• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Exact solution of an integrable quantum spin chain with competing interactions?

    2021-11-23 07:31:12JianWang王健YiQiao喬藝JunpengCao曹俊鵬andWenLiYang楊文力
    Chinese Physics B 2021年11期
    關(guān)鍵詞:王健

    Jian Wang(王健) Yi Qiao(喬藝) Junpeng Cao(曹俊鵬) and Wen-Li Yang(楊文力)

    1Beijing National Laboratory for Condensed Matter Physics,Institute of Physics,Chinese Academy of Sciences,Beijing 100190,China

    2School of Physical Sciences,University of Chinese Academy of Sciences,Beijing 100190,China

    3Songshan Lake Materials Laboratory,Dongguan 523808,China

    4Peng Huanwu Center for Fundamental Theory,Xi’an 710127,China

    5Institute of Modern Physics,Northwest University,Xi’an 710127,China

    6Shaanxi Key Laboratory for Theoretical Physics Frontiers,Xi’an 710127,China 7School of Physics,Northwest University,Xi’an 710127,China

    Keywords: quantum spin chain,Bethe ansatz,Yang-Baxter equation

    1. Introduction

    Quantum magnetism is an important issue in research of condensed matter physics. Spin-spin interactions can induce many interesting phenomena such as novel magnetic ordered states, fractional spin excitations and quantum phase transitions. The typical spin-spin interactions include the nearest neighbor(NN),next nearest neighbor(NNN),Dzyloshinsky-Moriya(DM)interactions and chirality three-spin couplings.

    Focusing on the NN interaction, the most famous model is the Heisenberg model. It is well-known that the elementary excitation of the isotropic Heisenberg model is gapless while that of the anisotropic case has a finite gap in some regions.The Heisenberg model can be solved exactly by the coordinate Bethe ansatz[1]or the quantum inverse scattering method.[2]Nowadays,Bethe ansatz becomes a popular method to calculate exact solutions of one-dimensional quantum many-body systems. The Heisenberg model is also a suitable candidate to check the validity of new numerical simulation technique and new physical pictures such as the spinon and fractional statistics.[3]

    When the NNN interaction is involved, the most famous model is theJ1-J2model, which cannot be solved exactly. At the Majumdar-Ghosh point, i.e.,J2/J1=0.5, the Hamiltonian degenerates into a projector operator and only the ground state can be obtained exactly.[4]TheJ1-J2model withJ2/J1=0.241 possesses a Kosterlitz-Thouless-like quantum phase transition, which is a kind of topological phase transitions and does not have the local order parameter. The corresponding critical point has been studied by many methods such as the density matrix renormalization group[5]and fieldtheoretical approach.[6-8]Due to the competition between NN and NNN interactions, especially when the NN interaction is ferromagnetic and NNN interaction is antiferromagnetic,some interesting ordered magnetic states are found. TheJ1-J2model can be explained as the zigzag spin ladder, which is very important in the study of crossover from the onedimensional to the two-dimensional case. Therefore, much attention has been paid to the quantum spin chain with competing interactions.[9-12]

    The DM interaction is a typical antisymmetric spinspin interaction, which plays an essential role in various fields.[13-15]For example, the DM interaction in the Heisenberg model can induce the spin glasses phase,[16]phase transition[17]and nonlinear excitations.[18]In recent years,DM interactions in magnetic systems have been studied extensively.[19,20]

    The chiral three-spin couplings are another kind of interesting interactions.The chirality terms are used to characterize the chiral spin liquid state in the system.[21]It is proposed that the expectation value of the spin chirality operator can be used as the order parameter for chiral spin liquids.[22,23]Using the quantum transfer matrix method,researchers have studied the thermodynamic properties of this kind of models.[24,25]Recently,the models with chirality terms have attracted renewed interest in the theory of quantum spin liquids.[26,27]

    The magnetic impurity in the strongly correlated systems is the eternal topic in the quantum magnetism theory.Many interesting mechanisms such as the Kondo screen,spiral phase,novel spinon excitation,ghost spin and boundary bound states are induced by the magnetic impurity. The Kondo problems in one dimension are solved by means of Bethe ansatz.[28,29]Using the language of integrable theory,some impurity problems are equivalent to the boundary magnetic fields. Here,we note that if the boundary magnetic fields are parallel,then theU(1)symmetry will be held and the system can be solved by the Bethe ansatz.[30]If the boundary magnetic fields are unparallel,then theU(1)symmetry will be broken and the conventional Bethe ansatz will not work. In this case,the system can be solved by the off-diagonal Bethe ansatz.[31]

