• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Photoemission oscillation in epitaxially grown van der Waals β-In2Se3/WS2 heterobilayer bubbles*

    2021-11-23 07:31:54JiyuDong董繼宇KangLin林康CongpuMu牟從普ZhiyanJia賈智研JinXu徐瑾AnminNie聶安民BochongWang王博翀JianyongXiang向建勇FushengWen溫福昇KunZhai翟昆TianyuXue薛天宇andZhongyuanLiu柳忠元
    Chinese Physics B 2021年11期
    關(guān)鍵詞:安民天宇

    Jiyu Dong(董繼宇) Kang Lin(林康) Congpu Mu(牟從普) Zhiyan Jia(賈智研) Jin Xu(徐瑾)Anmin Nie(聶安民) Bochong Wang(王博翀) Jianyong Xiang(向建勇) Fusheng Wen(溫福昇)Kun Zhai(翟昆) Tianyu Xue(薛天宇) and Zhongyuan Liu(柳忠元)

    1Center for High Pressure Science(CHiPS),State Key Laboratory of Metastable Materials Science&Technology,Yanshan University,Qinhuangdao 066004,China

    2Key Laboratory of Microstructure Materials Physics of Hebei Province,School of Science,Yanshan University,Qinhuangdao 066004,China

    Keywords: bubble,monolayer WS2,heterostructure,In2Se3

    1. Introduction

    The optical, mechanical, and electrical properties of two-dimensional (2D) layered materials can be readily tuned via chemical doping, defect, or thickness reducing.[1-5]2D transition-metal dichalcogenides(TMDCs)as one of the typical semiconductors possess novel physical properties for the potential application in a next generation photodetector,fieldeffect transistors, valleytronic devices.[6-8]The 2D van der Waals heterostructures consisted with stacking different 2D layered materials have novel properties beyond their individual counterparts, which provide opportunities in devices engineering.[9,10]For instance,the epitaxial grown multilayerβ-In2Se3on monolayer WS2have been shown to have the interlayers interaction effect constraining the phase transformation of adjacent few layersβ-In2Se3.[11]Ultrahigh photo responsivity and detectivity of photodetectors are gained because of an acceleration of electron-hole separation and charge transfer owing to constructing lateral MoS2and WS2heterostructures.[12]In addition,various lateral and vertical 2D materials heterostructures have been constructed and investigated in physics and materials field.[13-15]It has been demonstrated that heterostructures based on TMDCs can provide a platform for tailoring the devices properties.

    Recently, bubbles of monolayer or few layers 2D materials are created via various method and investigated in physics, chemistry, and devices.[1,5,16,17]A biaxial strain in bubbles can cause the direct-to-indirect band gap transition of few-layer TMDCs.[18]Strain localization excitons states formed a doughnut-like pattern around the nanoscale bubbles of monolayer WSe2and MoS2at room temperature.[19,20]Moreover,optical properties and lattice vibrations of graphene and TMDCs are sensitive with strain in material. Photoluminescence (PL) and Raman spectra oscillations can be found across graphene, monolayer WS2, and few layer WSe2bubble profile due to light interference.[1,11,16]In addition, PL of monolayer WS2is sensitive with strain, electric filed, and temperature. Monolayer WS2has a potential application for photodetectors due to strong PL with narrower emission bandwidth. Although properties of single crystal monolayer WS2bubbles have been investigated, there have not been reported about heterostructure bubbles of a millimeter-scale continuous monolayer polycrystalline WS2and other 2D layer materials so far.

    In this paper, verticalβ-In2Se3/monolayer WS2heterostructures were grown via a two-step chemical vapor deposition(CVD)and heterostructure bubbles on SiO2/Si substrate were created during the growth ofβ-In2Se3due to a hightemperature treatment.Characteristics ofβ-In2Se3/monolayer WS2heterostructure bubbles are investigated via optical and fluorescence(FL)images, Raman and PL spectra. The oscillatory behaviors are presented in mapping images of PL and Raman spectra of monolayerβ-In2Se3/monolayer WS2heterostructure bubbles due to the constructive and destructive interference. The mechanism for oscillatory behaviors of PL intensity, position, and width are elucidated via changing an exterior pressure of bubble. In addition,strain effect in PL position and width is also observed during the gradual decrease of exterior pressure of bubbles.

    2. Experimental section

    2.1. Thin film of millimeter-scale continuous monolayer WS222

    Thin films of millimeter-scale continuous monolayer WS2were grown on p-type silicon wafer with 300 nm in thickness of SiO2CVD method in a two-zone home-made tube furnace. As schematically shown in Fig. S1, precursors of sulfur powder (Alfa Aesar, purity 99.999%) of 1.2 g and WO3powder of 2 g (Alfa Aesar, purity 99.99%) were placed in two separated Al2O3crucibles located downstream at the low and high temperature zones,respectively. During the growth,the low and high temperature zones were set at 180°C and 950°C,respectively,and the sulfur and WO3vapor were carried to SiO2/Si substrate via a highly pure Ar gas at a flow rate of 50 sccm. After a growth time of 50 minutes,thin films of millimeter-scale continuous monolayer WS2were successfully grown on SiO2/Si wafers.

