,Tarantino M.Spatial temporal conditional auto-regressive model:a new autoregressive matrix [J].Australian Journal of Statistics,2010,39(3):223-244.

    [19]Openshaw S.The modifiable areal unit problem [J].Concepts and Techniques in Modern Geography,1983,38:39-41.

    [20]Spregelhalter D J,Best N G,Carlin B P,et al.Bayesian measures of model complexity and fit[J].Journal of the Royal Statistical Society,Series B:Statistical Methodology,2002,64(4):583-639.

    [21]Moran P A P.Notes on continuous stochastic phenomena[J].Biometrika,1950,37(1):17-23.

    久久热精品热| 毛片一级片免费看久久久久 | 欧美乱妇无乱码| 亚洲精品粉嫩美女一区| 国产男靠女视频免费网站| 成人高潮视频无遮挡免费网站| 色视频www国产| 搡老妇女老女人老熟妇| 男人舔女人下体高潮全视频| 特级一级黄色大片| 亚洲avbb在线观看| 亚洲内射少妇av| 亚洲综合色惰| 男人舔奶头视频| 变态另类成人亚洲欧美熟女| 欧美不卡视频在线免费观看| 午夜久久久久精精品| 午夜激情福利司机影院| 深爱激情五月婷婷| 热99在线观看视频| 91久久精品电影网| 久久久久免费精品人妻一区二区| 午夜激情欧美在线| 露出奶头的视频| 99热只有精品国产| 精品久久久久久,| av天堂中文字幕网| 波多野结衣巨乳人妻| 天堂网av新在线| 国产精品久久电影中文字幕| www.熟女人妻精品国产| 国产成人a区在线观看| 亚洲av中文字字幕乱码综合| 人妻丰满熟妇av一区二区三区| 亚洲av免费高清在线观看| 国产一区二区在线av高清观看| 久久久久亚洲av毛片大全| 国内精品久久久久精免费| 久久亚洲真实| 宅男免费午夜| 小说图片视频综合网站| 天堂网av新在线| 日本撒尿小便嘘嘘汇集6| 少妇裸体淫交视频免费看高清| 欧美bdsm另类| 午夜视频国产福利| 天天躁日日操中文字幕| 久久热精品热| 成熟少妇高潮喷水视频| 丰满人妻一区二区三区视频av| 日日摸夜夜添夜夜添小说| 毛片一级片免费看久久久久 | 亚洲一区二区三区不卡视频| 日韩欧美国产在线观看| 欧美日韩福利视频一区二区| 欧美在线一区亚洲| 午夜福利免费观看在线| 欧美bdsm另类| 大型黄色视频在线免费观看| 免费看光身美女| 久久久精品大字幕| 婷婷丁香在线五月| 成人性生交大片免费视频hd| 一区二区三区免费毛片| 欧美性猛交╳xxx乱大交人| 丰满人妻一区二区三区视频av| 午夜福利18| 亚洲中文字幕一区二区三区有码在线看| 国产成+人综合+亚洲专区| 日韩欧美国产在线观看| 一级黄片播放器| 久久九九热精品免费| 亚洲狠狠婷婷综合久久图片| 亚洲av免费在线观看| 少妇人妻一区二区三区视频| 此物有八面人人有两片| 国产精品98久久久久久宅男小说| 国产探花在线观看一区二区| 真实男女啪啪啪动态图| 亚洲成a人片在线一区二区| 欧美成人a在线观看| 国产精品女同一区二区软件 | 神马国产精品三级电影在线观看| 国产亚洲精品久久久久久毛片| 熟女电影av网| 欧美不卡视频在线免费观看| 欧美日本视频| 欧美一级a爱片免费观看看| 国产亚洲欧美98| 国产精华一区二区三区| 