    In this paper,we put all the above-mentioned interactions(NN,NNN,DM,chiral three-spin couplings and boundary impurities) together and construct a new integrable model. The Hamiltonian is given by Eq. (1). For the most possible applications, we consider the case that the boundary fields are unparallel.Due to the off-diagonal boundary reflection,the total number of quasiparticles with fixed spin-component is not conserved. By means of the off-diagonal Bethe ansatz,we obtain the exact solution of the system.These exact solutions can be used to study some physical quantities such as the ground state,elementary excitations,and boundary energy.

    The paper is organized as follows. The model Hamiltonian is explained in Section 2 and the integrability of the system is proved in Section 3. The exact energy spectrum and the Bethe ansatz equations are derived in Section 4. The exact ground state energies in some parameter regions are given in Section 5. Section 6 is attributed to the concluding remarks.

    2. Model Hamiltonian

    The integrable Hamiltonian considered in this study is

    Let us explain Hamiltonian (1) more clearly. The interactions in the bulk are isotropic and the coupling strengths are chosen as

    The integrability requires that the parametersJ1,J2andJ3are not independent. From Eq.(2),we also see that due to the existence of boundary magnetic fields, the couplings ofσ1·σ2andσ2N?1·σ2Ncan be enhanced or decreased by the boundary fields. The resulted coupling strengths could be different from that of other bonds in the bulk. The NNN interacting strengthJ2is a constant. Meanwhile,the signs of chiral three-spin interactions change with the changing site numberj. Thus the chirality terms are staggered.

    3. Integrability

    Now, we prove the integrability of Hamiltonian (1). We adopt the standard notations.Throughout this paper,Vdenotes a two-dimensional linear space. For any matrixA ∈End(V),Ajis an embedded operator in the tensor spaceV ?V ?···,which acts asAon thej-th space and as identity on the other factor spaces. ForB ∈End(V ?V),Bi jis an embedding operator ofBin the tensor space, which acts as identity on the factor spaces except for thei-th andj-th ones.

    The integrability of Hamiltonian (1) is related with theR-matrix and the reflection matricesK±(u). TheR-matrix is

    wherepis the boundary parameter which characterizes the strength of boundary field. The matrixK?(u)satisfies the reflection equation This implies that the transfer matrixt(u) is the generating function of all the conserved quantities. Hamiltonian (1) is constructed from the transfer matrixt(u)as

    4. Exact solution

    From the construction of Hamiltonian(1),we can see that the dual reflection matrixK+(u)has the off-diagonal elements.Thus theU(1)symmetry of the system is broken. We use the off-diagonal Bethe ansatz(ODBA)to solve Hamiltonian(1).

    The main idea of the ODBA is as follows. From the definition of transfer matrixt(u),we know thatt(u)is an operator polynomial ofuwith the order of 4N+2. Denote the eigenvalue of the transfer matrixt(u)asΛ(u).Then we arrive at the case that the eigenvalueΛ(u)must be a polynomial ofuwith the order of 4N+2. Our task is to determine the polynomialΛ(u),which can be achieved by its values at arbitrary 4N+3 points (at least) or the 4N+3 constraints satisfied byΛ(u)in principle. From the crossing-unitary relation (15) of the transfer matrixt(u), we also knowΛ(u)=Λ(?u ?1). Thus the number of constraints is reduced from 4N+3 to 2N+2.If these constraints are obtained, the eigenvalueΛ(u) can be completely determined.

    Now,we seek these constraints.The matrixR(u)given by Eq.(3)degenerates into the permutation operator at the point ofu=θj. Using the properties of permutation operator,after tedious calculations,we obtain

    Acting the operators product identities (19) on the eigenstate of transfer matrixt(u),we obtain the 2Nfunction relations

    and{λj|j=1,...,2N}are 2NBethe roots. BecauseΛ(u)is a polynomial,the residues on right-hand side of Eq.(25)should be zero,which gives the constraints of Bethe roots:

    Solving the Bethe ansatz equations(27),we obtain the values of Bethe roots{λj|j=1,...,2N}. Substituting these values into Eq. (25), we obtain the eigenvalueΛ(u) of the transfer matrixt(u).

