• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Oxygen vacancy control of electrical,optical,and magnetic properties of Fe0.05Ti0.95O2 epitaxial films*

    2021-11-23 07:31:34QingTaoXia夏清濤ZhaoHuiLi李召輝LeQingZhang張樂清FengLingZhang張鳳玲XiangKunLi李祥琨HengJunLiu劉恒均FangChaoGu顧方超TaoZhang張濤QiangLi李強andQingHaoLi李慶浩
    Chinese Physics B 2021年11期
    關(guān)鍵詞:劉恒樂清張濤

    Qing-Tao Xia(夏清濤), Zhao-Hui Li(李召輝), Le-Qing Zhang(張樂清),Feng-Ling Zhang(張鳳玲), Xiang-Kun Li(李祥琨), Heng-Jun Liu(劉恒均),Fang-Chao Gu(顧方超), Tao Zhang(張濤), Qiang Li(李強), and Qing-Hao Li(李慶浩)

    College of Physics,University-Industry Joint Center for Ocean Observation and Broadband Communication,Qingdao University,Qingdao 266071,China

    Keywords: ferromagnetic materials,semiconductors,epitaxial films,rutile TiO2

    1. Introduction

    Dilute magnetic semiconductors (DMSs) have been extensively studied in the past decades, because they provide a promising method to inject spin polarized carriers into non-magnetic semiconductors.[1-11]The strong interaction between carriers and transition metal dopants enables synergetic use of both charge and spin degrees of freedom in one substance, which provides potential applications in spindependent electronics.[12-19]However,practical spintronic devices require DMS to have high Curie temperature (above room temperature (RT)), high spin polarization, intrinsic ferromagnetic origin and compatibility with semiconductor techniques. In order to realize RT DMS, various wide band gap oxides and nitrides have been extensively studied[20-32]based on the theoretical prediction by Dietl.[33]Particularly,3d transition-metal-doped TiO2has been considered as one of the most promising candidates, for it possesses RT ferromagnetism, excellent transparency, stability, high n-type carrier mobility and low cost.[27,32-35]

    Since the discovery of RT ferromagnetism in Co-doped TiO2,[34]large numbers of studies of TiO2-based DMS have been performed so far.[2,27,36,37]RT ferromagnetism has been reported in 3d transition-metal-doped TiO2in rutile, anatase and even amorphous phase; however, the origin of ferromagnetism remains controversial.[2,37,38]While most of researches support the intrinsic nature of ferromagnetism(FM)mediated by carriers or defects, some reports claimed that the segregation and formation of transition metal clusters or defects contribute to the FM signal.[39]In order to investigate fundamental properties and clarify inner mechanism of magnetic coupling, single crystal Fe:TiO2thin films are more favorable for the research. However, in the deposited thin films,the effects of lattice mismatch strain and interfacial dislocation between thin film and the substrate play an important role in determining the crystallinity, microstructure, and physics properties. Up to now, most of studies on TiO2-based DMS have been performed on Si,MgO,LaAlO3,SrTiO3,or Al2O3substrates;[36,40-43]either tensile strain or compressive strain can be introduced into the thin film,depending on lattice mismatch type. Notably, the strain effect can be utilized to tailor or optimize the properties of DMS thin films and help understand the interaction mechanism between charge carriers and magnetic impurity ions,even though a systematic and thorough understanding of strain effect is still unavailable and challenging.[41,42]

    Rutile MgF2(a=4.62 ?A,b=4.62 ?A,c=3.051 ?A)has the same crystal structure as quite small lattice mismatch with rutile TiO2(a=4.593 ?A,b=4.593 ?A,c=2.959 ?A),as a result, MgF2is expected to be a most appropriate substrate for the epitaxial growth of rutile TiO2, which has been seldom utilized.[44]In this work, high-quality thin films of 5% Fedoped rutile TiO2were epitaxially grown on MgF2substrates by the pulsed laser deposition (PLD). The structural, optical,magnetic and transport properties of deposited films were investigated systematically.Structural analyses obtained from xray diffraction(XRD),Raman spectra,and transmission electron microscopy(TEM)proved that they are pure rutile phase epitaxial films of TiO2,and had no impurity clusters detected.The UV-visible(UV-vis)transmittance study is characterized to infer the substitution of Fe in TiO2lattice corresponding to the band gap shift. The RT ferromagnetism and the variation in magnetization with deposition oxygen pressure are characterized by alternative gradient magnetometer(AGM).The RT FM and its oxygen pressure dependence is discussed with reference to the role of oxygen vacancy doping in TiO2lattice.These experimental results indicated that the oxygen vacancy doping concentration has a great influence on the FM behavior and band gap shift. This work demonstrates the potential applications of Fe-doped TiO2on MgF2substrates.

