• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Exact solution of an integrable quantum spin chain with competing interactions?

    2021-11-23 07:31:12JianWang王健YiQiao喬藝JunpengCao曹俊鵬andWenLiYang楊文力
    Chinese Physics B 2021年11期
    關(guān)鍵詞:王健

    Jian Wang(王健) Yi Qiao(喬藝) Junpeng Cao(曹俊鵬) and Wen-Li Yang(楊文力)

    1Beijing National Laboratory for Condensed Matter Physics,Institute of Physics,Chinese Academy of Sciences,Beijing 100190,China

    2School of Physical Sciences,University of Chinese Academy of Sciences,Beijing 100190,China

    3Songshan Lake Materials Laboratory,Dongguan 523808,China

    4Peng Huanwu Center for Fundamental Theory,Xi’an 710127,China

    5Institute of Modern Physics,Northwest University,Xi’an 710127,China

    6Shaanxi Key Laboratory for Theoretical Physics Frontiers,Xi’an 710127,China 7School of Physics,Northwest University,Xi’an 710127,China

    Keywords: quantum spin chain,Bethe ansatz,Yang-Baxter equation

    1. Introduction

    Quantum magnetism is an important issue in research of condensed matter physics. Spin-spin interactions can induce many interesting phenomena such as novel magnetic ordered states, fractional spin excitations and quantum phase transitions. The typical spin-spin interactions include the nearest neighbor(NN),next nearest neighbor(NNN),Dzyloshinsky-Moriya(DM)interactions and chirality three-spin couplings.

    Focusing on the NN interaction, the most famous model is the Heisenberg model. It is well-known that the elementary excitation of the isotropic Heisenberg model is gapless while that of the anisotropic case has a finite gap in some regions.The Heisenberg model can be solved exactly by the coordinate Bethe ansatz[1]or the quantum inverse scattering method.[2]Nowadays,Bethe ansatz becomes a popular method to calculate exact solutions of one-dimensional quantum many-body systems. The Heisenberg model is also a suitable candidate to check the validity of new numerical simulation technique and new physical pictures such as the spinon and fractional statistics.[3]

    When the NNN interaction is involved, the most famous model is theJ1-J2model, which cannot be solved exactly. At the Majumdar-Ghosh point, i.e.,J2/J1=0.5, the Hamiltonian degenerates into a projector operator and only the ground state can be obtained exactly.[4]TheJ1-J2model withJ2/J1=0.241 possesses a Kosterlitz-Thouless-like quantum phase transition, which is a kind of topological phase transitions and does not have the local order parameter. The corresponding critical point has been studied by many methods such as the density matrix renormalization group[5]and fieldtheoretical approach.[6-8]Due to the competition between NN and NNN interactions, especially when the NN interaction is ferromagnetic and NNN interaction is antiferromagnetic,some interesting ordered magnetic states are found. TheJ1-J2model can be explained as the zigzag spin ladder, which is very important in the study of crossover from the onedimensional to the two-dimensional case. Therefore, much attention has been paid to the quantum spin chain with competing interactions.[9-12]

    The DM interaction is a typical antisymmetric spinspin interaction, which plays an essential role in various fields.[13-15]For example, the DM interaction in the Heisenberg model can induce the spin glasses phase,[16]phase transition[17]and nonlinear excitations.[18]In recent years,DM interactions in magnetic systems have been studied extensively.[19,20]

    The chiral three-spin couplings are another kind of interesting interactions.The chirality terms are used to characterize the chiral spin liquid state in the system.[21]It is proposed that the expectation value of the spin chirality operator can be used as the order parameter for chiral spin liquids.[22,23]Using the quantum transfer matrix method,researchers have studied the thermodynamic properties of this kind of models.[24,25]Recently,the models with chirality terms have attracted renewed interest in the theory of quantum spin liquids.[26,27]

    The magnetic impurity in the strongly correlated systems is the eternal topic in the quantum magnetism theory.Many interesting mechanisms such as the Kondo screen,spiral phase,novel spinon excitation,ghost spin and boundary bound states are induced by the magnetic impurity. The Kondo problems in one dimension are solved by means of Bethe ansatz.[28,29]Using the language of integrable theory,some impurity problems are equivalent to the boundary magnetic fields. Here,we note that if the boundary magnetic fields are parallel,then theU(1)symmetry will be held and the system can be solved by the Bethe ansatz.[30]If the boundary magnetic fields are unparallel,then theU(1)symmetry will be broken and the conventional Bethe ansatz will not work. In this case,the system can be solved by the off-diagonal Bethe ansatz.[31]

    In this paper,we put all the above-mentioned interactions(NN,NNN,DM,chiral three-spin couplings and boundary impurities) together and construct a new integrable model. The Hamiltonian is given by Eq. (1). For the most possible applications, we consider the case that the boundary fields are unparallel.Due to the off-diagonal boundary reflection,the total number of quasiparticles with fixed spin-component is not conserved. By means of the off-diagonal Bethe ansatz,we obtain the exact solution of the system.These exact solutions can be used to study some physical quantities such as the ground state,elementary excitations,and boundary energy.

    The paper is organized as follows. The model Hamiltonian is explained in Section 2 and the integrability of the system is proved in Section 3. The exact energy spectrum and the Bethe ansatz equations are derived in Section 4. The exact ground state energies in some parameter regions are given in Section 5. Section 6 is attributed to the concluding remarks.