    Now,we are ready to determine the eigenvalue of Hamiltonian (1). Substituting{θ2k?1=a,θ2k=?a|k=1,...,N}into Eq.(25),we obtain

    We check the above results numerically for some small site numbers. We first solve the Bethe ansatz equations (30)with randomly chosen model parameters and obtain the values of Bethe roots. Substituting the values of Bethe roots into Eq. (31), we obtain the eigenvalues of Hamiltonian (1). The results are listed in Table 1. Next, we numerically diagonalize Hamiltonian(1)with same model parameters. We find that the eigenvalues obtained by solving the Bethe ansatz equations are exactly the same as those obtained by the exact diagonalization. Meanwhile, the expression (31) gives the complete spectrum of the system.

    Table 1. Numerical solutions of the Bethe ansatz equations(30)with 2N=4,a=0.7i, p=?0.6,q=?0.3 and ξ =1.2. Here n indicates the number of energy levels and En is the corresponding energy. The energy En obtained from the Bethe ansatz equations is exactly the same as that calculated from the exact diagonalization of Hamiltonian(1).

    5. Ground state energy

    Now,we study the ground state energy of the system(1).Following the scheme suggested in Refs.[32,33],we find that the contribution of the third term in the inhomogeneousTQrelation (28) supplies theo(1/(2N)) correction which can be neglected in the thermodynamic limit 2N →∞. Thus, we introduce the following homogeneousT-Qrelation:

    For the finite system size,Ehis the approximation solution of the system. With the increasing system size, the accuracy becomes higher. In the thermodynamic limit,Ehis infinitely tends to the actual value.

    Next, we compute the values ofEh. For simplicity, we consider the case that ˉp ≥0 and ˉq ≥0. In the ground state,all the Bethe roots should take real values. Taking the logarithm of Eq.(35),we arrive at

    andδ(u±uh)are the boundary holes with the positions±uh.In the thermodynamic limit,the positions of holes would tend to infinity, and the holes contribute nothing to the energy.These boundary holes correspond to the Majorana modes at the two boundaries.[34]

    We solve Eq.(39)using the Fourier transformation

    According to Eqs. (36) and (45), we obtain the ground state energy of the system as follows:

    In order to show the correctness of Eq.(46),we calculate the ground state energy of the system(1)using the density matrix renomalization group(DMRG)method and compare the results with those obtained from Eq.(46),as shown in Fig.1. We can see that the energy difference ?Etends to zero with the increasing system size. The data satisfy the scaling law ?E=γ(2N)m,

    wherem<0. Thus in the thermodynamic limit,the expression(46)gives the actual value of the ground state energy.

    Fig. 1. The energy difference ?E =ED ?Eg with the different system sizes,where ED is the ground state energy calculated by using the DMRG method and Eg is the ground state energy calculated by Eq.(46).The model parameters are taken as a=0.66i, p=1.6, q=1.3 and ξ =1.2. The ?E decreases with the increasing system size 2N and the data can be fitted as ?E =3.124(2N)?0.9292. When the system size tends to infinity,the energy difference ?E would be zero.

    6. Conclusion

    In summary, we have proposed a new integrable quantum spin chain which includes the NN,NNN,chiral three-spin couplings,DM interactions and unparallel boundary magnetic fields. By means of the off-diagonal Bethe ansatz, we obtain the exact solution of the system. The inhomogeneousT-Qrelation and Bethe ansatz equations are given explicitly. We further calculate the ground state energy in the regime of ˉp ≥0 and ˉq ≥0.

    The method given in this paper can be used to construct other new integrable models with some interesting interactions. For example, if we start from the trigonometric or ellipticR-matrix,[2]we can study the anisotropic version of the integrable Hamiltonian(1). Meanwhile,if we put the alternate inhomogeneous parameters into theR-matrix[35]of the Hubbard model, we can construct an exactly solved strongly correlated electronic model which contains many possible physical processes. For example, besides the electrons hopping and on-site interaction, other terms such as the electron-pairs hopping, extended nearest-neighbor interactionsnjnj+1, and spin flipped behavior after reflecting. Due to the competitions among these couplings, some nontrivial phenomena such as the finite critical on-site interactionUcof the metal-insulator transition, new quantum states, novel charge and spin excitations may appear.

    Acknowledgment

    We would like to thank Professor Y. Wang for his valuable discussion and continuous encouragement.

