• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    慢羽雞成纖維細(xì)胞內(nèi)源性白血病病毒ev21基因敲除

    2021-12-15 13:53:50徐天鵬吳思樂溫健韋義榮李思佳謝龍虞霖田宋中寶陸陽清

    徐天鵬 吳思樂 溫健 韋義榮 李思佳 謝龍 虞霖田 宋中寶 陸陽清

    摘要:【目的】探索在慢羽雞成纖維細(xì)胞中敲除ev21基因的可行性,凈化雞群內(nèi)源性逆轉(zhuǎn)錄病毒,同時(shí)為快速培育缺失ev21基因的慢羽雞配套系打下基礎(chǔ)。【方法】根據(jù)ev21基因序列(KY235336)特點(diǎn),分別在其5'和3'端各設(shè)計(jì)2個(gè)sgRNA,用于構(gòu)建4種不同sgRNA的打靶質(zhì)粒,篩選出在5'和3'端打靶效率較高的sgRNA。然后基于CRISPR/Cas9基因編輯技術(shù)對(duì)ev21基因進(jìn)行剪切,并通過同源重組方式以紅色熒光蛋白(mCherry)的DNA片段(CAG-mCherry)替換ev21基因,實(shí)現(xiàn)對(duì)慢羽雞成纖維細(xì)胞內(nèi)源性白血病病毒ev21基因定點(diǎn)敲除?!窘Y(jié)果】在慢羽雞成纖維細(xì)胞中能檢測(cè)到ev21基因,構(gòu)建的4種sgRNA(sgRNA1~sgRNA4)均能成功插入對(duì)應(yīng)的打靶質(zhì)粒中,經(jīng)嘌呤霉素篩選及T7E1酶切檢測(cè),發(fā)現(xiàn)轉(zhuǎn)染4種不同sgRNA打靶質(zhì)粒后慢羽雞成纖維細(xì)胞均有不同程度的死亡,其中又以sgRNA1和sgRNA3的基因敲除效率較高。同時(shí)針對(duì)同源位點(diǎn)左右同源臂構(gòu)建表達(dá)mCherry的供體質(zhì)粒,以其轉(zhuǎn)染293T細(xì)胞12 h后均能表達(dá)出mCherry。以sgRNA1和sgRNA3打靶質(zhì)粒及供體質(zhì)粒共同轉(zhuǎn)染慢羽雞成纖維細(xì)胞,觀察發(fā)現(xiàn)成纖維細(xì)胞內(nèi)的mCherry持續(xù)表達(dá),至轉(zhuǎn)染后第30 d通過流式細(xì)胞儀分選收集紅色熒光陽性成纖維細(xì)胞,并提取其總DNA進(jìn)行PCR鑒定與基因測(cè)序,結(jié)果顯示紅色熒光陽性成纖維細(xì)胞中有目的片段(CAG-mCherry)插入,即以插入替換方式能實(shí)現(xiàn)對(duì)ev21基因的敲除?!窘Y(jié)論】基于crispr/cas9基因編輯技術(shù)的基因敲除方法能成功敲除慢羽雞成纖維細(xì)胞內(nèi)源性白血病病毒ev21基因,為培育缺失ev21基因的慢羽雞品系提供技術(shù)支持。

    關(guān)鍵詞: 慢羽雞;禽白血病病毒(ALV);ev21基因;CRISPR/Cas9;基因敲除

    中圖分類號(hào): S831.2 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?文獻(xiàn)標(biāo)志碼: A 文章編號(hào):2095-1191(2021)08-2259-08

    Knockout of endogenous leukemia gene ev21 in slow

    feathering chicken

    XU Tian-peng1, WU Si-le1, WEN Jian1,WEI Yi-rong1, LI Si-jia1, XIE Long1,

    YU Lin-tian1, SONG Zhong-bao2, LU Yang-qing1*

    (1College of Animal Science and Technology, Guangxi University/State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Nanning ?530005,China; 2Nanning Liangfeng Agriculture and Animal

    Husbandry Co., Ltd., Nanning ?530005,China)