在线观看美女被高潮喷水网站 | 在线观看美女被高潮喷水网站 | 毛片一级片免费看久久久久 | 一级黄色大片毛片| 99久久99久久久精品蜜桃| 别揉我奶头 嗯啊视频| 一进一出抽搐动态| 嫩草影院入口| 搡老妇女老女人老熟妇| 深爱激情五月婷婷| 久久精品影院6| 久久99热这里只有精品18| 精品国产三级普通话版| 三级男女做爰猛烈吃奶摸视频| av在线老鸭窝| 精品99又大又爽又粗少妇毛片 | 美女cb高潮喷水在线观看| 国产精品女同一区二区软件 | 精品乱码久久久久久99久播| 国产一区二区在线观看日韩| av中文乱码字幕在线| 12—13女人毛片做爰片一| 国产黄片美女视频| 国产在线男女| 九色国产91popny在线| 久久久久精品国产欧美久久久| 午夜免费激情av| 亚洲精华国产精华精| 两人在一起打扑克的视频| 1024手机看黄色片| 99在线视频只有这里精品首页| 免费观看的影片在线观看| 欧美成狂野欧美在线观看| 国产成人影院久久av| www.www免费av| 一边摸一边抽搐一进一小说| 国产欧美日韩一区二区精品| 久久天躁狠狠躁夜夜2o2o| 亚洲黑人精品在线| 淫秽高清视频在线观看| 有码 亚洲区| 国产精品精品国产色婷婷| 国产欧美日韩精品亚洲av| 亚洲真实伦在线观看| 人妻夜夜爽99麻豆av| av福利片在线观看| 国语自产精品视频在线第100页| 久久久久久久久中文| 免费一级毛片在线播放高清视频| 天堂影院成人在线观看| 99热这里只有精品一区| 国产精品永久免费网站| 日本在线视频免费播放| www.熟女人妻精品国产| 亚洲中文日韩欧美视频| 伊人久久精品亚洲午夜| 在线播放无遮挡| 波多野结衣巨乳人妻| 波多野结衣巨乳人妻| 一个人看视频在线观看www免费| netflix在线观看网站| 国产欧美日韩精品一区二区| 好看av亚洲va欧美ⅴa在| 韩国av一区二区三区四区| 亚洲午夜理论影院| 网址你懂的国产日韩在线| 亚洲精品在线美女| 亚洲一区二区三区色噜噜| 亚洲第一区二区三区不卡| 欧美日韩综合久久久久久 | 日本撒尿小便嘘嘘汇集6| 国产成人av教育| aaaaa片日本免费| 三级毛片av免费| 无人区码免费观看不卡| bbb黄色大片| 国产久久久一区二区三区| 内地一区二区视频在线| 乱码一卡2卡4卡精品| 成人欧美大片| 天堂网av新在线| 赤兔流量卡办理| 在线观看舔阴道视频| 搡老熟女国产l中国老女人| 黄色一级大片看看| 亚洲专区中文字幕在线| 精品午夜福利在线看| 欧美黄色片欧美黄色片| 亚洲18禁久久av| 一个人免费在线观看的高清视频| 淫秽高清视频在线观看| 女生性感内裤真人,穿戴方法视频| www.999成人在线观看| 亚洲无线在线观看| 俄罗斯特黄特色一大片| 制服丝袜大香蕉在线| 综合色av麻豆| 噜噜噜噜噜久久久久久91| 在线观看美女被高潮喷水网站 | 欧美色视频一区免费| 亚洲欧美日韩高清专用| 欧美色欧美亚洲另类二区| 一级黄片播放器| 亚洲av不卡在线观看| 免费黄网站久久成人精品 | 色在线成人网| 午夜a级毛片| 国产一区二区亚洲精品在线观看| 亚洲黑人精品在线| 在线免费观看不下载黄p国产 | 成人av在线播放网站| 在线看三级毛片| 中出人妻视频一区二区| 亚洲国产精品久久男人天堂| 亚洲不卡免费看| 天堂网av新在线| 波多野结衣巨乳人妻| 色5月婷婷丁香| 久久国产精品影院| 午夜福利在线观看免费完整高清在 | 国产精品精品国产色婷婷| 91在线精品国自产拍蜜月| 日韩av在线大香蕉| 97热精品久久久久久| 国产午夜精品久久久久久一区二区三区 | 久久久久国产精品人妻aⅴ院| av天堂中文字幕网| 色哟哟哟哟哟哟| 国产av在哪里看| 日本 av在线| 欧美黑人欧美精品刺激| 俄罗斯特黄特色一大片| 夜夜爽天天搞| 