    猜你喜歡
    王健
    王健
    美聯(lián)儲(chǔ)的艱難選擇:穩(wěn)通脹還是穩(wěn)金融市場(chǎng)
    鉗工機(jī)械操作的質(zhì)量控制策略
    疫情期間,甲狀腺結(jié)節(jié)患者該怎么辦
    抗癌之窗(2020年1期)2020-05-16 01:37:26
    每天只練五分鐘
    “王健扇藝展”
    我們?cè)谝黄鸬膬r(jià)值是相愛
    家庭百事通(2017年7期)2017-07-04 10:04:39
    你像春神
    初冬
    “平移”檢測(cè)題
    男女国产视频网站| 三级国产精品片| 男人和女人高潮做爰伦理| 高清不卡的av网站| 精品久久久久久久末码| 久久精品久久久久久久性| 99热这里只有是精品50| 国产av码专区亚洲av| 精品国产乱码久久久久久小说| 欧美一区二区亚洲| 亚洲av综合色区一区| 国产在线男女| 交换朋友夫妻互换小说| 啦啦啦在线观看免费高清www| 蜜桃在线观看..| 麻豆成人av视频| 边亲边吃奶的免费视频| av又黄又爽大尺度在线免费看| 国产精品久久久久久av不卡| 蜜桃久久精品国产亚洲av| 在线精品无人区一区二区三 | 欧美xxxx性猛交bbbb| 国产 一区 欧美 日韩| 亚洲色图av天堂| 欧美亚洲 丝袜 人妻 在线| 丰满人妻一区二区三区视频av| av卡一久久| 欧美 日韩 精品 国产| 国产精品不卡视频一区二区| 91午夜精品亚洲一区二区三区| 午夜激情久久久久久久| 中文乱码字字幕精品一区二区三区| av黄色大香蕉| av福利片在线观看| 草草在线视频免费看| 高清不卡的av网站| 国产日韩欧美亚洲二区| 国产黄片美女视频| 国产精品国产三级国产av玫瑰| 18禁在线无遮挡免费观看视频| 亚洲av不卡在线观看| 伦精品一区二区三区| 汤姆久久久久久久影院中文字幕| 欧美日韩视频高清一区二区三区二| 一级黄片播放器| 国产伦精品一区二区三区四那| 人妻夜夜爽99麻豆av| 最近最新中文字幕免费大全7| 国产免费一区二区三区四区乱码| 老女人水多毛片| 人人妻人人爽人人添夜夜欢视频 | 黄色欧美视频在线观看| 成人午夜精彩视频在线观看| 亚洲色图av天堂| 国产免费福利视频在线观看| 美女主播在线视频| 国产亚洲欧美精品永久| 狂野欧美激情性xxxx在线观看| 18禁在线播放成人免费| av卡一久久| 亚洲精品国产av成人精品| 大香蕉97超碰在线| 免费看av在线观看网站| 黄色欧美视频在线观看| 大香蕉久久网| 在线观看av片永久免费下载| 免费播放大片免费观看视频在线观看| 国产亚洲欧美精品永久| 18禁在线播放成人免费| 久久久色成人| 午夜精品国产一区二区电影| av专区在线播放| 亚洲久久久国产精品| 亚洲色图av天堂| 精品熟女少妇av免费看| 亚洲av国产av综合av卡| 国产成人免费观看mmmm| 天堂8中文在线网| 欧美3d第一页| 波野结衣二区三区在线| 黑人高潮一二区| 国产在视频线精品| 国产淫语在线视频| 国产亚洲5aaaaa淫片| 国产视频首页在线观看| 久热久热在线精品观看| av福利片在线观看| 有码 亚洲区| 最近2019中文字幕mv第一页| 99re6热这里在线精品视频| 欧美日韩在线观看h| 午夜免费鲁丝| 国产v大片淫在线免费观看| 一个人看视频在线观看www免费| 自拍偷自拍亚洲精品老妇| 久久影院123| 国产精品一二三区在线看| 国产伦理片在线播放av一区| 深夜a级毛片| 色视频在线一区二区三区| 极品教师在线视频| 国产熟女欧美一区二区| 国国产精品蜜臀av免费| 欧美日韩亚洲高清精品| 