    Abstract:【Objective】The objective was to explore the feasibility of knockout of ev21 gene in slow feathering chicken fibroblasts for the endogenous retroviruses purification of chicken flocks, and lay a foundation for rapid breeding of slow feathering chicken lines without ev21 gene. 【Method】 Based on the characteristics of ev21 gene sequence(KY235336), two sgRNAs were designed at each of its 5' and 3' ends, respectively, for the construction of four different sgRNA targeting plasmids, and the sgRNAs with higher efficiency at the 5' and 3' ends were screened. Then the ev21 gene was cut based on CRISPR/Cas9 gene editing technology and the ev21 gene was replaced by a DNA fragment of red fluorescent protein(mCherry) (CAG-mCherry) by homologous recombination to achieve targeted knockout of the ev21 gene of endogenous leukemia virus in slow feathering chicken fibroblasts. 【Result】The results showed that the ev21 gene could be detected in slow feathering chicken fibroblasts, and the four constructed sgRNAs(sgRNA1-sgRNA4) could be successfully inserted into the corresponding targeting plasmids. After puromycin screening and T7E1 digestion assay, it was found that slow feathering chicken fibroblasts had different degrees of death after transfection with the four different sgRNAs, among which the knockdown efficiency of sgRNA1 and sgRNA3 was higher. Donor plasmids containing the left and right homology arms and expressing mCherry were also constructed with reference to the homologous site. All 293T cells were able to express mCherry after 12 h transfection with the donor plasmid. Cells were found to consistently express mCherry when slow feathering chicken fibroblasts were co-transfected with sgRNA1 and sgRNA3 targeting plasmids and donor plasmids. Red fluorescent positive fibroblasts were collected by flow cytometry at day 30 after transfection, and their total DNA was extracted for PCR identification and gene sequencing, which showed that the target fragment (CAG-mCherry) was inserted in the red fluorescent positive fibroblasts, and therefore the knockdown of ev21 gene could be achieved by insertion substitution. 【Conclusion】The gene knockout method based on CRISPR/Cas9 gene editing technology can successfully knock out the ev21 gene of endogenous leukemia virus in slow feathering chicken fibroblasts, and provide technical support for breeding slow feathering chicken strains without ev21 gene.

    Key words: slow feathering chicken; ?avian leukemia virus(ALV); ev21 gene; CRISPR/Cas9; gene knockout

    Foundation item: National Natural Science Foundation of China(31960157); Guangxi University Student Innovation and Entrepreneurship Training Project(201910593306)

    0 引言

    【研究意義】禽白血病病毒(Avian leukosis virus,ALV)是一種在進(jìn)化過程中整合到基因組中并隨宿主基因組遺傳復(fù)制的內(nèi)源性反轉(zhuǎn)錄病毒(Endogenous retroviruses,ERVs)(曹利利等,2020;Mason et al.,2020)。根據(jù)寄主、抗體反應(yīng)和受體的不同,ALV被分為A~J等10個(gè)亞群,其中A、B、C、D、E和J亞群的宿主都是雞(劉健等,2019)。A、B、C、D和J亞群為致病性強(qiáng)的外源性病毒,而E亞群(Avian leukosis virus subgroup E,ALVE)是致病性弱的內(nèi)源性病毒(崔治中,2010)。ALVE的表達(dá)除了影響外源病毒感染和疾病發(fā)生外,還對(duì)家禽的重要經(jīng)濟(jì)性狀產(chǎn)生影響(廖卓鋒等,2019),主要影響其產(chǎn)蛋性能及母源抗體水平(Smith and Fadly,1988)。ALVE不僅可在家禽個(gè)體間傳播,還能通過配子將其傳播給下一代,給傳統(tǒng)的凈化選擇手段帶來嚴(yán)峻挑戰(zhàn)(Payne and Nair,2012)。ev21基因是ALVE的受體基因,且與羽速基因K緊密連鎖(王麟等,2017)。因此,利用分子生物學(xué)的基因編輯技術(shù)開展ev21基因敲除研究,對(duì)凈化ALVE感染及通過羽速基因鑒別雌雄個(gè)體具有重要意義。【前人研究進(jìn)展】1988年,Bacon等在所有的慢羽雞中發(fā)現(xiàn)ev21基因,但在快羽雞中未發(fā)現(xiàn),故推斷ev21基因和慢羽基因K緊密連鎖或慢羽基因K是由野生型快羽基因k+插入ev21基因突變所導(dǎo)致。隨后,Levin和Simth(1990)研究發(fā)現(xiàn),在雞基因組中至少有1個(gè)額外的DNA區(qū)域與ev21基因整合位點(diǎn)的DNA序列高度同源,且這個(gè)同源區(qū)域存在ev21插入(OR)和無ev21插入(UR)2種情況。Elferink等(2008)的研究首次從分子水平上解釋ev21基因和慢羽基因K及快羽基因k+間的關(guān)系。K基因是由2個(gè)與k+基因相同的串聯(lián)重復(fù)序列構(gòu)成,且這個(gè)重復(fù)序列導(dǎo)致K基因上催乳素受體基因(PRLR)及編碼精子鞭毛蛋白2基因(SPEF2)部分重復(fù)。K基因上有ev21基因插入,而在k+相同的位置并無ev21基因插入(Elferink et al.,2008)。PRLR和SPEF2基因是控制羽速性狀的良好候選基因(Bu et al.,2013;Zhao et al.,2016)。Takenouchi等(2018)對(duì)52個(gè)品種1994羽雞進(jìn)行全面檢測(cè),結(jié)果發(fā)現(xiàn)幾乎所有的慢羽雞中同時(shí)含有ev21基因與PRLR和SPEF2基因不完全重復(fù)的片段(ID),并發(fā)現(xiàn)幾乎所有的快羽雞都缺少ev21基因和ID,表明ev21基因與慢羽基因的表達(dá)無必然聯(lián)系。由于ev21基因與K基因緊密連鎖,因此種雞生產(chǎn)上應(yīng)用快慢羽自別雌雄選淘公雞時(shí)無法嚴(yán)格凈化ev21基因?!颈狙芯壳腥朦c(diǎn)】相對(duì)于傳統(tǒng)的翻肛鑒別法,通過羽速基因鑒別雛雞性別具有簡(jiǎn)便易行、快速準(zhǔn)確及節(jié)省勞力的優(yōu)點(diǎn),且能避免翻肛鑒別對(duì)雛雞產(chǎn)生應(yīng)激反應(yīng)和減少疾病傳播。羽速基因與ALVE的ev21基因緊密連鎖,ev21基因的表達(dá)會(huì)干擾對(duì)禽白血病的檢測(cè),雖然自然界存在極少量缺少ev21基因的慢羽個(gè)體,但通過篩選育種需要花費(fèi)大量的人力、物力和時(shí)間?!緮M解決的關(guān)鍵問題】通過CRISPR/Cas9基因編輯技術(shù)對(duì)慢羽雞成纖維細(xì)胞中ALVE的ev21基因進(jìn)行定點(diǎn)敲除,探索在雞慢羽雞成纖維細(xì)胞中敲除ev21基因的可行性,凈化雞群的ERVs,同時(shí)為快速培育缺失ev21基因的慢羽雞配套系打下基礎(chǔ)。

