• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Synthesis of Quasi-MIL-53(Fe)Photocatalysts for Enhanced Visible Light Photocatalytic Degradation of Organic Dyes

    2021-12-09 07:22:10ZOUQiChaoMAYanCHIDianJunQIAOHongBinZHANGJunYingCHENQianSUNYuDieZHANGJianZHANGKuiLIUShengJun

    ZOU Qi-ChaoMA YanCHI Dian-Jun QIAO Hong-Bin ZHANG Jun-Ying CHEN Qian SUN Yu-Die ZHANG Jian ZHANG KuiLIU Sheng-Jun

    (School of Chemistry and Chemical Engineering,Anhui University of Technology,Ma′Anshan,Anhui 243032,China)

    Abstract:Quasi-metal-organic-frameworks(MOFs)derivative-based MFe-T(T℃stands for calcination temperature)photocatalysts with a porous structure were synthesized by the pyrolysis of MIL-53(Fe)(termed MFe hereafter).Among the tested catalysts,MFe-250 exhibited the highest photodegradation performance,degradation of 99% methylene blue(MB)within 90 min.From the photocurrent and electrochemical impedance spectroscopy results,the electronic transmission capability of MFe-250 exceeded that of MFe.Furthermore,trapping experiments revealed that while hydroxyl radicals(·OH)were essential intermediates in the photocatalytic degradation of MB.Additionally,a mechanism for the photocatalytic process was proposed.

    Keywords:metal-organic frameworks;visible light;photodegradation;organic dyes

    0 Introduction

    The rapid development of modern industry has led to water pollution,including contamination with organic dyes.One harmful pollutant is methylene blue(MB).Although the adsorbent can effectively remove MB from water,its high cost limits practical applications[1].In contrast,the solar photocatalytic degradation of organic pollutants has proven to be a clean technology that can address such environmental problems.Some successfully developed photocatalysts are metal oxides,metal sulfides and graphitic carbon nitride[1-2].However,their low quantum and solar energy conversion efficiencies limit their practical applications.Therefore,the development of new and more efficient photocatalysts is necessary.

    Metal-organic frameworks(MOFs)are structures composed of organic ligands and metals(or metal clusters)and have a wide range of uses,such as in separation,storage,detection,and catalysis[3-21].In particular,MOFs featuring numerous active sites that generate numerous electron-hole pairs under adequate illumination can be effectively used as photocatalysts.The first of such reported MOF catalysts used for photocatalytic degradation ofphenolwas MOF-5[22].Thereafter,numerous other studies have focused on the development of MOF photocatalysts for CO2reduction[23-24],water splitting[25-28]and organic pollutant degradation[29-34].

    The active sites of MOFs are important for the improvement of catalytic performance.Recent studies by Jiang′s group revealed that structurally defective UiO-66-NH2enhanced the efficiency of photocatalytic hydrogen production[35].Huang et al.reported that the synthesis of MIL-53(Fe)(termed MFe hereafter)using hydrochloric acid as a modulator exposed more active sites than as-prepared MFe without hydrochloric acid,leading to the efficient photocatalytic degradation of tetracycline[36].Further,Xu et al.reported that the use of quasi-MOFs obtained by thermal regulation enabled strong interactions between metal nanoparticles and the MOF,resulting in increased catalytic activity[37].Furthermore,we reported the preparation of quasi-MFe at lower temperatures to improve their photocatalytic activity.

    Herein,a series of MFe-based photocatalysts,collectively termed as MFe-T(T℃stands for calcination temperature),were activated at different temperatures in air and employed in the visible-light-assisted degradation of MB.Studying the photocatalytic performance of different samples allowed for the identification of the most suitable catalyst for optimized photodegradation.The resulting MFe-250 exhibited high photocatalytic activity for MB degradation,reaching a degradation rate of 99% with in 90 min.Importantly,MFe-250 had excellent performance and chemical stability.

    1 Experimental

    1.1 Materials

    N,N-dimethyl formamide(DMF,GC,99.5%),FeCl3·6H2O(AR,99.0%),ethanol(EtOH,AR,99.7%)and 2-propanol(AR,99.7%)were purchased from General-Reagent.Methylene blue(MB,AR),ethylenediamine tetraacetic acid disodium salt dihydrate(EDTA-2Na,AR)and hydrogen peroxide solution(30%,w/w)were purchased from Sinopharm Chemical Reagent Co.,Ltd.(Shanghai,China).Terephthalic acid(AR,99%)and ascorbic acid(VC,AR,99.0%)were purchased from Aladdin.All chemicals were purchased from commercial sources and used without further treatments.

    1.2 Synthesis of MFe and MFe-T

    MFe was synthesized based on minor modifications to the existing process[38],using the solvothermal method.In the process,ferric chloride hexahydrate(90 mg),terephthalic acid(55 mg)and DMF(8 mL)were mixed into a homogeneous solution.The solution was sealed in a 25 mL autoclave and heated at 180℃for 12 h.After the autoclave cooled to room temperature,the product was washed with DMF and ethanol several times,and finally placed in a vacuum oven at 60℃for 6 h for drying.Five samples were then taken from the dried product,following which each was successively placed in a muffle furnace and calcined in an air atmosphere for several hours at temperatures of 100,200,250,300,and 400℃.The resultant samples were denoted as MFe-100,MFe-200,MFe-250,MFe-300,and MFe-400,respectively.