成年美女黄网站色视频大全免费 | 欧美精品一区二区大全| 日韩欧美 国产精品| 欧美精品一区二区免费开放| 丰满人妻一区二区三区视频av| 九色成人免费人妻av| 欧美xxxx黑人xx丫x性爽| 女性被躁到高潮视频| 久久久久久人妻| 国产日韩欧美在线精品| 熟女av电影| 亚洲经典国产精华液单| 免费观看在线日韩| 美女主播在线视频| 97在线视频观看| 最近手机中文字幕大全| 国产v大片淫在线免费观看| 欧美变态另类bdsm刘玥| 波野结衣二区三区在线| 欧美日韩视频精品一区| 一级a做视频免费观看| 毛片一级片免费看久久久久| 久久人人爽人人片av| 最近最新中文字幕大全电影3| 91狼人影院| 精华霜和精华液先用哪个| 在线观看免费高清a一片| 亚洲图色成人| 国产黄色免费在线视频| 久久久久久久精品精品| 免费人妻精品一区二区三区视频| 天堂8中文在线网| 国产欧美日韩一区二区三区在线 | 另类亚洲欧美激情| 亚洲熟女精品中文字幕| 天天躁日日操中文字幕| 国产精品国产av在线观看| 街头女战士在线观看网站| 国产免费视频播放在线视频| 国产伦精品一区二区三区四那| 在线观看免费日韩欧美大片 | 一级毛片电影观看| 高清毛片免费看| 成年美女黄网站色视频大全免费 | 日韩三级伦理在线观看| 天堂俺去俺来也www色官网| 亚洲欧美日韩东京热| 美女国产视频在线观看| 免费在线观看成人毛片| 成人亚洲欧美一区二区av| 亚洲自偷自拍三级| 97精品久久久久久久久久精品| av在线老鸭窝| 2018国产大陆天天弄谢| 久久久久久伊人网av| 国产视频首页在线观看| 少妇裸体淫交视频免费看高清| 亚洲婷婷狠狠爱综合网| 久久久久精品性色| 国产精品99久久99久久久不卡 | 国产精品一区二区在线观看99| 日韩一本色道免费dvd| 美女主播在线视频| 久久久久久伊人网av| 少妇的逼好多水| 亚洲国产最新在线播放| 三级国产精品片| 精品一品国产午夜福利视频| 国产高清不卡午夜福利| 欧美日韩视频精品一区| 国产精品爽爽va在线观看网站| 麻豆成人午夜福利视频| 久久久久久久亚洲中文字幕| 精品国产一区二区三区久久久樱花 | 亚洲性久久影院| 国产高潮美女av| 国产精品人妻久久久影院| 国模一区二区三区四区视频| av专区在线播放| av免费观看日本| 一区二区三区免费毛片| 国产精品不卡视频一区二区| 亚洲精品色激情综合| 少妇熟女欧美另类| 看十八女毛片水多多多| 国产精品一区二区在线不卡| av线在线观看网站| av播播在线观看一区| 六月丁香七月| 色5月婷婷丁香| 少妇人妻久久综合中文| 日韩一区二区三区影片| 欧美三级亚洲精品| 高清不卡的av网站| 亚洲欧美成人精品一区二区| 久久久久视频综合| 晚上一个人看的免费电影| 永久网站在线| 美女福利国产在线 | 亚洲怡红院男人天堂| 老司机影院成人| 国产精品99久久久久久久久| 国产欧美另类精品又又久久亚洲欧美| 午夜精品国产一区二区电影| 久久久午夜欧美精品| 国产精品久久久久久av不卡| 久久亚洲国产成人精品v| 99热网站在线观看| 91精品国产九色| 寂寞人妻少妇视频99o| 狂野欧美激情性xxxx在线观看| 久久精品国产亚洲av天美| 中文字幕av成人在线电影| 欧美zozozo另类| 日韩视频在线欧美| 少妇人妻久久综合中文| 韩国高清视频一区二区三区| 亚洲欧美精品自产自拍| 91精品国产国语对白视频| 日韩视频在线欧美| 国产成人91sexporn| 少妇人妻精品综合一区二区| 大话2 男鬼变身卡| 在线观看免费高清a一片| 国产在线男女| 在线观看三级黄色| 亚洲国产成人一精品久久久| 成人亚洲精品一区在线观看 | 美女福利国产在线 | 