    1 材料與方法

    1. 1 試驗(yàn)材料

    供試種蛋為廣西東蘭烏雞(慢羽雞)和廣西麻雞(快羽雞)的種蛋,TIANamp Genomic DNA Kit(DP304)、0.25%胰酶/EDTA(Gibco/25200-056)、DMEM/F12培養(yǎng)液(Gibco/11320033)、嘌呤霉素(Invitrogen)及Xfect? Transfection Reagent等購(gòu)自TaKaRa公司;倒置顯微鏡和免疫熒光系統(tǒng)購(gòu)自日本Olympus公司。

    1. 2 雞胚胎成纖維細(xì)胞分離及培養(yǎng)

    在37 ℃和65%相對(duì)濕度條件下將種蛋孵化至第7 d,取出雞胚放入無菌培養(yǎng)皿中,顯微鏡下去除四肢、頭部、內(nèi)臟和性腺;以無菌PBS洗滌3遍后,用滅菌手術(shù)剪剪碎雞胚;加入0.25%胰酶,在37 ℃水浴中消化15 min,每隔5 min振蕩搖晃1次,待其消化完畢加入等量含血清的DMEM/F12培養(yǎng)液終止消化;然后15000 r/min離心10 min,棄上清液,將細(xì)胞重懸并接種至細(xì)胞培養(yǎng)瓶中,置于37 ℃、5% CO2培養(yǎng)箱進(jìn)行培養(yǎng),待細(xì)胞融合達(dá)90%~95%時(shí)進(jìn)行傳代和凍存處理。

    1. 3 引物設(shè)計(jì)與合成

    根據(jù)NCBI已公布的ev21基因序列(KY235336),分別在ev21基因的5'和3'端各設(shè)計(jì)1對(duì)引物(表1)。同時(shí),在ev21基因5'端設(shè)計(jì)2個(gè)sgRNA(sgRNA1和sgRNA2),在3'端設(shè)計(jì)2個(gè)sgRNA(sgRNA3和sgRNA4),具體序列信息見表2。此外,在5'和3'端打靶位點(diǎn)左右兩側(cè)400 bp左右的位置分別設(shè)計(jì)2對(duì)相互包含的巢氏PCR擴(kuò)增引物(表3),用于sgRNA效率檢測(cè)(T7E1酶切檢測(cè));并設(shè)計(jì)1對(duì)引物用于鑒定目的片段(CAG-mCherry)的插入情況,具體序列信息見表4。所有引物合成和測(cè)序均委托北京六合華大基因科技公司完成。