青草久久国产| aaaaa片日本免费| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 波多野结衣巨乳人妻| 在线十欧美十亚洲十日本专区| 国产三级中文精品| 国产伦精品一区二区三区视频9| 亚洲国产欧洲综合997久久,| 国内毛片毛片毛片毛片毛片| 男女视频在线观看网站免费| 欧美成狂野欧美在线观看| 美女 人体艺术 gogo| 蜜桃亚洲精品一区二区三区| 国产大屁股一区二区在线视频| 午夜免费男女啪啪视频观看 | 舔av片在线| 亚洲最大成人手机在线| xxxwww97欧美| 高清在线国产一区| 观看免费一级毛片| 特级一级黄色大片| 亚洲人成网站在线播放欧美日韩| 在线观看av片永久免费下载| 3wmmmm亚洲av在线观看| 国产国拍精品亚洲av在线观看| 一个人免费在线观看电影| 俺也久久电影网| 国产麻豆成人av免费视频| 欧美日韩亚洲国产一区二区在线观看| 男女那种视频在线观看| 午夜免费男女啪啪视频观看 | 夜夜爽天天搞| 亚洲成av人片免费观看| 校园春色视频在线观看| 窝窝影院91人妻| 九九在线视频观看精品| 亚洲 欧美 日韩 在线 免费| 最好的美女福利视频网| 亚洲av.av天堂| 欧美日韩中文字幕国产精品一区二区三区| 一区二区三区四区激情视频 | 日韩欧美精品免费久久 | 亚洲 欧美 日韩 在线 免费| 最新中文字幕久久久久| 国产一区二区激情短视频| 色播亚洲综合网| 特大巨黑吊av在线直播| 最近最新中文字幕大全电影3| 国产日本99.免费观看| 亚洲无线在线观看| 婷婷精品国产亚洲av在线| 非洲黑人性xxxx精品又粗又长| 国产精品影院久久| 精品不卡国产一区二区三区| xxxwww97欧美| 亚洲成人中文字幕在线播放| 国产成人av教育| 又紧又爽又黄一区二区| 亚洲一区高清亚洲精品| 热99在线观看视频| 天天一区二区日本电影三级| 三级毛片av免费| 国产午夜福利久久久久久| 日本黄色片子视频| 亚洲 欧美 日韩 在线 免费| 久9热在线精品视频| 午夜免费成人在线视频| 两人在一起打扑克的视频| 国产欧美日韩一区二区三| h日本视频在线播放| 别揉我奶头~嗯~啊~动态视频| 亚洲无线在线观看| 久久99热这里只有精品18| 自拍偷自拍亚洲精品老妇| netflix在线观看网站| 黄色丝袜av网址大全| 精品99又大又爽又粗少妇毛片 | 天美传媒精品一区二区| 亚洲成av人片在线播放无| 毛片一级片免费看久久久久 | 日韩欧美精品免费久久 | 不卡一级毛片| 欧美在线一区亚洲| 亚洲午夜理论影院| 亚洲自偷自拍三级| 亚洲精品456在线播放app | 丰满人妻一区二区三区视频av| 在线看三级毛片| 国产亚洲精品久久久久久毛片| 国产精品一区二区三区四区免费观看 | 麻豆国产97在线/欧美| 亚洲人成伊人成综合网2020| 老熟妇乱子伦视频在线观看| www.www免费av| 久久国产精品影院| 亚洲自偷自拍三级| www.熟女人妻精品国产| 中文字幕av成人在线电影| 床上黄色一级片| 欧美另类亚洲清纯唯美| 在线观看66精品国产| av在线天堂中文字幕| 国产成人aa在线观看| av在线观看视频网站免费| 在线观看66精品国产| 91字幕亚洲| av欧美777| 日韩欧美三级三区| 午夜福利欧美成人| 99久久精品热视频| 色综合站精品国产| 偷拍熟女少妇极品色| 欧美xxxx黑人xx丫x性爽| 成年女人毛片免费观看观看9| 身体一侧抽搐| 日本一二三区视频观看| 在线a可以看的网站| 国产黄色小视频在线观看| 国产亚洲精品综合一区在线观看| 国产精品三级大全| 成人一区二区视频在线观看| 五月玫瑰六月丁香| 日本一本二区三区精品| 丰满人妻一区二区三区视频av| 国产久久久一区二区三区| 亚洲欧美日韩无卡精品| 久久99热6这里只有精品| ponron亚洲| 久久性视频一级片| 亚洲 欧美 日韩 