    2.2. In2Se3/monolayer WS2 heterostructure bubbles

    Theβ-In2Se3/monolayer WS2heterostructure bubbles were created by using CVD method in a home-made threezone tube furnace. Precursors of Se pellets of 0.08 g(Alfa Aesar, purity 99.999%) and In2O3powder of 0.1 g (Alfa Aesar,purity 99.99%)were placed in two separated Al2O3crucibles located downstream along the tube. The as-grown millimeterscale continuous monolayer WS2films were served as 2D substrates and were downstream placed 5 cm away from the crucible of In2O3. During the growth,the temperatures were kept at 270, 640, and 620°C for Se, In2O3, and substrate, respectively, and Se and In2O3vapors were carried to the substrate via a 34 sccm mixed gas flow of H2and Ar. Similar to the previous reports that heat treatment of large area WS2or WSe2monolayers can help to create bubbles of monolayer,[11,16]In2Se3/monolayer WS2heterostructure bubbles with spherical cap were created during the growth of In2Se3on WS2monolayer at 620°C.

    2.3. Characterizations

    Optical and FL images were taken via a Leica microscope(DM4000M) equipped with FL accessory. PL and Raman spectra were collected in a confocal micro Raman microscope system(HR Evolution, JY Horriba, Japan)with an excitation of 532 nm and spot size of~1μm in diameter. PL characterizations of bubbles under different exterior pressures are collected via a confocal micro Raman microscope system with a home-made vacuum chamber with a high-throughput optical window under an excitation of 532 nm focused on the center of bubble.Atomic force microscopy(AFM)measurement was performed on MultiMode 8(Veeco Instruments Inc.,USA)in a tapping mode. Structure was elucidated via an aberrationcorrected scanning transmission electron microscopy (ACSTEM,FEI Themis Z STEM)operating at 300 kV.

    3. Results and discussion

    Figure 1(a)and figure S2 present the optical images and corresponding FL images of a typical as-grown thin film of monolayer WS2on SiO2/Si substrate. It is clear that substrate is dominantly covered by monolayer WS2that is continuous over millimeter-scale. The polycrystalline thin film of monolayer WS2has a typical grain size of~100 μm, and the FL is greatly enhanced in intensity at the grain boundaries owing to the abundant structural defects.[21]The determined thickness of WS2from AFM height profile shown in Fig. S3 is~0.79 nm, which is consistent with previous results.[22,23]The high quality thin film of monolayer WS2enables the growth of layeredβ-In2Se3crystals via CVD method.The optical images shown in Figs.1(b)and 1(c)indicate that monolayer WS2is coated by layer structuredβ-In2Se3crystals with different thicknesses andβ-In2Se3/monolayer WS2heterostructures are obtained. Compared to the particles in the voids of monolayer WS2thin film,the well-defined multilayerβ-In2Se3crystals on WS2is indicating a preferential growth of the layeredβ-In2Se3on 2D substrates. The high magnification optical image (Fig. 1(c)) also shows the absence of straight edge in morphology for the first and second layers ofβ-In2Se3(i.e., monolayer and bilayer In2Se3), which is consistent with the reported results.[11]Figure 1(d)shows the FL image of the monolayer WS2thin film after the growth of In2Se3. In comparison with the monolayer WS2, the FL is significantly suppressed in intensity at the junction area of In2Se3/WS2. In addition, high density of brighter spots are evidenced in FL image, and fringes can be observed in spots with large size and are attributed to bubbles formed in monolayer WS2during growth of In2Se3.[11]It is also evident that bubbles of monolayer WS2have stronger FL signal than those ofβ-In2Se3/WS2heterostructure. From the variation in AFM height profile(inset of Fig.1(e))scanned along direction marked by the green line in Fig.1(e), the thickness of monolayerβ-In2Se3is calculated to be~1.01 nm,being in a good agreement with previous report forβ-In2Se3.

    Fig. 1. Optical, FL, AFM characterizations of monolayer WS2 before and after the growth of β-In2Se3: (a) optical image of millimeterscale continuous monolayer WS2 grown on SiO2/Si substrate, the inset is FL image of green wireframe marked in optical image, indicating that millimeter-scale WS2 is monolayer; (b) and (c) low- and high-magnification optical images of monolayer WS2 covered with β-In2Se3,indicating forming β-In2Se3/monolayer WS2 heterostructures; (d)FL image of β-In2Se3/monolayer WS2 heterostructure,indicating that FL is suppressed after covering β-In2Se3, which is corresponding to panel (c); (e) AFM image of β-In2Se3/monolayer WS2 heterostructure.The inset is the height profile from green wireframe, green dots come from AFM height profile, and green dashed line is linearly fitting the experiment dots according to the expression of h=?3.6+1.01n (h is height and n is a layer number of In2Se3), indicating a thickness of~1.01 nm for monolayer β-In2Se3.