    1.3 Characterizations

    The powder X-ray diffraction(PXRD)patterns of samples were tested on a Bruker D8 Advance X-ray diffractometer with Cu Kα radiation(λ=0.154 07 nm,40 kV,40 mA,5(°)·min-1from 5°to 80°).The FTIR spectra of the sample was tested on a Nicolet 6700 spectrometer.The Brunauer-Emmett-Teller(BET)surface area was measured at 77 K with a Micromeritics ASAP2460 instrument(The air-dried sample was activated in a vacuum at 120℃for 4 h).UV-Vis diffuse reflectance spectra(UV-Vis DRS)were recorded on a UV-Vis-NIR spectrophotometer (Shimadzu 3600).Scanning electro nmicroscopy(SEM,FEINANO SEM430)was used to analyze the morphology of the samples.X-ray electron spectroscopy(XPS)measurements were performed with a Thermo Scientific KAlpha+XPS system using Mg Kα as an excitation source.Photodegradation solutions were analyzed by UV-Vis spectroscopic measurements(Persee TU-1810)in a range from 200 to 800 nm in ambient conditions.Thermogravimetric(TG)analyses were performed on a Shimadzu DTG-60H integration thermal analyzer from 25 to 600℃ at a heating rate of 10℃·min-1under an air atmosphere.

    1.4 Evaluation of photocatalytic activity

    The photocatalytic activity of each MFe-T was evaluated by its degradation rate of MB under visible light.The photocatalytic system consisted of photocatalyst(20 mg),hydrogen peroxide(H2O2)(50 μL),and rhodamine B(RhB)(100 mL 20 mg·L-1)solution.After stirring for 60 min in the dark,the suspension was illuminated with a 300 W Xe visible-light lamp(λ>420 nm,MC-XF300,Beijing Merry Change Co.,Ltd.).During the process,the solution was sampled every 10 min,filtered,and analyzed using a UV-Vis detector.

    1.5 Photoelectrochemical measurements

    The photoelectrochemical properties of the materials were evaluated using an electrochemical workstation(CHI-760E,Chenhua Instrument,Shanghai,China).The sample(10 mg)and mass fraction of 5% Nafion solution(10 μL)were added to ethanol(1 mL),and the mixture was sonicated for 1 h to form a uniform slurry.The slurry(50 μL)was added dropwise onto the conductive side of an indium tin oxide glass(1 cm×1 cm)and then dried at 100℃for 5 h to obtain a working electrode.The reference electrode was Ag/AgCl(saturated KCl solution)while the counter electrode was a Pt sheet.A three-electrode system with a Na2SO4(0.5 mol·L-1)electrolyte was used to determine the photocurrent and perform electrochemical impedance spectroscopy(EIS).The light source was a 300 W Xe lamp(λ>420 nm).

    2 Results and discussion

    2.1 Characterization

    PXRD patterns of pristine MFe and MFe-T are shown in Fig.1a.The XRD patterns of MFe,MFe-100,MFe-200,and MFe-250 are in good agreement with simulated patterns(MFe-Sim),indicating that the MFe structure was stable only at low temperatures(Fig.1a).From the patterns for MFe-300 and MFe-400,the absence of MFe peaks in the range of 5°-20°implied that the MFe framework was destroyed.Moreover,the diffraction patterns for MFe-300 and MFe-400 were consistent with that of Fe2O3(PDF No.33-0664),indicating the complete decomposition of MFe at high temperatures.

    Fig.1 (a)PXRD patterns of MFe and MFe-T;(b)FTIR spectra of MFe and MFe-T

    At 100℃,the loss of adsorbed water molecules occurred,whereas at 200℃,the loss of coordinated water molecules commenced.At 250℃,Fe—O sites are exposed by the loss of organic ligands as CO2,while at temperatures above 300℃,MFe structure began to collapse.Hence,MFe structure is only retained below a certain temperature.To confirm this,TG analysis of MFe was carried out by heating the sample from 25 to 700℃in the air(thermal calcination;Fig.S1,Supporting information).When the temperature reached 427℃,the weight decreased sharply by 60%,indicating that the original MOF structure was critically damaged.The removal of the organic ligand terephthalic acid occurs at such temperatures,resulting in the exposure of widely distributed Fe—O active sites.As the temperature approached 700℃,the weight dropped further by approximately 10%,suggesting the complete degradation of the MOF skeleton and the substantial oxidation of the iron to Fe2O3.These results show that TG analysis was a suitable method for sample analysis in this study.

    To further confirm the presence of organic ligands in MFe-100,MFe-200,and MFe-250,FTIR spectra of MFe-T samples was compared to that of MFe sample(Fig.1b).The FTIR spectra of MFe-100,MFe-200,and MFe-250 were very similar to that of MFe,suggesting that MFe structure was largely retained.Conversely,pyrolysis at 300℃led to the disappearance of the peaks at 1 650-1 300 cm-1(carboxylate groups),indicating the partial decomposition of MFe structure.The temperature at which most significant degradation of MFe structure occurred was 400℃.