在线 免费| 国产精华一区二区三区| 精品不卡国产一区二区三区| 国产成人影院久久av| 91狼人影院| 国产精品影院久久| 国产免费av片在线观看野外av| 亚洲激情在线av| 岛国在线免费视频观看| 精品久久国产蜜桃| 噜噜噜噜噜久久久久久91| 日韩高清综合在线| 精品熟女少妇八av免费久了| 亚洲欧美精品综合久久99| 成年女人毛片免费观看观看9| 精品一区二区三区av网在线观看| 欧美日韩瑟瑟在线播放| 久久国产乱子伦精品免费另类| 国产国拍精品亚洲av在线观看| 给我免费播放毛片高清在线观看| 久久香蕉精品热| 欧美黑人巨大hd| 欧美不卡视频在线免费观看| 一区二区三区四区激情视频 | 亚洲av成人av| 看免费av毛片| 十八禁网站免费在线| 国产又黄又爽又无遮挡在线| 国产私拍福利视频在线观看| 久久人妻av系列| 国产主播在线观看一区二区| 成人亚洲精品av一区二区| 精品人妻视频免费看| 免费在线观看亚洲国产| 午夜免费成人在线视频| 又爽又黄无遮挡网站| 国产真实伦视频高清在线观看 | 欧美日本视频| 久久久久久久午夜电影| 色综合婷婷激情| 欧美日韩中文字幕国产精品一区二区三区| 国产亚洲精品综合一区在线观看| 99国产综合亚洲精品| 国产精品人妻久久久久久| 噜噜噜噜噜久久久久久91| 在线播放无遮挡| 国产精品爽爽va在线观看网站| 亚洲av中文字字幕乱码综合| 综合色av麻豆| 在线国产一区二区在线| 俄罗斯特黄特色一大片| 国产探花极品一区二区| 99国产精品一区二区蜜桃av| 黄色日韩在线| 俺也久久电影网| 国产亚洲精品久久久久久毛片| 欧美成人一区二区免费高清观看| 在线观看66精品国产| 一本久久中文字幕| 日本黄大片高清| 久久午夜亚洲精品久久| 一进一出抽搐gif免费好疼| 久9热在线精品视频| 国产爱豆传媒在线观看| 非洲黑人性xxxx精品又粗又长| 99国产极品粉嫩在线观看| 老司机午夜十八禁免费视频| 日韩成人在线观看一区二区三区| 99热这里只有精品一区| 色综合亚洲欧美另类图片| 精品久久久久久久久久久久久| 丰满人妻一区二区三区视频av| 精品一区二区三区av网在线观看| 国产亚洲欧美在线一区二区| 亚洲成av人片在线播放无| 男人舔女人下体高潮全视频| 观看美女的网站| 18禁黄网站禁片午夜丰满| 久久伊人香网站| 日韩国内少妇激情av| 久久精品人妻少妇| 国产不卡一卡二| 国产精品女同一区二区软件 | 亚洲狠狠婷婷综合久久图片| 别揉我奶头~嗯~啊~动态视频| 天堂影院成人在线观看| 韩国av一区二区三区四区| 亚洲乱码一区二区免费版| 丰满乱子伦码专区| 中文字幕精品亚洲无线码一区| 窝窝影院91人妻| 91字幕亚洲| 99久久精品国产亚洲精品| 亚洲自拍偷在线| 亚洲欧美精品综合久久99| 九九久久精品国产亚洲av麻豆| av黄色大香蕉| 女生性感内裤真人,穿戴方法视频| 成人精品一区二区免费| а√天堂www在线а√下载| 亚洲经典国产精华液单 | 丰满乱子伦码专区| 最后的刺客免费高清国语| 蜜桃久久精品国产亚洲av| 变态另类成人亚洲欧美熟女| 我要看日韩黄色一级片| 亚洲欧美精品综合久久99| 波多野结衣高清无吗| www.www免费av| 18+在线观看网站| 亚洲,欧美精品.| 成熟少妇高潮喷水视频| 久久精品人妻少妇| 高清毛片免费观看视频网站| 免费看光身美女| АⅤ资源中文在线天堂| 如何舔出高潮| 两个人的视频大全免费| 欧美zozozo另类| 小蜜桃在线观看免费完整版高清| 免费av毛片视频| 男女那种视频在线观看| 我要看日韩黄色一级片| .