    Raman and PL measurements were carried out to characterize the as-grown WS2monolayer and In2Se3/WS2heterostructures transferred on TEM grid. Compared to the Raman spectra of monolayer WS2, extra Raman bands are evidenced at the positions marked by the cyan for theβ-In2Se3/WS2heterostructures,as shown in Fig.2(a).The peaks located at~110 cm?1and 206 cm?1are assigned to the A11gand A21gmodes ofβ-In2Se3crystal, respectively. According to previous work, Raman bands in intensity are very weak in intensity for the In2Se3monolayer and bilayer.[11,24]The WS2monolayer possesses two characteristic peaks located at 353 cm?1and 419 cm?1,that are the in-plane mode of A1and out-of-plane mode of E', respectively. No significant change occurs for the A1and E'in frequency as well as intensity upon covering a layer of In2Se3with a thickness from monolayer to few-layer.[11]When thickness of the atopβ-In2Se3increases up to 14 layers,the degenerated A1mode of monolayer WS2is observed to be split into two peaks due to the tensile strain preserved in thickerβ-In2Se3crystals grown at high temperatures.[11]It also indicates a strong coupling between monolayer WS2and multilayer In2Se3. Upon covering one layer ofβ-In2Se3atop, PL is significantly decreased (by a factor of~20)in intensity for monolayer WS2,as shown in Fig.1(d)and Fig.2(b),and is even completely quenched with a 14-layerβ-In2Se3crystal atop.As shown in Fig.2(c),conduction band minimum and the valence band maximum of monolayer WS2are higher than those ofβ-In2Se3,indicating a type-II alignment interface betweenβ-In2Se3and WS2.[25-27]Due to a type-II alignment,the photo-excited electron in monolayer WS2is injected from conduction band of WS2to conduction band ofβ-In2Se3and photo-excited holes will transfer from the valence band ofβ-In2Se3to the valence band of WS2due to a type-II alignment ofβ-In2Se3/monolayer WS2. Since the In2Se3possesses an indirect bandgap, the suppression of PL in monolayer WS2after covering one layer ofβ-In2Se3atop is due to the decrease of photo-excited electron-hole recombination rate. In addition, the quench of PL in monolayer WS2is predominantly attributed to that the photo-excited electron in monolayer WS2will transfer from monolayer WS2to thickβ-In2Se3.

    Fig.2. (a)Raman and(b)PL characterizations of monolayer WS2 before and after covered with 1L and 14L β-In2Se3 on TEM grid. (c)Band alignment of monolayer β-In2Se3 and monolayer WS2. (d)SAED pattern and(e)atomic scale HAADF image of β-In2Se3/WS2 heterobilayer.

    In order to check the crystal structure and the crystallographic orientation of WS2and In2Se3, AC-STEM measurements were carried out on the heterobilayer of monolayer In2Se3/monolayer WS2. Figure 2(d) presents a selected area electron diffraction(SAED)pattern of a typical heterobilayerβ-In2Se3/WS2. Two sets of diffraction patterns with sharp spots are evidenced owing to the high quality of WS2and In2Se3crystal. The interplanar spacing of WS2and In2Se3are 0.27 nm and 0.35 nm corresponding to the(100)lattice plane of 1H-WS2andβ-In2Se3, respectively, which are consistent with previous results.[11,28,29]From the SAED pattern of the heterobilayer, it is clear that the monolayerβ-In2Se3crystal is nearly epitaxially grown on monolayer WS2. Diffraction pattern of single crystal WS2is presented in SAED shown in Fig. 2(d) due to large grain size (~100 μm) in polycrystalline thin film of monolayer WS2(shown in Fig. 1(a) and Fig. S2). Figure 2(e) shows an atomic scale high angle annular dark field(HAADF)image of theβ-In2Se3/WS2heterobilayer. Compared to the monolayer WS2(the dark domain as pointed out by the arrow),well-defined Moir′e patterns can be observed in the domain of the heterobilayer owing to an interference of two sets mismatched lattices.

    Fig. 3. (a) Optical and corresponding (b) FL images of monolayer WS2 covered by In2Se3, (c) optical and corresponding (d) FL images of the bubble of In2Se3/monolayer WS2 heterostructure,(e)AFM image of monolayer In2Se3/monolayer WS2 heterostructure bubble (corresponding to the green dashed rectangle in panel(c)),inset is the height profile corresponding to the white line in panel(e).

    Large number bubbles of In2Se3/monolayer WS2heterostructures were also created besides the monolayer WS2bubbles during the growth ofβ-In2Se3, as shown by the optical image and corresponding FL image of the as-grownβ-In2Se3/monolayer WS2heterostructure in Figs.3(a)and 3(b),respectively. These bubbles have a widely distributed diameters range from few tens of micrometers down to the order of sub-micrometer or even smaller. Interference fringes with different color are clearly observed in bubbles with large diameter owing to the light interference, resembling a diffraction grating under the illumination of white light.β-In2Se3/WS2heterostructure bubbles can be formed with the topβ-In2Se3crystal varying from monolayer to more than 10 layers in thickness. The FL image clearly demonstrates an enhancement of FL in intensity upon the formation of bubbles of monolayer WS2as well as heterobilayerβ-In2Se3/WS2,though the FL intensity of the latter is much weaker. No evident FL is observed for the In2Se3/WS2heterostructure when layer number ofβ-In2Se3is more than 1 layer in thickness.The enhancement in FL signal of bubbles is attributed to strain and/or the reduction in dielectric screening effect from the substrate.[30-32]Figures 3(c) and 3(d) show a high magnification optical image and corresponding FL image of a bubble spanning over monolayer WS2, monolayer In2Se3/WS2, and multilayers In2Se3/WS2. Interference fringe rings are clearly presented in the contrast of optical and FL image owing to the interference of incident and reflected light at surface of the bubble, also signifying the suppression of FL of WS2in the heterostructure.

    Fig. 4. PL and Ramana characterizations of In2Se3/WS2 heterobilayer bubbles. (a) PL, (b) Raman A1, and (c) Raman E' peaks mapping images of intensity(left),position(middle),and width(right)collected via using laser light of 532 nm. Scales bars are 10μm.