    2. Materials and methods

    The stoichiometric target was synthesized by standard solid state reaction of high-purity Fe2O3and TiO2(99.99%)powders. The well ground powder was compressed into pellet with a radius of 4 cm and a thickness of 1 cm. Then the target was sintered at 1300°C for 10 h. Considering the solubility limit of transition metal elements in TiO2lattice structure,here the magnetic dopant ion concentration was selected to be 5%, thus making the target a stoichiometric material Fe0.05Ti0.95O2. The Ablation of the ceramic target was carried out using a KrF excimer laser(λ=248 nm)with 300-mJ pulse at a repetition rate of 2 Hz.[36,43]Prior to the deposition, the MgF2substrate was ultrasonically cleaned in acetone and rinsed in ethanol. The temperature during growth of the films was maintained to be at 600°C while the atmosphere varied under poor oxygen condition (5.0×10?5Pa,9.0×10?5Pa, 1.4×10?4Pa, and 3.0×10?4Pa, denoted as Fe:TiO2(5.0×10?5Pa), Fe:TiO2(9.0×10?5Pa), Fe:TiO2(1.4×10?4Pa),Fe:TiO2(3.0×10?4Pa)respectively). Prior to film deposition, a buffer layer deposition of Fe:TiO2at 600°C and 0.5 Pa was carried out to improve the crystallization of subsequent epitaxial layer. After the deposition,the samples were cooled down to room temperature under the same oxygen pressure as film growth.

    The crystal structure of the obtained films was characterized by XRD (PG Instruments Ltd., Beijing, China) with CuKαradiation(λ=0.15406 nm)and Raman scattering spectra ranging from 100 cm?1to 1000 cm?1(NEXUS 670,Thermo Nicolet Co.,USA).High-resolution transmission electron microscopy (HRTEM) and selected area electron diffraction(SAED)were employed to study the cross section microstructure of the interface with a Tecnai F30 transmission electron microscope operated at 300 kV.The optical transmittance measurements were performed using UV-vis spectrophotometer in a wavelength range from 200 nm to 800 nm(TU-1900,PG Instruments,Ltd.).The magnetic properties of the samples were measured by using an alternative gradient magnetometer (Micro Mag TM 2900, Prince-ton Measurement Corporation). Transport parameters (carrier concentration, resistivity and Hall mobility)were characterized by Hall effect with typical Van der Pauw configuration using a Keithley 2400 source meter. All the measurements were performed at room temperature.

    3. Results and discussion

    Theθ-2θXRD patterns of 5% Fe-doped TiO2epitaxial films on MgF2(110)substrates are shown in Fig.1 in log scale. The XRD patterns reveal only peaks due to rutile TiO2as well as those due to MgF2substrate. The Fe-doped TiO2thin films are preferentially oriented in the(110)direction,in accordance with the(110)substrate utilized in this case. The inset in Fig.1 shows the enlarged XRD pattern in the 2θrange of 56.1°-57.6°. The peak separation between TiO2(220)and MgF2(220) is about 0.16°. The full width at half maximum(FWHM) of TiO2(220) is about 0.12°, as highlighted in the inset of Fig. 1 from two-peak fitting, which is comparable to that of single crystal MgF2substrate with an FWHM value of about 0.15°. The high-quality crystallization of the thin film comes from the small lattice mismatch between MgF2substrate and rutile TiO2.[39]The XRD pattern of MgF2substrate is also added for comparison,and neither secondary phase nor impurity forming is detected within the resolution limits of XRD,which implies the successful incorporation of substituting Fe cations into rutile TiO2lattice.

    Fig. 1. XRD patterns of Fe:TiO2 thin films deposited on MgF2 substrates at various oxygen pressures,obtained by PLD(in log scale),with XRD pattern of MgF2 substrate added here for comparison, and inset showing the enlarged region from 56.1°to 57.6°(in normal scale).Well separated MgF2 (220)and TiO2 (220)can be seen.

    Raman spectrum is one of the most effective tools for the study of crystallinity,defects structure associated with the materials. Figure 2 presents the Raman spectra of Fe-doped TiO2thin films at various oxygen pressures in a range of 100 cm?1-1000 cm?1. Rutile is tetragonal and belongs to the space group(P42/mnm)with two TiO2molecules per unit cell. The first-order Raman spectrum of single crystal rutile TiO2shows four Raman active fundamental modes: B1g(143 cm?1), Eg(447 cm?1), A1g(612 cm?1), and B2g(826 cm?1). Furthermore, the Raman spectra of rutile exhibit the intense secondorder scattering feature.[45-47]In the Fe-doped TiO2thin film the main feature is the Egmode and the A1gmode, and the next feature is the second-order peaks centered at 241.5 cm?1and 718.1 cm?1. Note that the main feature of Fe-doped TiO2thin films is well consistent with that of pure rutile TiO2reference spectrum. In addition,two spiky peaks centered at about 297.8 cm?1and 415.2 cm?1can be attributed to MgF2substrate in our case, which can be well aligned with the reference spectrum of MgF2substrate. Reference spectra of pure hematite Fe2O3and magnetite Fe3O4are added in Fig. 2 for the peak alignment.These components are typical iron oxides,which may well emerge as secondary phases in the system.However, neither characteristic vibration modes of hematite Fe2O3nor magnetite Fe3O4can be found in the Raman spectra of Fe-doped TiO2, which clearly indicates successful Fe incorporation into the host TiO2lattice instead of forming secondary phases.