    Next,UV-Vis DRS was conducted.The spectra for MFe and MFe-T are shown in Fig.S2a.As the literature described[39],MFe absorbs visible light in the rededge region(approximately 650 nm).For MFe-T samples,the initial increase in Fe2O3(at temperatures below 300℃)led to a redshift(shift of the absorption edge towards higher wavelengths/lower energy),thereby enhancing light absorption.Consequently,the band gaps of MFe decreased from 2.50 to 2.15 eV(MFe-200).Hence,thermally treated MFe-T potentially exhibits photocatalytic properties.

    Fig.S3 shows the nitrogen(N2)adsorption-desorption isotherms of MFe-T samples.The N2adsorptiondesorption isotherms of the samples pyrolyzed at 100 and 200℃were the same,indicating that MFe porosity was preserved.MFe-300 and MFe-400 exhibited slightly increase in the surface area,whereas their porosity was more or less maintained.Furthermore,the Horvath-Kawazoe(H-K)micropore size distributions of MFe and MFe-T were very similar(Fig.S4),although MFe crystals shattered upon heat treatment(Fig.S5).These results indicate that the integrity of MFe structure was maintained in MFe-T,because it retained numerous Fe—O active sites.

    XPS was employed to determine the surface composition and element valence of the samples(Fig.2).The XPS survey spectra for both MFe and MFe-250 confirmed the presence of Fe,O,and C atoms,and did not contain peaks corresponding to any distinct impurities(Fig.2a).The results indicate a similarity in the composition and structure of MFe and MFe-250.The Fe2p3/2and Fe2p1/2XPS peaks for MFe were located at 711.39 and 725.09 eV,respectively[35],whereas those of MFe-250 were located at 711.34 and 724.84 eV,respectively(Fig.2b).The close similarity between these values indicates that MFe-250 structure did not collapse.In the XPS O1s spectrum of MFe(Fig.2c),the main peak corresponding to the carboxyl group of the terephthalic acid(H2BDC)linkers and the Fe—O bonds was located at 531.40 eV[40].In contrast,the corresponding O1s peak for MFe-250 shifted to 531.48 eV because some Fe—O bonds remain after decarboxylation[40].The high-resolution C1s XPS spectrum of MFe(Fig.2d)exhibited two peaks with binding energies of 288.43 and 284.50 eV,corresponding to the Fecarboxylate moiety and benzoic acid linker,respectively[39].The decrease in the intensity of the C1s peak in the spectrum for MFe-250 further indicates the heatinduced loss of organic ligands.Hence,the thermal treatment led to MFe decarboxylation and the corresponding generation of metal oxides,as revealed by the changes in the XPS peak intensity and position.

    Fig.2 XPS spectra of MFe and MFe-250:(a)survey,(b)Fe2p,(c)O1s,and(d)C1s

    2.2 Photocatalytic activities

    The MB degradation activities of MFe-T catalysts were evaluated at 25℃in a jacketed glass reactor containing photocatalyst,H2O2,and MB in aqueous under visible light irradiation.Fig.3a shows the photodegradation rate of MFe,MFe-100,MFe-200,MFe-250,MFe-300,and MFe-400;all samples exhibited catalytic activities towards MB degradation.Under the same conditions,non-calcined MFe showed a more general cata-lytic performance,degrading 88% of the MB within 90 min.The photocatalytic activity of the sample increased when the calcination temperature was raised from 100 to 250℃owing to the generation of more structural defects.Hence,MFe-200 and MFe-250 photodegraded 97% and 99% of MB,respectively,within 90 min,suggesting that the Fe—O sites play a critical role in the process.Among the tested catalysts,MFe-250 exhibited the highest photodegradation rate(99% within 90 min),suggesting that it is a novel and effective photocatalyst for the degradation of MB under visible light.In contrast,MFe-300 and MFe-400 photodegraded 23% and 16% of MB,respectively,within the same 90 min(Fig.3a).Therefore,it can be said that the photocatalytic activity is proportional to the number of Fe—O sites,and reaches a maximum for MFe-250.As the pyrolysis temperature increased further,conversion of MFe structure to Fe2O3was accompanied by a decrease in the catalytic activity.A further increase in the calcination temperature causes the collapse of MFe framework[41].In the cases studied,Fe2O3photocatalysts exhibited significantly lower MB degradation activity compared to pristine MFe.Hence,the MFe framework is necessary for a high photocatalytic MB degradation performance.

    Fig.3 (a)Photocatalytic degradation of MB under visible-light irradiation over different samples;(b)Degradation rate of MFe-250 on MB under different conditions;(c)MB removal in the repeated tests over as-prepared MFe-250;(d)Photocatalytic degradation of MB over MFe-250 under visible light irradiation in the presence of different scavengers

    Control experiments were conducted to verify the photocatalytic degradation properties of MFe-250.Fig.3b shows the concentration(c/c0)of MB in different photocatalytic degradation systems.In the absence of catalyst and H2O2,no degradation of MB under irradiation was observed[42].The addition of H2O2to the MB solutions led to 27% degradation within 90 min of visible-light irradiation.This resulted from the lightinduced formation of·OH upon the irradiation of H2O2.When only MFe-250 and visible light alone was employed,8% MB was degraded.This suggested an H2O2-dependence of the photoactivity of the catalyst.In the dark,a mixture of MFe-250 and H2O2only led to a degradation rate of 9% MB within 90 min.Furthermore,99% MB was degraded by using MFe-250 and H2O2under visible light irradiation.Additionally,the changes in the UV-visible spectra of MB solution containing MFe-250 and H2O2under visible-light irradiation(Fig.S6)corroborate the high catalytic performance of MFe-250 in the presence of H2O2.