    In order to check the morphology of bubble, AFM measurements were carried out on a bubble spanning over a monolayer WS2and a heterobilayerβ-In2Se3/WS2, as marked by the green dashed rectangle in Fig. 3(c). Figure 3(e) displays the AFM image and figure S4 presents a line profile across the top of bubble. The bubble demonstrates a well-defined spherical cap (with a lateral size of~4.6 μm and height of~164 nm). Inset in Fig. 3(e) is a height profile along the marked white line, a thickness~1.08 nm for the monolayer In2Se3atop the monolayer WS2is clearly demonstrated.

    Raman and PL measurements were carried out to characterize bubbles of In2Se3/WS2heterobilayer because the FL signal is nearly completely suppressed for heterostructure bubbles with the layer number ofβ-In2Se3crystal more than one layer in thickness. Two heterobilayer bubbles with different lateral sizes were chosen for the characterization, as marked by the green dashed rectangle on the optical image and corresponding FL image in Fig.S5, where Newton’s rings and FL enhancement are clearly visible. Mapping images of peak intensity,position,and width for PL emission peak as well as for two characteristic Raman modes of the heterobilayer bubbles are presented in Fig.4.From the center to the edge of bubbles,rings with periodic variation in intensity are clearly presented in the mapping of PL peak and Raman peaks of the A1and E'modes(Figs.4(a)-4(c)),sharing a spatial period depending on the bubble size. These rings with oscillatory intensity can originate from the interference of the constructive and destructive light in which the optical path difference varies as the light moving from the center to the edge of a bubble. The mappings of PL emission as well as for two characteristic Raman modes also display an oscillatory behaviors of the shift in peak position and broadening in peak width, and are attributed to the localized oscillatory heating induced by the periodic enhancement and suppression of the incident laser in intensity over the surface of bubbles.[1,16]In comparison with the phenomenon in the pure monolayer WS2,[16]the oscillatory behavior in the PL emission and lattice vibrating is more profound in WS2for the In2Se3/WS2heterobilayer. This is attributed to lower thermal diffusivity in the In2Se3/WS2heterobilayer than of the monolayer WS2owing to the much lower thermal conductivity of monolayerβ-In2Se3(<4 W/m·K) than that of monolayer WS2(~60 W/m·K).[33,34]

    The interference phenomena at the surface of bubble depends on the optical path difference which is very sensitive to the bubble size(as shown in Fig.4)and the pressure balancing the interior and exterior gas of the bubble.[35]By placing the In2Se3/WS2heterobilayer bubble into a home-made vacuum chamber, it tends to be gradually inflated when the vacuum chamber is subjected to a slow purging with a pump. Meanwhile,a tensile strain owing to the inflation of the bubble can be precisely generated,[1]which was used to finely tune the properties of monolayer WS2via strain.[36]Figure 5 presents the PL collected at center position of theβ-In2Se3/WS2heterobilayer bubble subject to different exterior pressures. Typical PL spectra of the heterobilayer bubble at the exterior pressures of 100,70,50,30,and 10 kPa are shown in Fig.5(a),demonstrating a drastically modified emission characteristics of the monolayer WS2in the heterobilayer upon decreasing the exterior pressure. These spectra are deconvoluted by three Gaussian profiles(symbolized by X0,X1,and X2)and parameters of intensityIpeakand emission energyEpeakare summarized in Fig.5(b). An oscillatory behavior forIpeakandEpeakis clearly displayed, and superimposed on a nearly linear background forEpeakupon decreasing the exterior pressure of the heterobilayer bubble. The oscillation is resulted from the interference,while the persisting redshift ofEpeak(linear background)is attributed to the increase of tensile strain during the inflation of the heterobilayer bubble,which is consistent with previous results on the counter part of monolayer WS2.[32,36]

    Fig.5. PL characterizations for In2Se3/WS2 heterobilayer bubble subjected to different exterior pressures with an excitation of 532 nm focused on the center of bubble. (a)PL spectra of the heterobilayer bubble at some typical exterior pressures of 10, 30, 50, 70, and 100 kPa. The spectra were deconvoluted by three Gaussian profiles (symbolized by X0, X1, and X2). (b)Deconvoluted PL peak intensity Ipeak and position Epeak as a function of the exterior pressure.

    4. Conclusion

    In conclusion,β-In2Se3crystals are grown on a millimeter-scale continuous monolayer WS2attached on SiO2/Si substrate via two-step CVD technique,preparing vertical van de Waals heterostructure. After the growth ofβ-In2Se3at elevated temperatures, high density of In2Se3/WS2heterostructure bubbles with monolayer to multilayerβ-In2Se3crystals atop is observed. Newton rings are significantly observed in optical images of heterostructure bubbles due to constructive and destructive interference.In Raman and PL mapping images ofβ-In2Se3/WS2heterobilayer bubbles,significant oscillatory behaviors of emission intensity and peak positions are observed due to optical interference effect. However, oscillatory behaviors of peak position are also observed and come from a local heating effect induced by laser beam.The oscillatory mechanism of PL is further verified by changing the exterior pressure of bubbles. In addition, redshifted in peak positions are observed due to strain effect during decreasing the exterior pressure of bubbles.