    1. 4 DNA提取及PCR鑒定

    收集快羽雞和慢羽雞的成纖維細(xì)胞,使用DNA提取試劑盒(TIANamp Genomic DNA Kit)提取總DNA。為精確檢測(cè)陽性細(xì)胞基因組DNA編輯情況,采用高保真酶(PrimerSTAR Max DNA Polymerase)在BioRad C1000 PCR儀中進(jìn)行擴(kuò)增,PCR反應(yīng)體系20.0 μL:2×Enzyme Mixed(PrimerSTAR/Tiangene Taq)10.0 μL,DNA模板100 ng,正、反義引物(10 μmol/L)各0.5 μL,ddH2O補(bǔ)足至20.0 μL。擴(kuò)增程序:98 ℃預(yù)變性10 s;98 ℃ 10 s,55~60 ℃ 15 s,72 ℃ 15 s(1000 bp/15 s),進(jìn)行35個(gè)循環(huán);4 ℃結(jié)束反應(yīng)。PCR擴(kuò)增產(chǎn)物采用2.0%瓊脂糖凝膠電泳進(jìn)行鑒定。

    1. 5 細(xì)胞轉(zhuǎn)染

    細(xì)胞轉(zhuǎn)染流程嚴(yán)格按照XfectTM Transfection Rea-gent說明進(jìn)行操作。在6孔板中,每孔質(zhì)粒用量為8 μg,打靶質(zhì)粒和供體質(zhì)粒的用量為1∶1;轉(zhuǎn)染12 h后將轉(zhuǎn)染液更換為新鮮的培養(yǎng)液。

    1. 6 流式細(xì)胞分選

    以打靶質(zhì)粒和供體質(zhì)粒共轉(zhuǎn)染慢羽雞成纖維細(xì)胞,待對(duì)照組(單轉(zhuǎn)供體質(zhì)粒)成纖維細(xì)胞的紅光完全消失后,通過流式細(xì)胞儀分選出攜帶紅色熒光的陽性細(xì)胞,接種至培養(yǎng)皿上繼續(xù)培養(yǎng)。

    2 結(jié)果與分析

    2. 1 ev21基因插入慢羽雞成纖維細(xì)胞基因組的鑒定結(jié)果

    為鑒定慢羽雞基因組中是否成功插入ev21基因,分別提取慢羽雞和快羽雞的成纖維細(xì)胞總DNA進(jìn)行PCR檢測(cè),結(jié)果(圖1)顯示,慢羽雞成纖維細(xì)胞基因組DNA在5'和3'端均有1條清晰且單一的條帶,而快羽雞成纖維細(xì)胞基因組DNA無任何條帶,說明慢羽雞成纖維細(xì)胞基因組中有ev21基因插入。

    2. 2 打靶質(zhì)粒構(gòu)建情況及sgRNA打靶效率檢測(cè)結(jié)果

    以U6啟動(dòng)子驅(qū)動(dòng)sgRNA表達(dá),CAG啟動(dòng)子驅(qū)動(dòng)Cas9蛋白表達(dá),分別構(gòu)建4種不同sgRNA的打靶質(zhì)粒,其測(cè)序結(jié)果顯示4種sgRNA均成功插入對(duì)應(yīng)的打靶質(zhì)粒中(圖2-A)。為進(jìn)一步篩選出打靶效率較高的sgRNA,將慢羽雞成纖維細(xì)胞分為4組,分別轉(zhuǎn)染4種不同的sgRNA打靶質(zhì)粒,經(jīng)嘌呤霉素篩選48 h后,與轉(zhuǎn)染前相比,發(fā)現(xiàn)各組成纖維細(xì)胞均有不同程度的死亡(圖2-B),收集細(xì)胞并提取總DNA。采用巢氏PCR擴(kuò)增目的片段,純化回收的目的片段以T7E1進(jìn)行酶切,酶切產(chǎn)物經(jīng)2.0%瓊脂糖凝膠電泳鑒定,結(jié)果顯示sgRNA1和sgRNA3的目的條帶灰度較低(圖2-C),說明其基因敲除效率較高。

    2. 3 供體質(zhì)粒構(gòu)建情況

    ev21基因全長(zhǎng)7524 bp,包括上、下游序列共9679 bp(圖3-A)。其中,1~970 bp為雞Z染色體序列,970~8500 bp為ev21基因序列(王麒等,2017)。為敲除慢羽雞成纖維細(xì)胞中的ev21基因,采取同源重組修復(fù)(Homologous recombination repair,HDR)策略,以紅色熒光蛋白(mCherry)的DNA片段(CAG-mCherry)替換整個(gè)ev21基因(圖3-B)。針對(duì)同源位點(diǎn)左右同源臂構(gòu)建表達(dá)mCherry的供體質(zhì)粒,供體質(zhì)粒主要由基本骨架(PUC19)、左端同源臂(HAL)、右端同源臂(HA)和mCherry部分組成,其中mCherry是質(zhì)粒(XP61)經(jīng)EcoR V和Age I雙酶切獲得。對(duì)供體質(zhì)粒的左右同源臂進(jìn)行測(cè)序,測(cè)序結(jié)果顯示左右同源臂無突變(圖3-C),即成功構(gòu)建獲得供體質(zhì)粒。