    Catalyst stability is pivotal to the choice of practical applications in photocatalysis.The stability of MFe-250 was assessed by recycling it during several experiments.After each reaction,the recovered catalyst was washed with H2O and EtOH to remove adsorbed impurities,after which it was dried at 60℃.The same amount of sample was then added to the next experiment,which was conducted under the same conditions as the previous one.As shown in Fig.3c,nearly no loss of activity was observed in MFe-250,even over three cycles.The stability of MFe-250 was confirmed by PXRD analysis,where the same results were obtained for both,the as-prepared and the recovered catalysts(Fig.S7).Hence,MFe-250 catalyst is both recyclable and stable under photocatalytic reaction conditions.

    The origin of the excellent photocatalytic activity of MFe-250 was obtained from the photocurrent and EIS results.The photocurrent intensity of MFe-250 was almost twice that of MFe(Fig.4a).Meanwhile,EIS,which reflects the charge separation capability of a photocatalyst,revealed a higher light-induced charge separation rate in MFe-250 than in MFe.The Nyquist arc radius of MFe-250 was smaller than that of MFe(Fig.4b),indicating a corresponding smaller charge/electron transfer resistance in MFe-250 compared to that in MFe[2].Therefore,the high charge separation efficiency of MFe-250 can be attributed to its low electron transfer resistance.Thus,the thermal treatment improved the charge separation efficiency of MFe and ultimately enhanced its photocatalytic performance.

    Fig.4 (a)Photocurrent responses and(b)EIS spectra of MFe and MFe-250

    2.3 Mechanism of MB photodegradation using MFe-250/visible-light/H2O2system

    Hydroxyl radicals(·OH)play an important role in the photocatalytic degradation of MB[42].Isopropanol(IPA)was used as a scavenger to detect·OH generated at the surface of MFe-250[43].To gain a deeper understanding of the reaction mechanism,other scavengers such as EDTA-2Na[44-45]and VC[46]were used to detect the formation of photoexcited holes(h+)and superoxide radicals(·O2-)during the MB degradation experiments.Fig.3d reveals a decrease in the MB photodegradation rate of MFe-250 from 99% to 96% following the addition of EDTA-2Na.When VC was added,the photodegradation rate was 98%,whereas the addition of IPA significantly decreased the photodegradation rate to 31%,indicating that IPA greatly influences the degradation reaction.Hence,·OH plays a crucial role in the photocatalytic degradation of MB,whereas h+and·O2-are less important.Based on these results,a plausible mechanism for the photocatalytic degradation of MB was proposed(Fig.5).

    Fig.5 Possible mechanism for the photocatalytic degradation of MB and the charge transfer process

    3 Conclusions

    MFe-based quasi-MOF materials were synthesized by the solvothermal method to investigate the effect of the calcination temperature on their photocatalytic activity towards MB degradation.Among the tested samples,MFe-250 showed the best efficiency in the photocatalytic degradation of MB.Furthermore,it exhibited high chemical stability.To study the reaction mechanisms involved in the process,a series of control experiments were conducted.MFe was synthesized and calcined at different temperatures in air.The results showed that most of MFe porous structure remained intact in MFe-250,which exhibited the best photocatalytic degradation efficiency on MB among all tested materials.According to the photocurrent and EIS results,the electronic transmission capability of MFe-250 exceeded that of MFe.The improvement in the photocatalytic performance stems from the enhanced exposure of active sites and preservation of the framework.The porous structure favours the absorption of MB molecules,whereas the exposed active sites promote photocatalytic activity.In addition,scavenging experiments revealed that hydroxyl radicals are the main active species,whereas photoexcited holes and superoxide radicals are far less important.This study will likely inspire future designs and preparation methods of environmentally friendly photocatalysts.

    Supporting information is available at http://www.wjhxxb.cn

    Acknowledgments:This work was supported by the Natural Science Foundation of Anhui Province (Grant No.1908085QB75),National Natural Science Foundation of China(Grants No.62104003,21976002 and 22004003).