    Fig. 2. Raman spectra of Fe:TiO2 thin films deposited on MgF2 substrates at various oxygen pressures, with e reference spectra of MgF2 substrate,pure rutile TiO2,hematite Fe2O3,and magnetite Fe3O4 added for detailed assign of each Raman peak.

    Results from the cross sectional HRTEM image of Fedoped TiO2film (1.4×10?4Pa) near the interface region is shown in Fig. 3(a). The thin film has a thickness of around 30 nm and the incident electron beam is parallel to the [001]direction of the MgF2substrate and Fe-doped TiO2film. It is obvious that well-ordered single crystal film is epitaxially grown on the MgF2substrate oriented in the (110) direction,with an out-of-plane lattice parameter of 0.319 nm and an inplane lattice parameter of 0.335 nm. The hetero interface between Fe-doped TiO2film and MgF2substrate indicated by arrows is indistinct.[44]Typical selected area electron diffraction pattern(SEAD)obtained from corresponding interface region is shown in Fig.3(b). The fourfold symmetry reveals the tetragonal structure of TiO2and MgF2. It is clear that there are no extra spots or splitting of reflections but only (001)zone axis pattern. Further analysis from the HRTEM and the SAED analysis indicate that the deposited thin film on MgF2substrate is of single crystalline rutile phase,with an epitaxial relationship of (110)[-110] TiO2‖(110)[-110] MgF2, which originates from the small lattice mismatch between TiO2and MgF2substrate. These features confirm the high-quality and perfect epitaxy of Fe-doped TiO2thin film on MgF2substrate in the rutile phase,consistent with the XRD and Raman spectra.

    Fig.3. (a)Cross section TEM image of interface between Fe:TiO2 thin film and MgF2 substrate viewed in the[001]direction;(b)selected area electron diffraction patterns for Fe-doped TiO2 film on MgF2 substrate.

    Figure 4 shows the room temperature UV-vis transmittance spectra of Fe-doped TiO2thin films deposited at varying growth oxygen pressures. Note that MgF2substrate shows a large transmittance of above 95% in the region of 200 nm-600 nm, hence the spectra here present mostly the intrinsic features of the deposited DMS thin films. In general,all the films are well transparent in the visible light region from 200 nm to 600 nm in our case, with an average transmittance of about 50%. Strong light absorption appears at about 320 nm due to the transition from the valence band top to conduction band bottom. The corresponding optical band gap can be determined from absorption coefficient and photon energy[48-51]and can be directly visualized from the absorption edge shift. Note that with the increase of growth oxygen pressure,the absorption edge shifts to longer wavelength and the corresponding band gaps of all samples decrease monotonically. The narrowing of band gap with the increase of oxygen pressure has been previously reported in deposited TiO2thin films.[52,53]Such a red shift can be explained as being mainly due to the band shift from the shallow donor level of oxygen non-stoichiometry under lower oxygen pressure, meanwhile the slight crystallization evolution and parental lattice variation may play a significant part.[52,53]

    The magnetic properties of Fe-doped TiO2thin films are investigated by using AGM at room temperature,with external magnetic field being perpendicular to the film surface. Distinct ferromagnetic behaviors can be observed in all the films as shown in Fig. 5. Note that with the increase of deposition oxygen pressure,the saturation magnetization of thin film decreases monotonically from 25 emu/cm3to 7 emu/cm3as shown in the inset of Fig. 5. Considering a constant transition metal dopant concentration of 5% and the flourishing of oxygen vacancy under a lower growth oxygen pressure, the monotonic decrease of saturation magnetization implies the strong correlation between ferromagnetic coupling effect and the oxygen deficiency lattice.

    Fig.4. Ultraviolet-visible transmittance spectra of epitaxial TiO2 films deposited on MgF2 substrates at different oxygen pressures,where absorption edge shows monotonic shift to larger wavelength with oxygen pressure increasing.

    Fig. . Magnetic hysteresis loops of Fe-doped TiO2 thin film on MgF2 substrates at different growth oxygen pressures,where inset shows saturation magnetization of Fe-doped TiO2 film at growth oxygen pressure.The unit 1 Oe=79.5775 A·m?1.

    In order to clarify the origin of ferromagnetic property of Fe-doped TiO2thin film on MgF2substrate, Hall effect characterization is employed to study the transport properties of corresponding films.The results of film resistivity,carrier concentration and mobility are shown in Figs. 6(a)-6(c), respectively. Note that with the increase of growth oxygen pressure,film resistivity increases almost linearly from 0.1 Ω/cm to 4.6 Ω/cm,while the measured carrier concentration decreases significantly. Meanwhile the carrier mobility keeps almost constant,specifically it slightly increases with growth oxygen pressure rising. The low resistivity and high carrier concentration demonstrate the potential applications of the films in semiconductor devices.