    2. 4 ev21基因敲除及鑒定結(jié)果

    為探索在慢羽雞成纖維細(xì)胞敲除內(nèi)源性ev21基因的可能性,將慢羽雞成纖維細(xì)胞分為試驗(yàn)組和對(duì)照組,試驗(yàn)組成纖維細(xì)胞共同轉(zhuǎn)染sgRNA1和sgRNA3打靶質(zhì)粒及供體質(zhì)粒,對(duì)照組成纖維細(xì)胞僅轉(zhuǎn)染供體質(zhì)粒。轉(zhuǎn)染后48 h觀察發(fā)現(xiàn),對(duì)照組和試驗(yàn)組均有部分成纖維細(xì)胞表達(dá)出mCherry(圖4-A);轉(zhuǎn)染后第7 d,對(duì)照組成纖維細(xì)胞的紅色熒光基本消失,而試驗(yàn)組中紅色熒光比例的成纖維細(xì)胞越來越多(圖4-B);至轉(zhuǎn)染后第10 d,對(duì)試驗(yàn)組的成纖維細(xì)胞進(jìn)行流式細(xì)胞分選,收集攜帶紅色熒光的陽性細(xì)胞;轉(zhuǎn)染后第30 d,試驗(yàn)組成纖維細(xì)胞內(nèi)的mCherry持續(xù)表達(dá)(圖4-C),說明CAG-mCherry已成功整合到慢羽雞成纖維細(xì)胞基因組中,即成功建立了穩(wěn)定表達(dá)mCherry的細(xì)胞系。

    為鑒定紅色熒光陽性成纖維細(xì)胞中ev21基因的敲除情況,分別在跨基因組和插入片段(CAG-mCherry)的5'和3'端設(shè)計(jì)特異性擴(kuò)增引物,通過流式細(xì)胞儀分選收集轉(zhuǎn)染后第30 d的紅色熒光陽性成纖維細(xì)胞,提取其總DNA進(jìn)行PCR鑒定,結(jié)果(圖4-D)顯示紅色熒光陽性成纖維細(xì)胞中有CAG-mCherry插入。同時(shí)對(duì)sgRNA的靶位點(diǎn)進(jìn)行測(cè)序,結(jié)果(圖4-E)顯示靶位點(diǎn)附近的序列與預(yù)測(cè)結(jié)果一致,說明基于CRISPR/Cas9基因編輯技術(shù)通過插入替換方式能成功實(shí)現(xiàn)對(duì)ev21基因的敲除。

    3 討論

    雞是從紅色原雞進(jìn)化而來,為最常見的家養(yǎng)動(dòng)物之一。在長(zhǎng)期進(jìn)化的過程中,雞一直面臨著病原微生物的威脅與浸染。病原侵染不僅引發(fā)動(dòng)物疾病,還會(huì)導(dǎo)致動(dòng)物機(jī)體的基因組發(fā)生改變,包括基因(堿基或片段)的插入、缺失及突變等(Wildschutte et al.,2016)?;蚪M改變進(jìn)而造成表型性狀發(fā)生改變,導(dǎo)致疾病發(fā)生、生長(zhǎng)性能和繁殖性能下降及適應(yīng)性降低等。Wang等(2016)研究發(fā)現(xiàn),在ZNF132基因中插入16 bp堿基會(huì)顯著影響海南黑山羊的體長(zhǎng);Zang等(2016)研究證實(shí),DGAT2基因3'-UTR發(fā)生13 bp插入突變后,會(huì)影響豬的背膘厚度及瘦肉率;Wei等(2018)研究表明,將19 bp堿基插入PLAGI基因會(huì)導(dǎo)致牛的生長(zhǎng)性能下降。有關(guān)雞的研究表明,CDKN3基因啟動(dòng)子區(qū)域多等位基因插入后會(huì)影響其生長(zhǎng)性能和屠宰性狀(Li et al.,2018);ZNF764L基因發(fā)生22 bp插入與雞的初生重、胸寬及體斜長(zhǎng)密切相關(guān)(Han et al.,2019);雞PTH1R基因第1個(gè)內(nèi)含子中51 bp堿基插入突變與其生長(zhǎng)和屠宰性能密切相關(guān)(Ren et al.,2020)??梢?,動(dòng)物基因組中發(fā)生插入或缺失突變會(huì)影響其生產(chǎn)性能。