    欧美在线一区亚洲| 欧美激情极品国产一区二区三区| 欧美黄色片欧美黄色片| 日韩人妻精品一区2区三区| 女警被强在线播放| 制服人妻中文乱码| 国产精品99久久99久久久不卡| 亚洲伊人色综图| 十八禁网站免费在线| 国产精品 国内视频| 国产成人免费观看mmmm| 国产免费视频播放在线视频| 成年av动漫网址| 亚洲久久久国产精品| 麻豆av在线久日| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲精品av麻豆狂野| 亚洲精品一卡2卡三卡4卡5卡 | 成在线人永久免费视频| 国产欧美日韩综合在线一区二区| 啦啦啦视频在线资源免费观看| 黄网站色视频无遮挡免费观看| 精品一品国产午夜福利视频| 老鸭窝网址在线观看| 各种免费的搞黄视频| 黄色毛片三级朝国网站| 天天躁夜夜躁狠狠躁躁| 黄色视频,在线免费观看| 别揉我奶头~嗯~啊~动态视频 | 精品人妻熟女毛片av久久网站| 久久免费观看电影| 久久午夜综合久久蜜桃| 亚洲精品成人av观看孕妇| 日韩 欧美 亚洲 中文字幕| 久久中文字幕一级| 777米奇影视久久| 亚洲成人手机| 天天躁狠狠躁夜夜躁狠狠躁| 男女之事视频高清在线观看| 2018国产大陆天天弄谢| 亚洲欧美日韩另类电影网站| 欧美黑人欧美精品刺激| 1024视频免费在线观看| 精品熟女少妇八av免费久了| e午夜精品久久久久久久| 日韩中文字幕视频在线看片| 亚洲情色 制服丝袜| 99九九在线精品视频| 无限看片的www在线观看| 老司机深夜福利视频在线观看 | 国产成人精品久久二区二区91| 69av精品久久久久久 | 亚洲少妇的诱惑av| 午夜免费成人在线视频| 少妇被粗大的猛进出69影院| 国产亚洲欧美在线一区二区| 亚洲人成电影免费在线| 天天躁日日躁夜夜躁夜夜| 亚洲av成人不卡在线观看播放网 | 9热在线视频观看99| 美女午夜性视频免费| 91av网站免费观看| www.精华液| 不卡av一区二区三区| 国产日韩欧美在线精品| 亚洲精华国产精华精| 欧美国产精品一级二级三级| 在线 av 中文字幕| a级片在线免费高清观看视频| 日韩大码丰满熟妇| 国产av国产精品国产| 动漫黄色视频在线观看| 午夜福利免费观看在线| 亚洲精品乱久久久久久| 欧美国产精品va在线观看不卡| 无遮挡黄片免费观看| 国产伦人伦偷精品视频| 成年女人毛片免费观看观看9 | 人人妻人人澡人人看| 啦啦啦视频在线资源免费观看| 日韩制服丝袜自拍偷拍| 久久精品国产亚洲av高清一级| 欧美黄色淫秽网站| 色婷婷久久久亚洲欧美| 午夜福利乱码中文字幕| 国产成人影院久久av| 黑人欧美特级aaaaaa片| 黄色 视频免费看| 一二三四社区在线视频社区8| 中文欧美无线码| 我的亚洲天堂| 动漫黄色视频在线观看| 黑丝袜美女国产一区| 操美女的视频在线观看| 黄色视频在线播放观看不卡| 人妻一区二区av| 欧美日韩视频精品一区| 9191精品国产免费久久| 丝瓜视频免费看黄片| 欧美变态另类bdsm刘玥| 男女免费视频国产| 欧美日韩福利视频一区二区| 欧美一级毛片孕妇| 国产亚洲午夜精品一区二区久久| 亚洲精品国产一区二区精华液| 伦理电影免费视频| xxxhd国产人妻xxx| 精品卡一卡二卡四卡免费| 91精品伊人久久大香线蕉| 欧美精品啪啪一区二区三区 | 女人久久www免费人成看片| videosex国产| 亚洲中文av在线| 成年美女黄网站色视频大全免费| 一级片免费观看大全| 一区在线观看完整版| 色婷婷av一区二区三区视频| 久久影院123| 一本大道久久a久久精品| 久久久久国产精品人妻一区二区| 女性被躁到高潮视频| 天天躁夜夜躁狠狠躁躁| 久久狼人影院| 女性生殖器流出的白浆| 男女边摸边吃奶| 两个人看的免费小视频| av在线app专区| www.av在线官网国产| 三级毛片av免费| 欧美人与性动交α欧美软件| 一区二区日韩欧美中文字幕| 精品熟女少妇八av免费久了| 曰老女人黄片| 亚洲精品粉嫩美女一区| 欧美日韩亚洲国产一区二区在线观看 | 搡老岳熟女国产| 男女边摸边吃奶| 日本av手机在线免费观看| 好男人电影高清在线观看| 丝袜美腿诱惑在线| 黑人欧美特级aaaaaa片| 国产在线观看jvid| 制服诱惑二区| 在线 av 中文字幕| 岛国毛片在线播放| 欧美日韩亚洲国产一区二区在线观看 | 欧美亚洲 丝袜 人妻 在线| 精品少妇久久久久久888优播| 韩国精品一区二区三区| av超薄肉色丝袜交足视频| 精品一区在线观看国产| 午夜精品国产一区二区电影| 99国产精品一区二区蜜桃av | 熟女少妇亚洲综合色aaa.