    Fig. 6. Transport properties of Fe:TiO2 thin film on MgF2 substrate,showing variation of its(a)resistivity,(b)carrier concentration,and(c)mobility with oxygen pressure.

    Considering the relatively low doping concentration of transition metal cations of 5%, which is far below the percolation threshold, traditional double exchange or super exchange model cannot explain the strong FM in this material.In the DMS system, bounded magnetic polaron (BMP) scenario is widely accepted to explain the FM.[54-56]The exchange interaction between localized magnetic cations and itinerant sp electrons, if it once percolates throughout the entire film, may well lead to the experimental detected macroscopic RT FM. Besides the magnetic properties, Chouet al.further proposed a modified BMP model to include the correlation between electric transport and magnetic properties in DMS.[57]The modified BMP model can be utilized to explain the magnetic coupling in this system. As the concentration of oxygen vacancies increases, the number of BMP spheres increases.. Meanwhile, the increase of carrier concentration also enlarges the radius of BMP sphere.[36]These correlated factors brings about the phenomenal FM string enhancement on Fe-doped TiO2film deposited on MgF2substrate with the decrease of growth oxygen pressure.In previous research,secondary phase formation has been proposed as another possible origin of RTFM in a typical DMS system.[40]Based on our structural characterizations, no foreign phase formation is detected to the resolution limit, particularly magnetic active hematite and magnetite phases can be excluded in Raman spectra. The correlation between oxygen pressure and optical,magnetic,transport properties further implies single phase Fe-doped TiO2as the origin of intrinsic multifunctional properties. The integrating of multifunction properties into one system provides promising potential for future applications in multifunctional electronic devices.

    4. Conclusions

    In this work, 5%-Fe-doped TiO2thin films in rutile phase are epitaxially deposited on MgF2substrate by the PLD method. The small mismatch between rutile TiO2and MgF2substrate determines the high crystalline quality of DMS films,which is demonstrated by XRD,Raman spectra,and HRTEM.The deposition oxygen pressure plays an important role in determining the optical,transport,and magnetic properties. Optical band gap, carrier concentration, and magnetization can be well dependent on the oxygen deficiency atmosphere. The RT FM observed in all the DMS films shows that it is strongly correlated with the carrier concentration introduced by oxygen vacancy, which can be explained by a modified BMP model.This work demonstrates the high-quality Fe-doped TiO2DMS film deposited on MgF2substrate,which is required for potential applications in magneto-optical and magneto-electric devices,and also for fundamental study of DMS coupling mechanism.