    病毒是導(dǎo)致雞基因組發(fā)生改變的重要因素之一,特別是逆轉(zhuǎn)錄病毒。內(nèi)源性逆轉(zhuǎn)錄病毒EAV-HP插入并整合到雞SLCO1B3基因5'-UTR,會(huì)導(dǎo)致SLCO1B3基因在雞輸卵管蛋殼腺中高表達(dá),致使雞生產(chǎn)綠殼蛋(Wang et al.,2013)。Park等(2013)研究表明,ALV插入并整合到TYR基因第4個(gè)內(nèi)含子會(huì)導(dǎo)致TYR基因逆轉(zhuǎn)錄本功能失活,從而形成隱形白突變。ALV是一種典型的逆轉(zhuǎn)錄病毒,自1908年首次分離獲得以來,全球許多國(guó)家均有暴發(fā)流行,其垂直和水平傳播引起的臨床和亞臨床感染給養(yǎng)禽業(yè)造成巨大經(jīng)濟(jì)損失(劉公平等,2000;余河玲等,2020)。經(jīng)過幾十年的探索與研究,雖然已取得一定成績(jī),但禽白血病尚未得到有效遏制,仍需耗費(fèi)大量人力和物力去篩選及淘汰攜帶病毒的雞群。本研究首次嘗試以基因編輯技術(shù)探索解決禽白血病對(duì)家禽養(yǎng)殖產(chǎn)業(yè)的危害,在分離培養(yǎng)的慢羽雞成纖維細(xì)胞中檢測(cè)出ev21基因,并成功構(gòu)建獲得4種sgRNA的打靶質(zhì)粒和供體質(zhì)粒;以基因敲除效率較高的sgRNA1和sgRNA3打靶質(zhì)粒和供體質(zhì)粒共同轉(zhuǎn)染慢羽成纖維細(xì)胞,轉(zhuǎn)染后第30 d采用流式細(xì)胞儀分選收集攜帶紅色熒光的陽性細(xì)胞,即得到穩(wěn)定表達(dá)mCherry的細(xì)胞系;隨后通過PCR擴(kuò)增與基因測(cè)序相結(jié)合的方法在sgRNA靶位點(diǎn)檢測(cè)到目的片段(CAG-mCherry)精準(zhǔn)插入,且以插入替換方式成功實(shí)現(xiàn)對(duì)ev21基因的敲除??梢?,在體外培養(yǎng)的慢羽雞成纖維細(xì)胞中敲除內(nèi)源性白血病病毒ev21基因具有可行性,可為培育缺失ev21基因的慢羽雞品系提供技術(shù)支持。

    4 結(jié)論

    基于CRISPR/Cas9基因編輯技術(shù)的基因敲除方法能成功敲除慢羽雞成纖維細(xì)胞內(nèi)源性白血病病毒ev21基因,為培育缺失ev21基因的慢羽雞品系提供技術(shù)支持。

    參考文獻(xiàn):

    曹利利,董航,郭衍冰,姜旭,姚新華,苑淑賢,邵洪澤,宋建臣,賈立軍. 2020. 禽白血病病毒ELISA檢測(cè)方法的建立與初步應(yīng)用[J]. 中國(guó)動(dòng)物傳染病學(xué)報(bào),28(1):16-21. [Cao L L,Dong H,Guo Y B,Jiang X,Yao X H,Yuan S X,Shao H Z,Song J C,Jia L J. 2020. Development and preliminary application of ELISA method for detection of avian leukosis virus[J]. Chinese Journal of Animal Infectious Diseases,28(1):16-21.]

    崔治中. 2010. 雞白血病及其鑒別診斷和預(yù)防控制[J]. 中國(guó)家禽,32(8):1-12. [Cui Z Z. 2010. Differential diagnosis,prevention and control of avian leukosis[J]. China Poultry,32(8):1-12.]

    廖卓鋒,劉永,謝強(qiáng)明,楊柳平,楊潤(rùn). 2019. 禽白血病研究進(jìn)展[J]. 當(dāng)代畜牧,(8):65-67. [Liao Z F,Liu Y,Xie Q M,Yang L P,Yang R. 2019. Development in avian leucosis research[J]. Contemporary Animal Husbandry,(8):65-67.]

    劉公平,趙振芬,劉福安. 2000. 禽白血病病毒研究進(jìn)展[J]. 中國(guó)獸醫(yī)學(xué)報(bào),20(6):621-623. [Liu G P,Zhao Z F,Liu F A. 2000. Advance of research on avian lekosis virus[J]. Chinese Journal of Veterinary Science,20(6):621-623.] doi:10.3969/j.issn.1005- 4545.2000.06.030.