九九在线视频观看精品| 日韩三级伦理在线观看| 狂野欧美激情性bbbbbb| 91精品一卡2卡3卡4卡| 婷婷色麻豆天堂久久| 黑人猛操日本美女一级片| 亚洲欧美中文字幕日韩二区| 日日摸夜夜添夜夜添av毛片| 最黄视频免费看| 免费观看性生交大片5| 亚洲成人一二三区av| 中国美白少妇内射xxxbb| 男人舔奶头视频| 搡老乐熟女国产| 久久久久国产精品人妻一区二区| 国产精品人妻久久久久久| 免费高清在线观看视频在线观看| 校园人妻丝袜中文字幕| 又爽又黄a免费视频| 黄色日韩在线| 色吧在线观看| 亚洲精品第二区| 久久精品国产亚洲av涩爱| 有码 亚洲区| 新久久久久国产一级毛片| 国产精品成人在线| 丝袜脚勾引网站| 黄色日韩在线| 91精品国产国语对白视频| 亚洲精品一二三| av又黄又爽大尺度在线免费看| 国产91av在线免费观看| av免费观看日本| 免费大片18禁| 精品亚洲成国产av| 男女下面进入的视频免费午夜| 狂野欧美白嫩少妇大欣赏| 成人高潮视频无遮挡免费网站| 男女国产视频网站| 久久久精品免费免费高清| 少妇人妻久久综合中文| 国产久久久一区二区三区| 亚洲美女黄色视频免费看| 在现免费观看毛片| 久久人妻熟女aⅴ| 久久国产亚洲av麻豆专区| 97在线人人人人妻| 一个人看的www免费观看视频| 一区二区av电影网| 女人十人毛片免费观看3o分钟| 少妇人妻精品综合一区二区| 大陆偷拍与自拍| 日韩三级伦理在线观看| 男人和女人高潮做爰伦理| 大又大粗又爽又黄少妇毛片口| 91午夜精品亚洲一区二区三区| 久久综合国产亚洲精品| 亚洲精品国产av蜜桃| 成年美女黄网站色视频大全免费 | 最近中文字幕2019免费版| 七月丁香在线播放| 久久人人爽人人片av| 九草在线视频观看| 99久久中文字幕三级久久日本| 在线免费十八禁| 亚洲性久久影院| 少妇人妻久久综合中文| 女性被躁到高潮视频| 亚洲无线观看免费| 免费播放大片免费观看视频在线观看| 婷婷色综合www| 亚洲欧美成人精品一区二区| 最新中文字幕久久久久| 水蜜桃什么品种好| 色综合色国产| 欧美高清成人免费视频www| 国产精品一区二区在线观看99| www.色视频.com| 国产精品精品国产色婷婷| 少妇猛男粗大的猛烈进出视频| 中文乱码字字幕精品一区二区三区| 狠狠精品人妻久久久久久综合| 国产精品一二三区在线看| 中文字幕制服av| 嘟嘟电影网在线观看| 亚洲国产精品成人久久小说| 在线亚洲精品国产二区图片欧美 | 日日摸夜夜添夜夜爱| 啦啦啦视频在线资源免费观看| 建设人人有责人人尽责人人享有的 | 国产精品人妻久久久久久| av国产免费在线观看| 精品久久久精品久久久| 免费人成在线观看视频色| 国产精品偷伦视频观看了| 在线观看免费高清a一片| 又黄又爽又刺激的免费视频.| 欧美精品人与动牲交sv欧美| 午夜福利视频精品| 欧美丝袜亚洲另类| 大又大粗又爽又黄少妇毛片口| 91狼人影院| 国产精品一区二区性色av| 欧美精品国产亚洲| 99热这里只有精品一区| 22中文网久久字幕| 91久久精品国产一区二区成人| a级一级毛片免费在线观看| 亚洲精品日韩av片在线观看| 夜夜骑夜夜射夜夜干| 亚洲在久久综合| 大片电影免费在线观看免费| 国产一级毛片在线| 欧美日韩一区二区视频在线观看视频在线| 夫妻午夜视频| 免费看av在线观看网站| 国产成人freesex在线| 国产精品秋霞免费鲁丝片| 插阴视频在线观看视频| 青春草视频在线免费观看| 成年美女黄网站色视频大全免费 | 高清黄色对白视频在线免费看 | 在线亚洲精品国产二区图片欧美 | 老司机影院成人| 久热这里只有精品99| 黄片无遮挡物在线观看| 一区二区三区四区激情视频| 