    猜你喜歡
    劉恒樂清張濤
    張濤書法作品
    冰城“方艙”開建!
    Integrated silicon-based suspended racetrack micro-resonator for biological solution sensing with high-order mode*
    Plasmonic characteristics of suspended graphene-coated wedge porous silicon nanowires with Ag partition*
    第二十屆樂清模具設(shè)備塑機工業(yè)自動化展圓滿落幕
    模具制造(2019年4期)2019-12-29 05:18:58
    莫讓語文空對月
    周樂清戲曲活動及交游考
    中華戲曲(2016年2期)2016-01-22 08:19:09
    樂清灣海洋生態(tài)系統(tǒng)服務(wù)價值評估
    Analysis of the Rupture of Sino—Soviet Alliance
    科技視界(2015年9期)2015-04-07 11:07:33
    《怪誕星期五》
    午夜免费观看性视频| 亚洲av成人精品一区久久| 精品久久久久久久久久久久久| 成人午夜精彩视频在线观看| 免费观看av网站的网址| 国产 亚洲一区二区三区 | 中国国产av一级| 国产老妇伦熟女老妇高清| 精品亚洲乱码少妇综合久久| 岛国毛片在线播放| 亚洲国产精品sss在线观看| 又粗又硬又长又爽又黄的视频| 免费大片18禁| 婷婷色av中文字幕| 日韩国内少妇激情av| 午夜福利在线在线| 国产不卡一卡二| av播播在线观看一区| 婷婷色av中文字幕| 亚洲国产成人一精品久久久| 国产精品美女特级片免费视频播放器| 亚洲内射少妇av| 美女黄网站色视频| 精品人妻偷拍中文字幕| 99久久精品一区二区三区| 三级男女做爰猛烈吃奶摸视频| 一个人看的www免费观看视频| 男女边摸边吃奶| 国产三级在线视频| 亚洲成人av在线免费| 成人亚洲欧美一区二区av| 午夜福利高清视频| 欧美日韩精品成人综合77777| 久久久久久久久大av| 日韩不卡一区二区三区视频在线| 99久久精品热视频| 亚洲综合精品二区| 成人亚洲欧美一区二区av| www.av在线官网国产| 秋霞伦理黄片| av免费在线看不卡| 日韩制服骚丝袜av| 久久久久久久亚洲中文字幕| 一级av片app| 中文字幕制服av| 亚洲成人一二三区av| 精品人妻熟女av久视频| 少妇人妻精品综合一区二区| 欧美成人午夜免费资源| 久久久久久久久中文| 一级毛片久久久久久久久女| 我的女老师完整版在线观看| 国产 亚洲一区二区三区 | 久久国产乱子免费精品| 亚洲av成人av| 少妇猛男粗大的猛烈进出视频 | 精品午夜福利在线看| 国产亚洲午夜精品一区二区久久 | 视频中文字幕在线观看| 久久久色成人| 国产单亲对白刺激| 成年免费大片在线观看| 久久久色成人| 男人和女人高潮做爰伦理| 亚洲精品日本国产第一区| 久久人人爽人人片av| 国产中年淑女户外野战色| 狂野欧美白嫩少妇大欣赏| 国产成人精品一,二区| 精品不卡国产一区二区三区| 在线免费观看的www视频| 国模一区二区三区四区视频| 亚洲在线观看片| 欧美日韩一区二区视频在线观看视频在线 | 国产综合懂色| 午夜福利高清视频| 欧美性猛交╳xxx乱大交人| 在线免费观看不下载黄p国产| av专区在线播放| 国产女主播在线喷水免费视频网站 | 嘟嘟电影网在线观看| av在线亚洲专区| 国产精品国产三级专区第一集| 成人特级av手机在线观看| 老司机影院成人| 亚洲三级黄色毛片| 午夜福利在线在线| 国产高清有码在线观看视频| 丝瓜视频免费看黄片| 人人妻人人澡人人爽人人夜夜 | 最近2019中文字幕mv第一页| 色5月婷婷丁香| 亚洲精品日韩在线中文字幕| 午夜亚洲福利在线播放| 色尼玛亚洲综合影院| av福利片在线观看| 亚洲国产欧美在线一区| 亚洲欧美一区二区三区国产| 国产精品99久久久久久久久| 国内揄拍国产精品人妻在线| 午夜免费激情av| 国产精品麻豆人妻色哟哟久久 | 亚洲一区高清亚洲精品| 99久久九九国产精品国产免费| 又大又黄又爽视频免费| 亚洲欧美清纯卡通| 中文字幕久久专区| 亚洲精品,欧美精品| 成人毛片60女人毛片免费| xxx大片免费视频| 日本欧美国产在线视频| 成年女人在线观看亚洲视频 | 久久精品综合一区二区三区| 男人狂女人下面高潮的视频| 国产高清不卡午夜福利| 九色成人免费人妻av| 亚洲人与动物交配视频| 国产探花极品一区二区| 99热网站在线观看| 久久久久精品性色| 亚洲无线观看免费| 