    猜你喜歡
    安民天宇
    THE EXISTENCE AND NON-EXISTENCE OFSIGN-CHANGING SOLUTIONS TO BI-HARMONIC EQUATIONS WITH A p-LAPLACIAN*
    快樂的小草
    小主人報(2022年18期)2022-11-17 02:19:52
    Instructional Design Is A System
    青年生活(2020年19期)2020-10-14 21:54:16
    打羽毛球
    你最珍貴
    易安民聲
    Galloping Horse Treading on a Flying Swallow and Its Influence in Modern Advertising
    易安民聲
    當(dāng)你翱翔天宇 我在舉頭仰望
    太空探索(2016年11期)2016-07-12 10:32:49
    龔遂治亂安民的“高招”
    在线观看av片永久免费下载| 久久久久久久精品精品| 高清黄色对白视频在线免费看 | 精品少妇内射三级| 精品卡一卡二卡四卡免费| 国产高清有码在线观看视频| √禁漫天堂资源中文www| 国产精品免费大片| 日韩制服骚丝袜av| av播播在线观看一区| 国产免费又黄又爽又色| 久久久久国产精品人妻一区二区| 久久人人爽人人爽人人片va| 最新的欧美精品一区二区| 久久久精品免费免费高清| 久久久久国产精品人妻一区二区| 久久久久久久精品精品| 亚洲国产精品专区欧美| 大话2 男鬼变身卡| 亚洲人成网站在线观看播放| 男人狂女人下面高潮的视频| av国产久精品久网站免费入址| 国产亚洲91精品色在线| 亚洲精品视频女| 亚洲中文av在线| 久久久久久久亚洲中文字幕| 亚洲人与动物交配视频| 嫩草影院新地址| 十分钟在线观看高清视频www | 日韩不卡一区二区三区视频在线| 插逼视频在线观看| 日韩视频在线欧美| 久久99热6这里只有精品| 高清不卡的av网站| 久久久久视频综合| 汤姆久久久久久久影院中文字幕| 精品少妇黑人巨大在线播放| 久久精品国产鲁丝片午夜精品| 亚洲av中文av极速乱| 欧美激情国产日韩精品一区| 亚洲美女搞黄在线观看| 麻豆成人午夜福利视频| 一级毛片久久久久久久久女| 又大又黄又爽视频免费| 亚洲国产精品一区二区三区在线| 午夜福利,免费看| 中文字幕人妻熟人妻熟丝袜美| 国产 精品1| 亚洲欧美日韩卡通动漫| 国产男人的电影天堂91| 国产精品偷伦视频观看了| 久久久国产精品麻豆| 99久久精品一区二区三区| 亚洲精品中文字幕在线视频 | 自线自在国产av| 简卡轻食公司| 国产av国产精品国产| 777米奇影视久久| 91aial.com中文字幕在线观看| 亚洲成人av在线免费| av视频免费观看在线观看| 免费黄网站久久成人精品| 亚洲精品日本国产第一区| 日韩成人av中文字幕在线观看| 亚洲精品乱久久久久久| 午夜日本视频在线| 久久久久久久久久人人人人人人| 免费人成在线观看视频色| 亚洲国产成人一精品久久久| av女优亚洲男人天堂| 久久 成人 亚洲| 欧美国产精品一级二级三级 | 晚上一个人看的免费电影| 久久国内精品自在自线图片| 日本爱情动作片www.在线观看| 777米奇影视久久| 26uuu在线亚洲综合色| a级毛片在线看网站| 亚洲成色77777| 18+在线观看网站| 久久久a久久爽久久v久久| 一级av片app| 青春草国产在线视频| 精品亚洲成a人片在线观看| 亚洲人与动物交配视频| 99九九在线精品视频 | 午夜视频国产福利| 伊人久久国产一区二区| 日本黄色片子视频| 亚洲国产精品成人久久小说| 18禁在线无遮挡免费观看视频| av天堂久久9| 国产精品国产三级国产av玫瑰| 黄片无遮挡物在线观看| 久久人妻熟女aⅴ| 国产在线免费精品| 久久毛片免费看一区二区三区| 日本91视频免费播放| 纯流量卡能插随身wifi吗| 少妇人妻精品综合一区二区| 丰满少妇做爰视频| 午夜免费鲁丝| 91久久精品国产一区二区三区| 最近最新中文字幕免费大全7| 婷婷色综合大香蕉| 免费高清在线观看视频在线观看| 制服丝袜香蕉在线| 亚洲中文av在线| 伦精品一区二区三区| 99久久精品一区二区三区| av在线老鸭窝| 自线自在国产av| 亚洲精品456在线播放app| 亚洲欧美一区二区三区国产| 国产精品久久久久成人av| 亚洲成人手机| 天美传媒精品一区二区| 亚洲精品国产色婷婷电影| xxx大片免费视频| 国产伦精品一区二区三区视频9| 亚洲第一区二区三区不卡| www.av在线官网国产| 不卡视频在线观看欧美| 在线看a的网站| 