    劉健,李凱航,鞠厚斌,李鑫,葛菲菲,楊德全,楊顯超,葛杰,鄧波,周錦萍. 2019. 七彩山雞內(nèi)源性禽白血病病毒的檢測(cè)與env基因序列分析[J/OL]. 中國(guó)動(dòng)物傳染病學(xué)報(bào). http://kns.cnki.net/kcms/detail/31.2031.S.20190917.1522. 051.html. [Liu J,Li K H,Ju H B,Li X,Ge F F,Yang D Q,Yang X C,Ge J,Deng B,Zhou J P. 2019. Detection and env gene analysis of endogenous avian leukosis virus from phasianus colchicas[J/OL]. Chinese Journal of Animal Infectious Diseases. http://kns.cnki.net/kcms/detail/31.2031.S.20190917.1522.051.html.]

    王麒,王晗,張秀玲,劉春楊,張樂超,李蘭會(huì),李祥龍. 2017. 雞內(nèi)源白血病病毒ev21與慢羽非連鎖分析和LTR區(qū)啟動(dòng)子活性分析[J]. 畜牧獸醫(yī)學(xué)報(bào),48(5):930-937. [Wang Q,Wang H,Zhang X L,Liu C Y,Zhang L C,Li L H,Li X L. 2017. Analysis of non-linkage between endogenous ALV-ev21 and late feathering of chickens and its promo-ter activity of LTR[J]. Acta Veterinaria et Zootechnica Sinica,48(5):930-937.] doi:10.11843/j.issn.0366-6964. 2017.05.018.

    余河玲,朱師良,何啟牮,王彥. 2020. PDPK1 3'UTR雙熒光素酶報(bào)告載體的構(gòu)建及與gga-miR-148a-5p的靶向驗(yàn)證[J]. 江蘇農(nóng)業(yè)學(xué)報(bào),36(1):147-151. [Yu H L,Zhu S L,He Q J,Wang Y. 2020. Construction of PDPK1 3'UTR dual luciferase reporter vector and targeting verification with gga-miR-148a-5p[J]. Jiangsu Journal of Agricultural Sciences,36(1):147-151.] doi:10.3969/j.issn.1000-4440. 2020.01.020.

    Bacon L D,Smith E,Crittenden L B,Havenstein G B. 1988. Association of the slow feathering(K) and an endogenous viral(ev21) gene on the Z chromosome of chickens[J]. Poultry Science,67(2):191-197. doi:10.3382/ps.0670 191.

    Bu G X,Huang G,F(xiàn)u H,Li J,Huang S M,Wang Y J. 2013. Characterization of the novel duplicated PRLR gene at the late-feathering K locus in Lohmann chickens[J]. Journal of Molecular Endocrinology,51(2):261-76. doi:10. 1530/JME-13-0068.

    Elferink M G,Vallée A A A,Jungerius A P,Crooijmans R P M A,Groenen M A M. 2008. Partial duplication of the PRLR and SPEF2 genes at the late feathering locus in chicken[J]. BMC Genomics,9(1):391. doi: 10.1186/1471-2164-9-391.

    Han R L,Wang X N,Wang X L,Guo Y P,Li D H,Li G X,Wang Y B,Kang X T,Li Z J. 2019. Chicken ZNF764L gene:mRNA expression profile,alternative splicing analysis and association analysis between first exon indel mutation and economic traits[J]. Gene,695:92-98. doi:10. 1016/j.gene.2019.02.010.

    Levin I,Smith E J. 1990. Molecular analysis of endogenous virus ev21-slow feathering complex of chickens. 1. Cloning of proviral-cell junction fragment and unoccupied integration site[J]. Poultry Science,69(11):2017-2026. doi: 10. 3382/ps.0692017.

    Li W Y,Liu D L,Tang S Q,Li D H,Han R L,Tian Y D,Li H,Li G X,Li W T,Liu X J,Kang X T,Li Z J. 2018. A multiallelic indel in the promoter region of the Cyclin-dependent kinase inhibitor 3 gene is significantly associated with body weight and carcass traits in chickens[J]. Poultry Science,98(2):556-565. doi:10.3382/ps/pey404.

    Mason A S,Lund A R,Hocking P M,F(xiàn)ulton J E,Burt D W. 2020. Identification and characterisation of endogenous avian leukosis virus subgroup E(ALVE) insertions in chi-cken whole genome sequencing data[J]. Mobile DNA,11: 22. doi:10.1186/s13100-020-00216-w.

    Park M N,Kim T H,Lee J H,Choi J A,Heo K N,Kim C D,Choo H J,Han J Y,Lee T,Lee J H,Lee K T. 2013. Genetic variations of chicken TYR gene and associations with feather colorof Korean Native Chicken(KNC)[J]. Korean Journal of Poultry Science,40(2):139-145. doi:10.5536/KJPS.2013.40.2.139.