| 麻豆乱淫一区二区| 岛国毛片在线播放| 久久久精品94久久精品| 久久人人97超碰香蕉20202| 国产免费福利视频在线观看| 人人妻人人添人人爽欧美一区卜| 嫩草影视91久久| cao死你这个sao货| 免费一级毛片在线播放高清视频 | 母亲3免费完整高清在线观看| 男女国产视频网站| 91成人精品电影| 一级片免费观看大全| 精品国内亚洲2022精品成人 | 丝袜美足系列| 亚洲精品国产区一区二| 国产又色又爽无遮挡免| 中文字幕人妻丝袜制服| 高清欧美精品videossex| 午夜两性在线视频| 久久人人97超碰香蕉20202| 国产淫语在线视频| 亚洲九九香蕉| 国产97色在线日韩免费| 成年人午夜在线观看视频| 91精品三级在线观看| 两人在一起打扑克的视频| 精品福利观看| 亚洲人成77777在线视频| 亚洲第一欧美日韩一区二区三区 | 每晚都被弄得嗷嗷叫到高潮| 午夜福利在线观看吧| 看免费av毛片| 少妇精品久久久久久久| 麻豆国产av国片精品| 欧美 亚洲 国产 日韩一| 国产91精品成人一区二区三区 | 王馨瑶露胸无遮挡在线观看| 亚洲第一青青草原| 日本vs欧美在线观看视频| a 毛片基地| 捣出白浆h1v1| 国产男人的电影天堂91| 91字幕亚洲| 精品福利永久在线观看| 亚洲av成人一区二区三| 欧美黄色片欧美黄色片| 欧美中文综合在线视频| 亚洲成人免费av在线播放| 久久久久国内视频| 精品久久久精品久久久| 亚洲,欧美精品.| 精品久久久久久电影网| 老汉色∧v一级毛片| 少妇裸体淫交视频免费看高清 | 日韩精品免费视频一区二区三区| 精品一区二区三区四区五区乱码| 久热爱精品视频在线9| 高清视频免费观看一区二区| 久久久国产一区二区| 成人av一区二区三区在线看 | 飞空精品影院首页| 国产黄色免费在线视频| 中文字幕精品免费在线观看视频| 精品少妇黑人巨大在线播放| 国产片内射在线| 丝瓜视频免费看黄片| 一级,二级,三级黄色视频| 99久久99久久久精品蜜桃| avwww免费| 在线观看免费午夜福利视频| 欧美成人午夜精品| 日本a在线网址| 精品少妇久久久久久888优播| 精品一区二区三卡| 日韩制服骚丝袜av| 激情视频va一区二区三区| 美女脱内裤让男人舔精品视频| 国产高清国产精品国产三级| 欧美av亚洲av综合av国产av| 日韩制服骚丝袜av| 午夜激情av网站| 日韩欧美一区二区三区在线观看 | 精品第一国产精品| a 毛片基地| 日韩电影二区| 亚洲七黄色美女视频| 成人国产av品久久久| 18禁黄网站禁片午夜丰满| 久久国产精品人妻蜜桃| 国产成人a∨麻豆精品| 亚洲伊人色综图| 国产三级黄色录像| 黄色片一级片一级黄色片| www.熟女人妻精品国产| 色婷婷久久久亚洲欧美| 女人被躁到高潮嗷嗷叫费观| www.av在线官网国产| 午夜老司机福利片| 久久青草综合色| 999精品在线视频| 老汉色av国产亚洲站长工具| 国产熟女午夜一区二区三区| 久久久久久久精品精品| 国产精品久久久久成人av| 精品一品国产午夜福利视频| 大型av网站在线播放| www.熟女人妻精品国产| 丝袜在线中文字幕| 视频区欧美日本亚洲| 午夜久久久在线观看| 午夜视频精品福利| 免费观看人在逋| 正在播放国产对白刺激| 亚洲中文字幕日韩| 俄罗斯特黄特色一大片| 精品一区在线观看国产| 黑人巨大精品欧美一区二区蜜桃| 99国产精品一区二区蜜桃av | 亚洲国产欧美一区二区综合| 亚洲av电影在线观看一区二区三区| 国产精品影院久久| 精品福利永久在线观看| 伦理电影免费视频| 999久久久国产精品视频| 国产精品久久久久久人妻精品电影 | av福利片在线| 高清欧美精品videossex| 亚洲成人国产一区在线观看| 国产成人一区二区三区免费视频网站| 欧美日韩av久久| 亚洲国产毛片av蜜桃av| 久久精品成人免费网站| 日日摸夜夜添夜夜添小说| 国产亚洲精品第一综合不卡| 叶爱在线成人免费视频播放| 黄色片一级片一级黄色片| 免费日韩欧美在线观看| 深夜精品福利| 桃花免费在线播放| 欧美精品亚洲一区二区| 欧美黄色片欧美黄色片| 一区在线观看完整版| 美国免费a级毛片| 国产深夜福利视频在线观看| 亚洲av日韩精品久久久久久密| e午夜精品久久久久久久| 老司机在亚洲福利影院| 宅男免费午夜| 免费观看a级毛片全部| 啦啦啦中文免费视频观看日本| 黑人巨大精品欧美一区二区蜜桃| 叶爱在线成人免费视频播放| 国产男人的电影天堂91| 老司机影院成人| avwww免费| 亚洲精品中文字幕一二三四区 | 搡老乐熟女国产| 丝袜在线中文字幕| 俄罗斯特黄特色一大片| 日本猛色少妇xxxxx猛交久久| 午夜两性在线视频| 国产免费av片在线观看野外av| 最新的欧美精品一区二区| 午夜免费鲁丝| 国产亚洲av高清不卡| 精品视频人人做人人爽| 性色av乱码一区二区三区2| 最近最新免费中文字幕在线| 亚洲情色 制服丝袜| www.