黄片wwwwww| 嫩草影院入口| 免费观看精品视频网站| 久久99精品国语久久久| 大片免费播放器 马上看| 日韩欧美国产在线观看| 在线观看av片永久免费下载| 国产黄色小视频在线观看| 亚洲国产成人一精品久久久| 欧美日韩一区二区视频在线观看视频在线 | 午夜日本视频在线| 国精品久久久久久国模美| 日日啪夜夜爽| 熟女电影av网| 成人特级av手机在线观看| 麻豆av噜噜一区二区三区| 久久鲁丝午夜福利片| 久久这里只有精品中国| 亚洲精品日本国产第一区| 中文字幕av在线有码专区| 久久99蜜桃精品久久| 日本av手机在线免费观看| 婷婷色av中文字幕| 你懂的网址亚洲精品在线观看| 午夜激情久久久久久久| a级毛色黄片| 日本熟妇午夜| 高清日韩中文字幕在线| 国产黄色视频一区二区在线观看| 国产伦在线观看视频一区| 国内揄拍国产精品人妻在线| 久久国内精品自在自线图片| 国产精品不卡视频一区二区| www.色视频.com| 99久国产av精品国产电影| av专区在线播放| 91aial.com中文字幕在线观看| 色播亚洲综合网| 国产亚洲av片在线观看秒播厂 | 午夜老司机福利剧场| av在线老鸭窝| 亚洲精品日韩在线中文字幕| 男女视频在线观看网站免费| a级一级毛片免费在线观看| 中文欧美无线码| 毛片一级片免费看久久久久| 国产日韩欧美在线精品| 亚洲经典国产精华液单| 亚洲精品中文字幕在线视频 | 国产精品久久久久久精品电影| 国产精品爽爽va在线观看网站| 男插女下体视频免费在线播放| 婷婷色av中文字幕| 午夜精品一区二区三区免费看| 夫妻性生交免费视频一级片| 国产 一区精品| 成人特级av手机在线观看| 毛片女人毛片| 久久久久久久久久久丰满| 一个人看视频在线观看www免费| 亚洲精品视频女| 高清av免费在线| av国产久精品久网站免费入址| 99热这里只有是精品在线观看| 免费看av在线观看网站| av专区在线播放| 久久国产乱子免费精品| 国产精品熟女久久久久浪| 国产午夜精品一二区理论片| 菩萨蛮人人尽说江南好唐韦庄| 在现免费观看毛片| 伦理电影大哥的女人| 国产成人精品婷婷| 亚洲人成网站在线播| 人妻夜夜爽99麻豆av| 搡老妇女老女人老熟妇| 日韩一区二区视频免费看| 亚洲精品日韩av片在线观看| 水蜜桃什么品种好| 亚洲成人av在线免费| 国产精品爽爽va在线观看网站| 日本三级黄在线观看| 国产乱人视频| 一级毛片我不卡| 成人午夜精彩视频在线观看| 亚洲美女视频黄频| 能在线免费观看的黄片| 色网站视频免费| 91久久精品国产一区二区三区| 狠狠精品人妻久久久久久综合| 麻豆久久精品国产亚洲av| 少妇裸体淫交视频免费看高清| 亚洲图色成人| 2021天堂中文幕一二区在线观| 高清毛片免费看| 亚洲av日韩在线播放| 最近中文字幕高清免费大全6| 十八禁国产超污无遮挡网站| 国产一区二区在线观看日韩| 水蜜桃什么品种好| 亚洲成色77777| 国产视频首页在线观看| 在线观看人妻少妇| 又大又黄又爽视频免费| 久久精品夜色国产| 网址你懂的国产日韩在线| 九色成人免费人妻av| 99热这里只有精品一区| 日产精品乱码卡一卡2卡三| av国产久精品久网站免费入址| 97超碰精品成人国产| 99久久精品热视频| 国产v大片淫在线免费观看| 亚洲精品aⅴ在线观看| 日本免费a在线| 国产一区有黄有色的免费视频 | 能在线免费观看的黄片| 在线a可以看的网站| 一级二级三级毛片免费看| videos熟女内射| av在线观看视频网站免费| 一区二区三区乱码不卡18| 在线播放无遮挡| 国产av码专区亚洲av| 久久久精品欧美日韩精品| 中文字幕人妻熟人妻熟丝袜美| 日日啪夜夜撸| 简卡轻食公司| 精品熟女少妇av免费看| 久久午夜福利片| 国产精品人妻久久久久久| 国产精品一及| 亚洲精品国产av蜜桃| 在线观看av片永久免费下载| 一本一本综合久久| 国产男女超爽视频在线观看| 一夜夜www| 美女被艹到高潮喷水动态| 日韩伦理黄色片| 久99久视频精品免费| 最近中文字幕2019免费版| 超碰av人人做人人爽久久| 国产 一区 欧美 日韩| ponron亚洲| a级毛片免费高清观看在线播放| 久久久久精品性色| 精品亚洲乱码少妇综合久久| 欧美激情国产日韩精品一区| 亚洲精品成人久久久久久| 少妇裸体淫交视频免费看高清| 极品教师在线视频| 三级经典国产精品| 99久久中文字幕三级久久日本| 亚洲va在线va天堂va国产| 日本一本二区三区精品| 国产精品综合久久久久久久免费| av一本久久久久| 免费看av在线观看网站| 少妇高潮的动态图| 国产精品一及| 成人性生交大片免费视频hd| 国产亚洲精品av在线| 日本午夜av视频| 精品久久久久久久末码| 成人综合一区亚洲| 