街头女战士在线观看网站| 国产女主播在线喷水免费视频网站| 久久女婷五月综合色啪小说| 亚洲在久久综合| 亚洲一级一片aⅴ在线观看| 精品久久久久久久久av| 久久久精品94久久精品| 偷拍熟女少妇极品色| 国产亚洲最大av| 国产欧美另类精品又又久久亚洲欧美| 精华霜和精华液先用哪个| av在线观看视频网站免费| 国产免费福利视频在线观看| 人人妻人人澡人人爽人人夜夜| 十八禁网站网址无遮挡 | 一边亲一边摸免费视频| 日韩大片免费观看网站| 菩萨蛮人人尽说江南好唐韦庄| 欧美bdsm另类| 3wmmmm亚洲av在线观看| 日本av免费视频播放| 国产黄频视频在线观看| 亚洲精品亚洲一区二区| 成人毛片60女人毛片免费| 欧美xxⅹ黑人| 亚洲欧美精品自产自拍| 熟女电影av网| 老司机影院毛片| av天堂中文字幕网| 伦理电影大哥的女人| 免费大片黄手机在线观看| 99国产精品免费福利视频| 久久久久久久久久成人| 亚洲性久久影院| 伦精品一区二区三区| 高清视频免费观看一区二区| 日韩成人伦理影院| 在线播放无遮挡| 中文资源天堂在线| 欧美老熟妇乱子伦牲交| 国产精品人妻久久久久久| 日韩在线高清观看一区二区三区| 久久精品熟女亚洲av麻豆精品| 日本欧美视频一区| 一级爰片在线观看| 亚洲av成人精品一区久久| 国产亚洲av片在线观看秒播厂| 伊人久久国产一区二区| 精品人妻一区二区三区麻豆| 国产日韩欧美亚洲二区| 国产亚洲av片在线观看秒播厂| tube8黄色片| 在线观看一区二区三区激情| 久久久国产欧美日韩av| 亚洲中文av在线| 插逼视频在线观看| 欧美日韩一区二区视频在线观看视频在线| 在线天堂最新版资源| 日本-黄色视频高清免费观看| 亚洲电影在线观看av| 永久网站在线| 国产女主播在线喷水免费视频网站| 亚洲av欧美aⅴ国产| 男女啪啪激烈高潮av片| 亚洲真实伦在线观看| 欧美日韩视频精品一区| 美女主播在线视频| 草草在线视频免费看| 精品一区二区免费观看| 日日撸夜夜添| 免费不卡的大黄色大毛片视频在线观看| av免费在线看不卡| 国产亚洲91精品色在线| 一级a做视频免费观看| 亚洲精品国产成人久久av| 在线观看国产h片| av在线播放精品| 亚洲国产最新在线播放| 我要看黄色一级片免费的| 下体分泌物呈黄色| 少妇熟女欧美另类| 国产无遮挡羞羞视频在线观看| 免费看日本二区| 自线自在国产av| 国产一区有黄有色的免费视频| 夜夜爽夜夜爽视频| kizo精华| av有码第一页| 你懂的网址亚洲精品在线观看| 边亲边吃奶的免费视频| 国产极品天堂在线| 久久99蜜桃精品久久| 日韩中字成人| 一级毛片 在线播放| 大片电影免费在线观看免费| 久久久精品94久久精品| 久久99热这里只频精品6学生| 在线观看免费高清a一片| 婷婷色综合www| 国产精品99久久99久久久不卡 | 国产欧美日韩综合在线一区二区 | 在线观看av片永久免费下载| 久久久久久久久久久久大奶| 亚洲美女黄色视频免费看| 亚洲欧洲国产日韩| 精品午夜福利在线看| 成人特级av手机在线观看| 欧美日韩视频高清一区二区三区二| 毛片一级片免费看久久久久| 我要看黄色一级片免费的| 97精品久久久久久久久久精品| 妹子高潮喷水视频| 伊人久久国产一区二区| 国产伦精品一区二区三区四那| 一个人看视频在线观看www免费| 日本黄色日本黄色录像| 免费观看在线日韩| 一区二区三区精品91| 99热网站在线观看| 丰满乱子伦码专区| 国产黄片视频在线免费观看| 成人无遮挡网站| 欧美xxxx性猛交bbbb| 亚洲精品乱码久久久v下载方式| 中文字幕久久专区| 99re6热这里在线精品视频| 日本免费在线观看一区| 国产精品偷伦视频观看了| 女人精品久久久久毛片| av一本久久久久| 嫩草影院入口| 国产成人aa在线观看| 九九爱精品视频在线观看| tube8黄色片| 高清视频免费观看一区二区| 夜夜看夜夜爽夜夜摸| 汤姆久久久久久久影院中文字幕| 日韩制服骚丝袜av| av一本久久久久| 精品国产国语对白av| 亚洲欧美日韩另类电影网站| 国产91av在线免费观看| 久热这里只有精品99| h日本视频在线播放| 男的添女的下面高潮视频| 精品久久久久久久久亚洲| 久久久精品94久久精品| 内地一区二区视频在线| 国产永久视频网站| 亚洲怡红院男人天堂| 国产在视频线精品| 在线观看免费视频网站a站| 国产精品福利在线免费观看| 午夜老司机福利剧场| 久久久欧美国产精品| 69精品国产乱码久久久| 国语对白做爰xxxⅹ性视频网站| 亚洲三级黄色毛片| 国产毛片在线视频| 亚洲真实伦在线观看| freevideosex欧美| 亚洲国产成人一精品久久久| 色5月婷婷丁香| 精品久久久久久久久亚洲| 