    Payne L N,Nair V. 2012. The long view:40 years of avian leukosis research[J]. Avian Pathology,41(1):11-19. doi:10.1080/03079457.2011.646237.

    Ren T,Zhang Z,F(xiàn)u R,Yang Y,Li W,Liang J,Mo G,Luo W,Zhang X. 2020. A 51 bp indel polymorphism within the PTH1R gene is significantly associated with chicken growth and carcass traits[J]. Animal Genetics,51(4):568-578. doi:10.1111/age.12942.

    Smith E J,F(xiàn)adly A M. 1988. Influence of congenital transmission of endogenous virus-21 on the immune response to avian leukosis virus infection and the incidence of tumors in chickens[J]. Poultry Science,67(12):1674-1679. doi:10.3382/ps.0671674.

    Takenouchi A,Toshishige M,Ito N,Tsudzuki M. 2018. Endogenous viral gene ev21 is not responsible for the expression of late feathering in chickens[J]. Poultry Scien-ce,97(2):403-411. doi:10.3382/ps/pex345.

    Wang X,Yang Q,Luo J,Wang Y,F(xiàn)eng Q,Zhang Z H,Lei C Z,Chen H,Lan Y F. 2016. Novel 16-bp insertion/deletion variant of ZNF132 gene and its influence on growth traits in goats[J]. Journal of Animal & Plant Sciences,26:1813-1818.

    Wang Z P,Qu L J,Yao J F,Yang X L,Li G,Zhang Y Y,Li J Y,Wang X T,Bai J R,Xu G Y,Deng X M,Yang N,Wu C X. 2013. An EAV-HP insertion in 5' flanking region of SLCO1B3 causes blue eggshell in the chicken[J]. PLoS Genetics,9(1):e1003183. doi:10.1371/journal.pgen.100 3183.

    Wei X,Hua H,Li Z,Xu J W,Lei C Z,Zhang G M,Dang R H,Niu H,Qi X L,Chen H,Huang Y Z. 2018. Detection of 19-bp deletion within PLAG1 gene and its effect on growth traits in cattle[J]. Gene,675:144-149. doi:10.1016/ j.gene.2018.06.041.

    Wildschutte J H,Williams Z H,Montesion M,Subramanian R P,Kidd J M,Coffin J M. 2016. Discovery of unfixed endogenous retrovirus insertions in diverse human populations[J]. Proceedings of the National Academy of Scien-ces of the United States of America,113(16):E2326- E2334. doi:10.1073/pnas.1602336113.

    Zang L,Wang Y D,Sun B X,Zhang X,Yang C H,Kang L,Zhao Z H,Jiang Y L. 2016. Identification of a 13 bp indel polymorphism in the 3'-UTR of DGAT2 gene associa-ted with backfat thickness and lean percentage in pigs[J]. Gene,576(2):729-733. doi:10.1016/j.gene.2015.09. 047.

    Zhao J,Yao J,Li F,Yang Z,Sun Z,Qu L,Wang K,Su Y,Zhang A,Montgomery S A,Geng T,Cui H. 2016. Identification of candidate genes for chicken early- and late-feathering[J]. Poultry Science,95(7):1498-1503. doi:10.3382/ps/pew131.

    (責(zé)任編輯 蘭宗寶)

    收稿日期:2020-07-20

    基金項(xiàng)目:國(guó)家自然科學(xué)基金項(xiàng)目(31960157);廣西大學(xué)大學(xué)生創(chuàng)新創(chuàng)業(yè)訓(xùn)練計(jì)劃項(xiàng)目(201910593306)

    通訊作者:陸陽清(1976-),https://orcid.org/0000-0003-1641-6142,博士,研究員,主要從事干細(xì)胞及動(dòng)物繁殖生物技術(shù)研究工作,E-mail:lyq@gxu.edu.cn

    第一作者:徐天鵬(1995-),https://orcid.org/0000-0003-0175-0295,研究方向?yàn)閯?dòng)物遺傳育種與繁殖,E-mail:1491159801@qq.com

    金川县| 师宗县| 崇明县| 泽州县| 苍梧县| 抚州市| 德州市| 南漳县| 萨嘎县| 金堂县| 广饶县| 垣曲县| 宁夏| 天峨县| 凉山| 蕉岭县| 毕节市| 建瓯市| 靖江市| 秀山| 新安县| 临邑县| 关岭| 扎赉特旗| 威信县| 望奎县| 简阳市| 赤壁市| 延庆县| 莱阳市| 馆陶县| 湖口县| 岳普湖县| 修武县| 都安| 沈阳市| 肥西县| 女性| 辽阳市| 灌阳县| 张家川|