蜜臀久久99精品久久宅男| 色播亚洲综合网| 国产日韩欧美在线精品| 在线观看av片永久免费下载| 中文字幕av成人在线电影| 国产精品福利在线免费观看| 在线观看免费高清a一片| 国产大屁股一区二区在线视频| 亚洲精品亚洲一区二区| 午夜福利视频精品| 久久这里有精品视频免费| 亚洲国产精品sss在线观看| 亚洲最大成人手机在线| 日韩国内少妇激情av| 97超视频在线观看视频| 建设人人有责人人尽责人人享有的 | 欧美最新免费一区二区三区| 一级片'在线观看视频| 欧美丝袜亚洲另类| 国产精品久久久久久久电影| 观看美女的网站| av在线老鸭窝| 免费观看a级毛片全部| 春色校园在线视频观看| 91精品一卡2卡3卡4卡| 最近最新中文字幕免费大全7| 建设人人有责人人尽责人人享有的 | 亚洲国产精品sss在线观看| 日韩亚洲欧美综合| 免费大片黄手机在线观看| 国产亚洲午夜精品一区二区久久 | 日韩电影二区| 深夜a级毛片| 国产淫片久久久久久久久| 亚洲在久久综合| 久久久国产一区二区| 亚洲国产成人一精品久久久| 天天躁夜夜躁狠狠久久av| 午夜老司机福利剧场| 在线播放无遮挡| 国产欧美另类精品又又久久亚洲欧美| 亚洲国产色片| 九草在线视频观看| 色综合站精品国产| 超碰97精品在线观看| 亚洲欧美成人精品一区二区| 国产成人免费观看mmmm| 国产视频内射| 成人毛片60女人毛片免费| 视频中文字幕在线观看| 青春草视频在线免费观看| 欧美日韩在线观看h| 在现免费观看毛片| av在线亚洲专区| 丰满人妻一区二区三区视频av| 久久草成人影院| 日韩av在线免费看完整版不卡| 亚洲高清免费不卡视频| 亚洲精华国产精华液的使用体验| 国产欧美另类精品又又久久亚洲欧美| 成人二区视频| 两个人的视频大全免费| 欧美xxxx黑人xx丫x性爽| 美女被艹到高潮喷水动态| 国产精品久久久久久精品电影| 99热这里只有是精品在线观看| 熟女电影av网| 最近中文字幕高清免费大全6| 久久精品熟女亚洲av麻豆精品 | 一区二区三区乱码不卡18| 欧美日本视频| 亚洲一级一片aⅴ在线观看| 女的被弄到高潮叫床怎么办| 中文字幕av成人在线电影| 欧美日韩国产mv在线观看视频 | 免费看av在线观看网站| 国产精品综合久久久久久久免费| 最后的刺客免费高清国语| 久久精品国产亚洲av涩爱| 亚洲国产欧美人成| 国产综合懂色| 日产精品乱码卡一卡2卡三| 国产淫片久久久久久久久| 在线a可以看的网站| 国产高清有码在线观看视频| 亚洲精品一二三| 精品久久久久久久久av| 最近最新中文字幕大全电影3| 国产不卡一卡二| 午夜激情福利司机影院| 身体一侧抽搐| 亚洲国产最新在线播放| 亚洲欧美日韩东京热| 听说在线观看完整版免费高清| 亚洲三级黄色毛片| 亚洲一级一片aⅴ在线观看| 九九爱精品视频在线观看| 美女大奶头视频| 免费黄色在线免费观看| 精品一区二区三区人妻视频| 毛片一级片免费看久久久久| 一个人看视频在线观看www免费| 国产精品国产三级国产av玫瑰| 亚洲精品乱码久久久v下载方式| 91av网一区二区| 99热这里只有是精品在线观看| 亚洲精品自拍成人| 男人爽女人下面视频在线观看| 99视频精品全部免费 在线| 嫩草影院新地址| 国产伦理片在线播放av一区| 丰满乱子伦码专区| 欧美日韩亚洲高清精品| 免费高清在线观看视频在线观看| 亚洲精品国产av成人精品| 免费少妇av软件| 亚洲欧美成人综合另类久久久| 韩国高清视频一区二区三区| 老司机影院毛片| av在线天堂中文字幕| 日韩欧美国产在线观看| 日韩精品有码人妻一区| 建设人人有责人人尽责人人享有的 | 午夜福利高清视频| 大片免费播放器 马上看| 亚洲在久久综合| 男女边吃奶边做爰视频| 国产在视频线在精品| 少妇丰满av| 99热全是精品| 欧美xxⅹ黑人| 六月丁香七月| 欧美人与善性xxx| 青春草亚洲视频在线观看| 联通29元200g的流量卡| 色吧在线观看| 欧美极品一区二区三区四区| 午夜福利在线在线| 午夜爱爱视频在线播放| 国产一级毛片七仙女欲春2| 国产av国产精品国产| videos熟女内射| 男的添女的下面高潮视频| 男女视频在线观看网站免费| av专区在线播放| av免费在线看不卡| 久久久久性生活片| 成人毛片a级毛片在线播放| 97热精品久久久久久| 国产精品1区2区在线观看.