国产精品久久| 亚洲成av人片免费观看| 大型黄色视频在线免费观看| 中出人妻视频一区二区| 国产精品一及| 波多野结衣巨乳人妻| 国产高清有码在线观看视频| 国产视频一区二区在线看| av女优亚洲男人天堂| 欧美又色又爽又黄视频| 一卡2卡三卡四卡精品乱码亚洲| 91麻豆精品激情在线观看国产| 脱女人内裤的视频| 69人妻影院| 欧美区成人在线视频| 日韩 亚洲 欧美在线| 人妻夜夜爽99麻豆av| 俺也久久电影网| 国产人妻一区二区三区在| 在线观看舔阴道视频| 精品午夜福利在线看| 日本在线视频免费播放| 五月伊人婷婷丁香| 97超级碰碰碰精品色视频在线观看| 99国产极品粉嫩在线观看| 少妇人妻精品综合一区二区 | 亚洲精品乱码久久久v下载方式| 亚洲性夜色夜夜综合| 欧美日韩中文字幕国产精品一区二区三区| 99久久成人亚洲精品观看| eeuss影院久久| 51国产日韩欧美| 成年女人看的毛片在线观看| 日本 欧美在线| 亚洲国产日韩欧美精品在线观看| 丰满的人妻完整版| 久久伊人香网站| 亚洲综合色惰| 乱码一卡2卡4卡精品| 国产欧美日韩精品亚洲av| 乱码一卡2卡4卡精品| 99久久精品热视频| 国产精品久久久久久久久免 | 大型黄色视频在线免费观看| 久久午夜亚洲精品久久| 免费av不卡在线播放| 女人十人毛片免费观看3o分钟| 中文字幕高清在线视频| 国产欧美日韩精品亚洲av| 午夜精品一区二区三区免费看| 久久久成人免费电影| 两人在一起打扑克的视频| av在线观看视频网站免费| 国产淫片久久久久久久久 | 18禁黄网站禁片免费观看直播| 热99re8久久精品国产| 夜夜看夜夜爽夜夜摸| 日本一二三区视频观看| 国产老妇女一区| 色精品久久人妻99蜜桃| 白带黄色成豆腐渣| 91在线精品国自产拍蜜月| 国产熟女xx| 欧美一区二区国产精品久久精品| 校园春色视频在线观看| 一a级毛片在线观看| 91麻豆av在线| 五月伊人婷婷丁香| 观看免费一级毛片| 在线观看美女被高潮喷水网站 | 欧美zozozo另类| 国产爱豆传媒在线观看| 别揉我奶头 嗯啊视频| 国产三级黄色录像| 激情在线观看视频在线高清| 亚洲国产色片| 久久欧美精品欧美久久欧美| 老司机午夜十八禁免费视频| 看黄色毛片网站| 国产一区二区三区视频了| 性插视频无遮挡在线免费观看| 欧美绝顶高潮抽搐喷水| 美女xxoo啪啪120秒动态图 | 亚洲精品在线观看二区| 别揉我奶头~嗯~啊~动态视频| 亚洲国产日韩欧美精品在线观看| 中文亚洲av片在线观看爽| 欧美激情在线99| 两性午夜刺激爽爽歪歪视频在线观看| 综合色av麻豆| 国产亚洲精品综合一区在线观看| 国产一区二区三区在线臀色熟女| 赤兔流量卡办理| 亚洲内射少妇av| 夜夜躁狠狠躁天天躁| 国产av不卡久久| 麻豆一二三区av精品| 最近视频中文字幕2019在线8| 亚洲成av人片在线播放无| 我要看日韩黄色一级片| 搡老熟女国产l中国老女人| 一级毛片久久久久久久久女| 欧美精品啪啪一区二区三区| 超碰av人人做人人爽久久| 国产精品人妻久久久久久| 成人特级av手机在线观看| 9191精品国产免费久久| 亚洲av第一区精品v没综合| 国产成+人综合+亚洲专区| а√天堂www在线а√下载| 国产乱人伦免费视频| 欧美成人性av电影在线观看| 伊人久久精品亚洲午夜| 国产精品精品国产色婷婷| 成人永久免费在线观看视频| 极品教师在线免费播放| 在线播放无遮挡| 亚洲av一区综合| 国产伦一二天堂av在线观看| 国产精品自产拍在线观看55亚洲| 国产熟女xx| 一个人观看的视频www高清免费观看| 一区二区三区激情视频| 亚洲人与动物交配视频| 村上凉子中文字幕在线| 如何舔出高潮| 美女黄网站色视频| a级一级毛片免费在线观看| 欧美一区二区亚洲| 亚洲中文字幕日韩| 亚洲av不卡在线观看| 欧美一区二区国产精品久久精品| 亚洲中文字幕日韩| 成人亚洲精品av一区二区| 国产一区二区三区在线臀色熟女| 亚洲中文字幕一区二区三区有码在线看| 婷婷丁香在线五月| 国产一区二区三区在线臀色熟女| 国内精品美女久久久久久| 亚洲人成网站在线播|