自偷自拍.com| 午夜福利在线观看吧| 欧美另类一区| 一区二区三区乱码不卡18| 在线观看免费视频网站a站| 国产又爽黄色视频| 亚洲av国产av综合av卡| 精品国产国语对白av| 久久久欧美国产精品| 亚洲人成电影免费在线| 一二三四在线观看免费中文在| 亚洲国产日韩一区二区| 少妇的丰满在线观看| 建设人人有责人人尽责人人享有的| 精品国产乱码久久久久久男人| 精品一区二区三区av网在线观看 | 不卡一级毛片| 一级片免费观看大全| av电影中文网址| 深夜精品福利| 中文字幕色久视频| 丰满饥渴人妻一区二区三| 久久人妻熟女aⅴ| 脱女人内裤的视频| 国产xxxxx性猛交| 久久这里只有精品19| 欧美日韩av久久| 国产精品一区二区在线观看99| 亚洲国产中文字幕在线视频| 黑人巨大精品欧美一区二区蜜桃| 大香蕉久久成人网| 一本综合久久免费| 老汉色av国产亚洲站长工具| 欧美少妇被猛烈插入视频| 男女午夜视频在线观看| 这个男人来自地球电影免费观看| 高潮久久久久久久久久久不卡| 国产又爽黄色视频| 免费在线观看黄色视频的| 一级黄色大片毛片| 国产一区二区三区在线臀色熟女 | 侵犯人妻中文字幕一二三四区| 国产一区二区三区在线臀色熟女 | 国产野战对白在线观看| 欧美精品人与动牲交sv欧美| 精品高清国产在线一区| 久久精品国产亚洲av香蕉五月 | 精品人妻在线不人妻| 久久精品亚洲av国产电影网| 成人18禁高潮啪啪吃奶动态图| 男女午夜视频在线观看| 一区二区三区精品91| 久久影院123| 午夜影院在线不卡| 中文欧美无线码| 国产精品久久久久成人av| 99国产精品免费福利视频| 成人国语在线视频| 亚洲欧美激情在线| 午夜福利在线免费观看网站| 777米奇影视久久| 亚洲中文字幕日韩| 精品国产乱码久久久久久男人| av天堂久久9| 免费在线观看影片大全网站| 一个人免费在线观看的高清视频 | 侵犯人妻中文字幕一二三四区| 在线精品无人区一区二区三| 国产成人欧美在线观看 | 欧美精品av麻豆av| 国产日韩欧美在线精品| 精品国产乱码久久久久久小说| 超碰97精品在线观看| 亚洲美女黄色视频免费看| 亚洲精品国产区一区二| 国产黄色免费在线视频| 国产老妇伦熟女老妇高清| 日韩,欧美,国产一区二区三区| 亚洲国产欧美在线一区| 热re99久久精品国产66热6| 精品久久久久久久毛片微露脸 | 精品福利观看| 久久久水蜜桃国产精品网| 亚洲色图 男人天堂 中文字幕| av不卡在线播放| 捣出白浆h1v1| 美女扒开内裤让男人捅视频| 丝瓜视频免费看黄片| 大香蕉久久成人网| 欧美日韩av久久| 亚洲一区二区三区欧美精品| 老司机靠b影院| 欧美成狂野欧美在线观看| 悠悠久久av| 日韩有码中文字幕| 丝袜喷水一区| 丰满人妻熟妇乱又伦精品不卡| 亚洲第一青青草原| 真人做人爱边吃奶动态| 天堂中文最新版在线下载| 老司机在亚洲福利影院| 久久精品亚洲av国产电影网| 嫩草影视91久久| 18禁裸乳无遮挡动漫免费视频| 久久狼人影院| 两个人看的免费小视频| 久久久国产精品麻豆| 一本大道久久a久久精品| 精品福利永久在线观看| 另类精品久久| 99久久国产精品久久久| 啦啦啦免费观看视频1| 一级毛片电影观看| 老汉色av国产亚洲站长工具| 搡老熟女国产l中国老女人| 久久99一区二区三区| 亚洲五月色婷婷综合| 后天国语完整版免费观看| 好男人电影高清在线观看| 最新在线观看一区二区三区| 久热这里只有精品99| 青青草视频在线视频观看| 性高湖久久久久久久久免费观看| 91九色精品人成在线观看| 亚洲欧美精品自产自拍| 国产在线观看jvid| 中文精品一卡2卡3卡4更新| 日韩欧美一区二区三区在线观看 | 午夜精品久久久久久毛片777| av天堂在线播放| 精品久久蜜臀av无| 久久毛片免费看一区二区三区| 国产一区二区 视频在线| 女性生殖器流出的白浆| 欧美精品啪啪一区二区三区 | 男人爽女人下面视频在线观看| 最新的欧美精品一区二区| 久久久久久人人人人人| av又黄又爽大尺度在线免费看| 久久毛片免费看一区二区三区| 久久99热这里只频精品6学生| 黄色视频,在线免费观看| 9热在线视频观看99| 两性夫妻黄色片| 亚洲伊人色综图| 熟女少妇亚洲综合色aaa.