| 久久韩国三级中文字幕| 亚洲,欧美,日韩| av在线天堂中文字幕| 成人综合一区亚洲| 精品久久久久久久久亚洲| 啦啦啦啦在线视频资源| 亚洲真实伦在线观看| 欧美日韩国产mv在线观看视频 | 国产免费视频播放在线视频 | 国产高清国产精品国产三级 | 国产免费视频播放在线视频 | 久久久精品欧美日韩精品| 色尼玛亚洲综合影院| 91av网一区二区| 欧美3d第一页| 日韩成人伦理影院| 日韩国内少妇激情av| 日韩强制内射视频| 伦理电影大哥的女人| 免费不卡的大黄色大毛片视频在线观看 | 亚洲人成网站在线播| 中文欧美无线码| 99久久精品国产国产毛片| 熟妇人妻久久中文字幕3abv| 丰满人妻一区二区三区视频av| 极品教师在线视频| 汤姆久久久久久久影院中文字幕 | 天堂网av新在线| 亚洲一级一片aⅴ在线观看| 色尼玛亚洲综合影院| 久久精品国产自在天天线| 成人二区视频| 2021天堂中文幕一二区在线观| 久久精品夜色国产| 日韩欧美 国产精品| 大香蕉97超碰在线| 久久久久久久久久人人人人人人| 两个人视频免费观看高清| 搞女人的毛片| 最近视频中文字幕2019在线8| 精品久久久久久久人妻蜜臀av| 床上黄色一级片| 日韩视频在线欧美| 亚洲精品色激情综合| 男女那种视频在线观看| 国产伦精品一区二区三区视频9| 亚洲精品456在线播放app| 成人毛片a级毛片在线播放| 97热精品久久久久久| 99re6热这里在线精品视频| 男女国产视频网站| 国产午夜精品一二区理论片| 久久综合国产亚洲精品| 97超碰精品成人国产| 日本猛色少妇xxxxx猛交久久| 99久久人妻综合| 精品久久久久久电影网| 成年av动漫网址| 亚洲成人中文字幕在线播放| 亚洲精品成人av观看孕妇| 国产成人精品久久久久久| videossex国产| 波野结衣二区三区在线| 国产精品久久久久久av不卡| 国产精品.久久久| 久久6这里有精品| 岛国毛片在线播放| 一二三四中文在线观看免费高清| 国产成人freesex在线| 一区二区三区四区激情视频| 伊人久久精品亚洲午夜| 国产综合精华液| 天天一区二区日本电影三级| 亚洲精品久久午夜乱码| 国产成人freesex在线| 国产黄片视频在线免费观看| 97超碰精品成人国产| 搡老乐熟女国产| 日日摸夜夜添夜夜添av毛片| 免费看美女性在线毛片视频| 中国美白少妇内射xxxbb| 99九九线精品视频在线观看视频| 国产精品人妻久久久久久| 青春草亚洲视频在线观看| 国产午夜精品论理片| 一个人免费在线观看电影| 久久鲁丝午夜福利片| 嫩草影院新地址| 国产精品.久久久| 简卡轻食公司| 最新中文字幕久久久久| 美女被艹到高潮喷水动态| 成人午夜高清在线视频| 一区二区三区高清视频在线| 特大巨黑吊av在线直播| 亚洲内射少妇av| 欧美激情久久久久久爽电影| 麻豆成人午夜福利视频| 3wmmmm亚洲av在线观看| 成人欧美大片| 国产av国产精品国产| 国产女主播在线喷水免费视频网站 | 99视频精品全部免费 在线| 人妻系列 视频| 国产成人91sexporn| 亚洲人成网站在线观看播放| 欧美xxxx黑人xx丫x性爽| 亚洲av国产av综合av卡| 高清在线视频一区二区三区| 中国国产av一级| 国产精品久久久久久久电影| 亚洲精品中文字幕在线视频 | 国产久久久一区二区三区| 一级毛片电影观看| 一个人看的www免费观看视频| 欧美xxxx性猛交bbbb| 如何舔出高潮| 国产一区亚洲一区在线观看| 亚洲最大成人中文| 国产精品一区www在线观看| 又大又黄又爽视频免费| 国产在线男女| 好男人视频免费观看在线| 国产极品天堂在线| 极品少妇高潮喷水抽搐| 一级毛片久久久久久久久女| 亚洲第一区二区三区不卡| 91精品国产九色| 床上黄色一级片| h日本视频在线播放| 久久人人爽人人片av| 色吧在线观看| 一个人看视频在线观看www免费| 好男人在线观看高清免费视频| 日韩伦理黄色片| 小蜜桃在线观看免费完整版高清| 亚洲国产最新在线播放| 黄片无遮挡物在线观看| 精品久久久噜噜| 丝袜美腿在线中文| 亚洲av中文av极速乱| 在线观看人妻少妇| 嫩草影院新地址| 22中文网久久字幕| 极品少妇高潮喷水抽搐| 在线观看美女被高潮喷水网站| 亚洲av日韩在线播放| 99热这里只有精品一区| 激情 狠狠 欧美| 国产午夜福利久久久久久| 成人亚洲精品av一区二区| 国产精品三级大全| 欧美日韩综合久久久久久| 日本黄色片子视频| 久久久国产一区二区| 国产精品一区二区在线观看99 | av在线蜜桃| 亚洲av电影不卡..在线观看| 爱豆传媒免费全集在线观看| 国内精品一区二区在线观看| 最近的中文字幕免费完整| 最近最新中文字幕免费大全7| 不卡视频在线观看欧美| 国产精品久久久久久精品电影小说 | 大香蕉久久网| 亚洲人与动物交配视频| 国产精品国产三级国产av玫瑰| 久久久久国产网址| 一级黄片播放器| av又黄又爽大尺度在线免费看| 天天一区二区日本电影三级| 狂野欧美白嫩少妇大欣赏| 国产精品国产三级国产av玫瑰| 九草在线视频观看| 久久精品国产亚洲网站| 亚洲18禁久久av| 亚洲成色77777| 成人二区视频| 丰满乱子伦码专区|