午夜91福利影院| 久久精品熟女亚洲av麻豆精品| 久久国产乱子免费精品| 一本久久精品| 欧美高清成人免费视频www| 少妇丰满av| 中文乱码字字幕精品一区二区三区| 美女中出高潮动态图| 黄色一级大片看看| 久久99蜜桃精品久久| 黄色怎么调成土黄色| 美女视频免费永久观看网站| 九草在线视频观看| 99热国产这里只有精品6| av国产精品久久久久影院| 国产69精品久久久久777片| 日本91视频免费播放| 亚洲久久久国产精品| 最新的欧美精品一区二区| 一二三四中文在线观看免费高清| 久久久久久久久久久丰满| 人体艺术视频欧美日本| 大码成人一级视频| 成年人午夜在线观看视频| 日韩成人伦理影院| 国内揄拍国产精品人妻在线| av不卡在线播放| 久久久欧美国产精品| 久久久久精品久久久久真实原创| 国产午夜精品久久久久久一区二区三区| 精品久久久久久电影网| 欧美日韩国产mv在线观看视频| 美女中出高潮动态图| 日本色播在线视频| 六月丁香七月| 日本91视频免费播放| 成人毛片a级毛片在线播放| 9色porny在线观看| 久久精品国产a三级三级三级| 91久久精品电影网| 啦啦啦中文免费视频观看日本| 国产一区有黄有色的免费视频| 日日啪夜夜撸| 91在线精品国自产拍蜜月| 男人狂女人下面高潮的视频| 亚洲国产日韩一区二区| 啦啦啦在线观看免费高清www| 国产精品熟女久久久久浪| 两个人免费观看高清视频 | 视频区图区小说| 18禁在线无遮挡免费观看视频| 在线观看一区二区三区激情| 99热这里只有是精品50| 永久网站在线| 噜噜噜噜噜久久久久久91| 免费看日本二区| 欧美日韩综合久久久久久| 国产一区亚洲一区在线观看| 99热这里只有是精品在线观看| 九九在线视频观看精品| 欧美另类一区| 亚洲av在线观看美女高潮| 美女大奶头黄色视频| 91精品伊人久久大香线蕉| av视频免费观看在线观看| 亚洲怡红院男人天堂| 乱系列少妇在线播放| 精品酒店卫生间| 777米奇影视久久| 如何舔出高潮| 两个人的视频大全免费| 亚洲精品久久午夜乱码| 黄色欧美视频在线观看| 免费观看a级毛片全部| 亚洲四区av| 波野结衣二区三区在线| 国产黄片视频在线免费观看| 日韩精品免费视频一区二区三区 | 色视频www国产| 男女边摸边吃奶| 国产淫片久久久久久久久| 国产精品.久久久| 人人妻人人看人人澡| 丰满人妻一区二区三区视频av| 美女视频免费永久观看网站| 91久久精品电影网| 美女福利国产在线| 久久久欧美国产精品| 视频区图区小说| 亚洲欧美日韩另类电影网站| 99视频精品全部免费 在线| 亚洲精品久久午夜乱码| 在线观看免费视频网站a站| 精品国产一区二区久久| 国产中年淑女户外野战色| 熟女电影av网| 久久精品久久精品一区二区三区| 青春草视频在线免费观看| 免费播放大片免费观看视频在线观看| 国产黄色视频一区二区在线观看| 大陆偷拍与自拍| 人人澡人人妻人| 日韩电影二区| 亚洲伊人久久精品综合| 三级国产精品片| 国产成人精品无人区| av卡一久久| 中国美白少妇内射xxxbb| 国产精品免费大片| 高清在线视频一区二区三区| 国产熟女午夜一区二区三区 | 久久久久久久大尺度免费视频| 午夜日本视频在线| 热99国产精品久久久久久7| 欧美最新免费一区二区三区| 黄色毛片三级朝国网站 | 久久午夜福利片| 欧美激情极品国产一区二区三区 | 大陆偷拍与自拍| 亚洲精品国产色婷婷电影| 国产精品麻豆人妻色哟哟久久| 亚洲美女黄色视频免费看| 精品一区二区三区视频在线| 国产男女超爽视频在线观看| 校园人妻丝袜中文字幕| 少妇的逼水好多| 五月玫瑰六月丁香| 成年av动漫网址| 国产黄频视频在线观看| 国产片特级美女逼逼视频| 久久久久久久久久人人人人人人| 观看美女的网站| 亚洲人成网站在线观看播放| 777米奇影视久久| 涩涩av久久男人的天堂| 日本色播在线视频| 免费在线观看成人毛片| 亚洲av日韩在线播放| 久久国产亚洲av麻豆专区| 国产伦理片在线播放av一区| 日韩大片免费观看网站| 久久久久久久大尺度免费视频| 亚洲精品日韩在线中文字幕| 国内精品宾馆在线| 波野结衣二区三区在线| 在线观看美女被高潮喷水网站| 国产在线男女| 777米奇影视久久| 中文字幕人妻熟人妻熟丝袜美| 看非洲黑人一级黄片| 丰满饥渴人妻一区二区三| 久久久久久久久久久久大奶| 高清欧美精品videossex| 亚洲欧美精品专区久久| 久久精品国产亚洲网站| 欧美bdsm另类| 又黄又爽又刺激的免费视频.