久久久久久久久久久丰满| 成人毛片60女人毛片免费| 欧美一区二区亚洲| 日韩视频在线欧美| 亚洲精品乱码久久久久久按摩| 久久ye,这里只有精品| 免费人成在线观看视频色| 最黄视频免费看| 欧美xxxx黑人xx丫x性爽| 日韩视频在线欧美| 在线观看一区二区三区| videossex国产| 亚洲人成网站在线观看播放| 日韩不卡一区二区三区视频在线| 91精品伊人久久大香线蕉| 少妇精品久久久久久久| 五月伊人婷婷丁香| 少妇 在线观看| 亚洲最大成人中文| 99热网站在线观看| 国产中年淑女户外野战色| 九九在线视频观看精品| 午夜免费鲁丝| 青春草视频在线免费观看| 视频区图区小说| 狂野欧美白嫩少妇大欣赏| 国产av码专区亚洲av| 亚洲精品国产成人久久av| 99热这里只有精品一区| 在线天堂最新版资源| 日本猛色少妇xxxxx猛交久久| 麻豆乱淫一区二区| 黄色一级大片看看| 国产欧美另类精品又又久久亚洲欧美| 性色av一级| 国产免费福利视频在线观看| 最近中文字幕高清免费大全6| 国产淫语在线视频| 亚洲美女视频黄频| a级毛色黄片| 赤兔流量卡办理| 国产成人免费观看mmmm| 婷婷色av中文字幕| 纵有疾风起免费观看全集完整版| 国产高清有码在线观看视频| a级一级毛片免费在线观看| 日日撸夜夜添| 国产精品伦人一区二区| 午夜福利在线观看免费完整高清在| 久久久久久久精品精品| 国产亚洲av片在线观看秒播厂| 亚洲成人中文字幕在线播放| 麻豆成人午夜福利视频| 一个人看的www免费观看视频| 91久久精品国产一区二区三区| 一级爰片在线观看| 欧美国产精品一级二级三级 | 性高湖久久久久久久久免费观看| 欧美少妇被猛烈插入视频| 国产欧美日韩一区二区三区在线 | .国产精品久久| 亚洲一级一片aⅴ在线观看| 国产精品99久久99久久久不卡 | 一级av片app| 人人妻人人澡人人爽人人夜夜| 五月玫瑰六月丁香| 毛片女人毛片| 国产伦精品一区二区三区四那| 免费高清在线观看视频在线观看| 欧美性感艳星| 老熟女久久久| 欧美精品人与动牲交sv欧美| 亚洲精品久久午夜乱码| 内地一区二区视频在线| 成人毛片60女人毛片免费| 卡戴珊不雅视频在线播放| 欧美老熟妇乱子伦牲交| 成人特级av手机在线观看| 日日摸夜夜添夜夜添av毛片| 久久韩国三级中文字幕| 你懂的网址亚洲精品在线观看| 成年人午夜在线观看视频| 亚洲av国产av综合av卡| 国产欧美日韩一区二区三区在线 | 亚洲天堂av无毛| 亚洲图色成人| 国产成人精品婷婷| 国产成人一区二区在线| 久久午夜福利片| 亚洲第一区二区三区不卡| 熟女人妻精品中文字幕| 国产真实伦视频高清在线观看| 亚洲不卡免费看| 在线观看三级黄色| 国产毛片在线视频| 少妇猛男粗大的猛烈进出视频| 夜夜看夜夜爽夜夜摸| 国产精品99久久99久久久不卡 | 麻豆乱淫一区二区| 91午夜精品亚洲一区二区三区| 啦啦啦啦在线视频资源| 国产成人91sexporn| 亚洲国产毛片av蜜桃av| 国产亚洲91精品色在线| 亚洲精华国产精华液的使用体验| 午夜福利视频精品| 午夜福利网站1000一区二区三区| 国产视频内射| 国产伦精品一区二区三区视频9| 日本欧美视频一区| 免费大片18禁| 欧美区成人在线视频| 精品人妻熟女av久视频| 日本色播在线视频| 国产亚洲av片在线观看秒播厂| 国国产精品蜜臀av免费| 中文资源天堂在线| 国产视频首页在线观看| 欧美日韩国产mv在线观看视频 | 成年美女黄网站色视频大全免费 | 人妻制服诱惑在线中文字幕| 夫妻午夜视频| 亚洲av成人精品一区久久| 国产精品偷伦视频观看了| 男人和女人高潮做爰伦理| av福利片在线观看| 