| 亚洲男人天堂网一区| 免费一级毛片在线播放高清视频 | 美女扒开内裤让男人捅视频| 精品少妇黑人巨大在线播放| 午夜福利影视在线免费观看| 免费看十八禁软件| 亚洲 国产 在线| 精品欧美一区二区三区在线| 波多野结衣av一区二区av| 成人国产av品久久久| 国产精品久久久久久精品古装| 亚洲激情五月婷婷啪啪| 曰老女人黄片| 又大又爽又粗| 丰满饥渴人妻一区二区三| 黄片大片在线免费观看| 亚洲自偷自拍图片 自拍| 中文字幕人妻丝袜一区二区| 老司机午夜福利在线观看视频 | 下体分泌物呈黄色| cao死你这个sao货| 午夜福利影视在线免费观看| 天天添夜夜摸| 99九九在线精品视频| 国产精品一区二区在线观看99| 国产成人a∨麻豆精品| 性高湖久久久久久久久免费观看| 多毛熟女@视频| 亚洲,欧美精品.| 久久精品国产综合久久久| 大型av网站在线播放| 亚洲精品国产区一区二| 久久精品久久久久久噜噜老黄| 成年av动漫网址| 欧美日韩一级在线毛片| 天堂俺去俺来也www色官网| av超薄肉色丝袜交足视频| 在线 av 中文字幕| 亚洲av日韩在线播放| 丝袜美足系列| 亚洲av日韩精品久久久久久密| av国产精品久久久久影院| 99re6热这里在线精品视频| 久久影院123| 免费在线观看完整版高清| av天堂久久9| 午夜福利,免费看| 人人澡人人妻人| 国产在线视频一区二区| 啦啦啦中文免费视频观看日本| 亚洲精品粉嫩美女一区| 窝窝影院91人妻| 丝袜美腿诱惑在线| 国产视频一区二区在线看| 亚洲国产av影院在线观看| 考比视频在线观看| 大片免费播放器 马上看| 中亚洲国语对白在线视频| 18禁观看日本| 欧美日韩亚洲国产一区二区在线观看 | 少妇猛男粗大的猛烈进出视频| 高清黄色对白视频在线免费看| 飞空精品影院首页| 欧美另类亚洲清纯唯美| 国产亚洲欧美在线一区二区| 亚洲精品一卡2卡三卡4卡5卡 | 不卡一级毛片| 国产男人的电影天堂91| 啦啦啦 在线观看视频| 不卡av一区二区三区| 国产欧美日韩一区二区精品| 日韩 欧美 亚洲 中文字幕| 国产av国产精品国产| 交换朋友夫妻互换小说| 伊人久久大香线蕉亚洲五| 欧美少妇被猛烈插入视频| 一个人免费在线观看的高清视频 | 国产成人精品久久二区二区91| 国产高清视频在线播放一区 | 99re6热这里在线精品视频| 两性午夜刺激爽爽歪歪视频在线观看 | 老司机在亚洲福利影院| 三级毛片av免费| 国产欧美日韩一区二区三 | www.av在线官网国产| 9热在线视频观看99| 国产成人av教育| 两个人免费观看高清视频| 99久久99久久久精品蜜桃| 免费高清在线观看视频在线观看| 一个人免费看片子| 看免费av毛片| 一级片免费观看大全| 人人妻,人人澡人人爽秒播| 亚洲av电影在线观看一区二区三区| 欧美激情高清一区二区三区| 亚洲精品国产区一区二| 亚洲精品国产一区二区精华液| 视频区欧美日本亚洲| 一边摸一边做爽爽视频免费| 国产成人欧美在线观看 | 亚洲成人国产一区在线观看| 中文字幕精品免费在线观看视频| 欧美人与性动交α欧美精品济南到| 日韩视频在线欧美| 脱女人内裤的视频| 色精品久久人妻99蜜桃| 国产在线一区二区三区精| 9色porny在线观看| 男女之事视频高清在线观看| 久久久久久久国产电影| 黑人猛操日本美女一级片| 久久中文字幕一级| 飞空精品影院首页| 黑人猛操日本美女一级片| 国产精品av久久久久免费| 老汉色∧v一级毛片| 一级片'在线观看视频| 欧美日韩中文字幕国产精品一区二区三区 | 亚洲自偷自拍图片 自拍| 午夜精品久久久久久毛片777| 80岁老熟妇乱子伦牲交| 亚洲精品国产av成人精品| 最黄视频免费看| 久久久欧美国产精品| 免费在线观看视频国产中文字幕亚洲 | 久热爱精品视频在线9| 在线av久久热| 十八禁网站网址无遮挡| 狂野欧美激情性bbbbbb| 在线观看免费午夜福利视频| 一个人免费看片子| av一本久久久久| 在线精品无人区一区二区三| 少妇猛男粗大的猛烈进出视频| 精品国产乱码久久久久久男人| 日韩 亚洲 欧美在线| 成人黄色视频免费在线看| 新久久久久国产一级毛片| 欧美国产精品一级二级三级| 午夜福利,免费看| 久久久久久久精品精品| 人人妻人人澡人人爽人人夜夜| 美国免费a级毛片| 一级片免费观看大全|