| 大片电影免费在线观看免费| 国产伦理片在线播放av一区| 国产成人a∨麻豆精品| 免费观看在线日韩| 99热全是精品| 日韩不卡一区二区三区视频在线| 欧美一级a爱片免费观看看| 黑人猛操日本美女一级片| 国产毛片在线视频| 国产免费一区二区三区四区乱码| 三级国产精品欧美在线观看| 国产精品国产三级国产专区5o| av免费观看日本| 极品少妇高潮喷水抽搐| 日本猛色少妇xxxxx猛交久久| 中文资源天堂在线| 亚洲高清免费不卡视频| 日韩欧美 国产精品| 久久精品国产亚洲网站| 精品国产一区二区久久| 久久精品熟女亚洲av麻豆精品| 99九九线精品视频在线观看视频| 久久久久久久久久久免费av| 久久久久网色| 欧美精品一区二区免费开放| av黄色大香蕉| 男女国产视频网站| 性高湖久久久久久久久免费观看| 婷婷色综合www| 日韩av在线免费看完整版不卡| 国产一级毛片在线| 97超视频在线观看视频| 久久毛片免费看一区二区三区| 久久青草综合色| 熟女电影av网| 人妻系列 视频| 亚洲欧美成人综合另类久久久| 免费少妇av软件| 成人18禁高潮啪啪吃奶动态图 | 亚洲电影在线观看av| 少妇人妻精品综合一区二区| 日韩不卡一区二区三区视频在线| 国产淫语在线视频| 最近中文字幕高清免费大全6| 插逼视频在线观看| 日韩一区二区三区影片| 亚洲美女视频黄频| 人妻 亚洲 视频| 亚洲,一卡二卡三卡| 国产老妇伦熟女老妇高清| 汤姆久久久久久久影院中文字幕| 久久久久久人妻| av又黄又爽大尺度在线免费看| 熟女av电影| 好男人视频免费观看在线| 国内少妇人妻偷人精品xxx网站| 男人狂女人下面高潮的视频| 亚洲精品乱久久久久久| 人妻一区二区av| 性色avwww在线观看| 精品人妻偷拍中文字幕| 久久久久久人妻| 免费久久久久久久精品成人欧美视频 | 亚洲精品亚洲一区二区| 狠狠精品人妻久久久久久综合| 日韩三级伦理在线观看| 亚洲性久久影院| 一区二区三区乱码不卡18| 在线观看av片永久免费下载| 蜜桃久久精品国产亚洲av| 国产精品免费大片| 伦理电影大哥的女人| 久久久久精品性色| 最新中文字幕久久久久| 一级毛片aaaaaa免费看小| 一区二区三区四区激情视频| 国产女主播在线喷水免费视频网站| 国产一级毛片在线| 国产男人的电影天堂91| 久久鲁丝午夜福利片| 老司机亚洲免费影院| 亚洲美女黄色视频免费看| 一个人免费看片子| 一级毛片久久久久久久久女| 亚洲电影在线观看av| 另类精品久久| 大码成人一级视频| 国产一区二区三区综合在线观看 | 99久久综合免费| 91午夜精品亚洲一区二区三区| 亚洲美女搞黄在线观看| 丰满乱子伦码专区| 久久久久久久久久人人人人人人| 麻豆乱淫一区二区| 我的女老师完整版在线观看| 午夜福利,免费看| 我要看黄色一级片免费的| 国产精品无大码| 国产成人精品一,二区| 精品少妇久久久久久888优播| 日本-黄色视频高清免费观看| 亚洲成人一二三区av| av又黄又爽大尺度在线免费看| 国产探花极品一区二区| 亚洲国产色片| 最新中文字幕久久久久| 亚洲人成网站在线观看播放| 丰满少妇做爰视频| 亚洲欧美精品专区久久| 欧美一级a爱片免费观看看| av在线播放精品| 美女大奶头黄色视频| 欧美成人午夜免费资源| a级毛片免费高清观看在线播放| av天堂中文字幕网| 丰满饥渴人妻一区二区三| 免费不卡的大黄色大毛片视频在线观看| 伦精品一区二区三区| 老司机影院成人| 最新中文字幕久久久久| 人人妻人人看人人澡| 人妻人人澡人人爽人人| 少妇人妻一区二区三区视频| 日本欧美视频一区| 91精品国产国语对白视频| 亚洲精品亚洲一区二区| 在线观看人妻少妇| 日本av手机在线免费观看| 中文天堂在线官网| 久久精品国产鲁丝片午夜精品| 中国国产av一级| 国产av码专区亚洲av| 性色av一级| 国产成人精品婷婷| 国产在线免费精品| 亚洲精品成人av观看孕妇| 桃花免费在线播放| 伊人久久精品亚洲午夜| 欧美精品亚洲一区二区| 久久久久久久久大av| 99国产精品免费福利视频| 简卡轻食公司| 美女国产视频在线观看| 国产精品99久久久久久久久| 曰老女人黄片| 色婷婷av一区二区三区视频| 欧美激情国产日韩精品一区| 久久久久精品性色| 美女国产视频在线观看| 内射极品少妇av片p| 熟女人妻精品中文字幕| 女人精品久久久久毛片| 国产在线视频一区二区| 欧美xxxx性猛交bbbb| 丰满人妻一区二区三区视频av| 看免费成人av毛片| 在线免费观看不下载黄p国产| 一本色道久久久久久精品综合| www.av在线官网国产| 韩国av在线不卡| 中文精品一卡2卡3卡4更新| 亚洲成色77777| 另类精品久久| 国产精品欧美亚洲77777| 国产精品久久久久久久电影| 中文字幕亚洲精品专区| 久久午夜综合久久蜜桃| 久久99一区二区三区| 久久久久久久久久久丰满| 午夜免费鲁丝|