日本av手机在线免费观看| 大又大粗又爽又黄少妇毛片口| 高清日韩中文字幕在线| 狠狠精品人妻久久久久久综合| 一区在线观看完整版| 99热6这里只有精品| 欧美亚洲 丝袜 人妻 在线| 性色av一级| 国产真实伦视频高清在线观看| 免费黄色在线免费观看| 亚洲成人av在线免费| 国精品久久久久久国模美| 亚洲性久久影院| 国产亚洲午夜精品一区二区久久| 人人妻人人看人人澡| 国产免费视频播放在线视频| 欧美精品一区二区大全| 亚洲国产成人一精品久久久| 又粗又硬又长又爽又黄的视频| 亚洲,欧美,日韩| 日韩免费高清中文字幕av| 久久久午夜欧美精品| 亚洲图色成人| 精品一区在线观看国产| 一个人看的www免费观看视频| 丝袜脚勾引网站| 少妇被粗大猛烈的视频| 国产日韩欧美在线精品| 人人妻人人添人人爽欧美一区卜 | 视频中文字幕在线观看| 成年美女黄网站色视频大全免费 | 最近2019中文字幕mv第一页| 免费播放大片免费观看视频在线观看| 精品一品国产午夜福利视频| 久久99热这里只频精品6学生| 久久精品国产亚洲av涩爱| 啦啦啦中文免费视频观看日本| 人妻一区二区av| 亚洲av电影在线观看一区二区三区| 中文资源天堂在线| 综合色丁香网| 十八禁网站网址无遮挡 | 午夜福利视频精品| 国产成人精品福利久久| 国产黄片视频在线免费观看| 91精品一卡2卡3卡4卡| 欧美另类一区| 久久国产精品男人的天堂亚洲 | 日韩免费高清中文字幕av| 国产熟女欧美一区二区| 日本一二三区视频观看| 亚洲欧美精品自产自拍| 亚洲精品日本国产第一区| 成年美女黄网站色视频大全免费 | 亚洲欧美精品自产自拍| 成年人午夜在线观看视频| 日产精品乱码卡一卡2卡三| 秋霞在线观看毛片| av免费观看日本| 伊人久久国产一区二区| 国产精品福利在线免费观看| 欧美3d第一页| 亚洲精品国产av蜜桃| 亚洲av中文av极速乱| 久久精品久久久久久久性| av免费观看日本| 欧美 日韩 精品 国产| 最黄视频免费看| 亚洲人成网站在线播| 成人国产麻豆网| av在线app专区| 中文精品一卡2卡3卡4更新| 成人一区二区视频在线观看| 国产亚洲91精品色在线| 久久婷婷青草| 国产男女内射视频| 99热这里只有是精品50| 欧美少妇被猛烈插入视频| 亚洲av中文字字幕乱码综合| 超碰av人人做人人爽久久| kizo精华| 免费观看无遮挡的男女| 日本-黄色视频高清免费观看| 国产 精品1| 婷婷色综合大香蕉| 少妇 在线观看| 日本午夜av视频| 新久久久久国产一级毛片| 色婷婷av一区二区三区视频| 伊人久久国产一区二区| 爱豆传媒免费全集在线观看| 久久国产精品男人的天堂亚洲 | 亚洲综合精品二区| 日韩欧美 国产精品| 性色av一级| 亚洲真实伦在线观看| 久久精品国产亚洲av天美| 国产男女内射视频| 人妻一区二区av| 成人无遮挡网站| 中文天堂在线官网| 青春草国产在线视频| 男女下面进入的视频免费午夜| 又爽又黄a免费视频| 中文欧美无线码| 久久久久久久国产电影| www.色视频.com| 欧美一级a爱片免费观看看| 欧美少妇被猛烈插入视频| 亚洲精品一二三| 国产高清有码在线观看视频| 亚洲国产高清在线一区二区三| 亚洲欧美日韩另类电影网站 | 精品一区在线观看国产| 日韩国内少妇激情av| 国产精品久久久久成人av| 午夜日本视频在线| 欧美日韩亚洲高清精品| 亚洲精品乱久久久久久| 在线观看免费视频网站a站| 欧美性感艳星| 色综合色国产| 国产精品熟女久久久久浪| 纵有疾风起免费观看全集完整版| 国产视频内射| 国产精品秋霞免费鲁丝片| 少妇精品久久久久久久| 一级a做视频免费观看| 一个人看视频在线观看www免费|