    2. Model Hamiltonian

    The integrable Hamiltonian considered in this study is

    Let us explain Hamiltonian (1) more clearly. The interactions in the bulk are isotropic and the coupling strengths are chosen as

    The integrability requires that the parametersJ1,J2andJ3are not independent. From Eq.(2),we also see that due to the existence of boundary magnetic fields, the couplings ofσ1·σ2andσ2N?1·σ2Ncan be enhanced or decreased by the boundary fields. The resulted coupling strengths could be different from that of other bonds in the bulk. The NNN interacting strengthJ2is a constant. Meanwhile,the signs of chiral three-spin interactions change with the changing site numberj. Thus the chirality terms are staggered.

    3. Integrability

    Now, we prove the integrability of Hamiltonian (1). We adopt the standard notations.Throughout this paper,Vdenotes a two-dimensional linear space. For any matrixA ∈End(V),Ajis an embedded operator in the tensor spaceV ?V ?···,which acts asAon thej-th space and as identity on the other factor spaces. ForB ∈End(V ?V),Bi jis an embedding operator ofBin the tensor space, which acts as identity on the factor spaces except for thei-th andj-th ones.

    The integrability of Hamiltonian (1) is related with theR-matrix and the reflection matricesK±(u). TheR-matrix is

    wherepis the boundary parameter which characterizes the strength of boundary field. The matrixK?(u)satisfies the reflection equation This implies that the transfer matrixt(u) is the generating function of all the conserved quantities. Hamiltonian (1) is constructed from the transfer matrixt(u)as

    4. Exact solution

    From the construction of Hamiltonian(1),we can see that the dual reflection matrixK+(u)has the off-diagonal elements.Thus theU(1)symmetry of the system is broken. We use the off-diagonal Bethe ansatz(ODBA)to solve Hamiltonian(1).

    The main idea of the ODBA is as follows. From the definition of transfer matrixt(u),we know thatt(u)is an operator polynomial ofuwith the order of 4N+2. Denote the eigenvalue of the transfer matrixt(u)asΛ(u).Then we arrive at the case that the eigenvalueΛ(u)must be a polynomial ofuwith the order of 4N+2. Our task is to determine the polynomialΛ(u),which can be achieved by its values at arbitrary 4N+3 points (at least) or the 4N+3 constraints satisfied byΛ(u)in principle. From the crossing-unitary relation (15) of the transfer matrixt(u), we also knowΛ(u)=Λ(?u ?1). Thus the number of constraints is reduced from 4N+3 to 2N+2.If these constraints are obtained, the eigenvalueΛ(u) can be completely determined.

    Now,we seek these constraints.The matrixR(u)given by Eq.(3)degenerates into the permutation operator at the point ofu=θj. Using the properties of permutation operator,after tedious calculations,we obtain

    Acting the operators product identities (19) on the eigenstate of transfer matrixt(u),we obtain the 2Nfunction relations

    and{λj|j=1,...,2N}are 2NBethe roots. BecauseΛ(u)is a polynomial,the residues on right-hand side of Eq.(25)should be zero,which gives the constraints of Bethe roots:

    Solving the Bethe ansatz equations(27),we obtain the values of Bethe roots{λj|j=1,...,2N}. Substituting these values into Eq. (25), we obtain the eigenvalueΛ(u) of the transfer matrixt(u).

    Now,we are ready to determine the eigenvalue of Hamiltonian (1). Substituting{θ2k?1=a,θ2k=?a|k=1,...,N}into Eq.(25),we obtain

    We check the above results numerically for some small site numbers. We first solve the Bethe ansatz equations (30)with randomly chosen model parameters and obtain the values of Bethe roots. Substituting the values of Bethe roots into Eq. (31), we obtain the eigenvalues of Hamiltonian (1). The results are listed in Table 1. Next, we numerically diagonalize Hamiltonian(1)with same model parameters. We find that the eigenvalues obtained by solving the Bethe ansatz equations are exactly the same as those obtained by the exact diagonalization. Meanwhile, the expression (31) gives the complete spectrum of the system.

    Table 1. Numerical solutions of the Bethe ansatz equations(30)with 2N=4,a=0.7i, p=?0.6,q=?0.3 and ξ =1.2. Here n indicates the number of energy levels and En is the corresponding energy. The energy En obtained from the Bethe ansatz equations is exactly the same as that calculated from the exact diagonalization of Hamiltonian(1).

    5. Ground state energy

    Now,we study the ground state energy of the system(1).Following the scheme suggested in Refs.[32,33],we find that the contribution of the third term in the inhomogeneousTQrelation (28) supplies theo(1/(2N)) correction which can be neglected in the thermodynamic limit 2N →∞. Thus, we introduce the following homogeneousT-Qrelation:

    For the finite system size,Ehis the approximation solution of the system. With the increasing system size, the accuracy becomes higher. In the thermodynamic limit,Ehis infinitely tends to the actual value.

    Next, we compute the values ofEh. For simplicity, we consider the case that ˉp ≥0 and ˉq ≥0. In the ground state,all the Bethe roots should take real values. Taking the logarithm of Eq.(35),we arrive at

    andδ(u±uh)are the boundary holes with the positions±uh.In the thermodynamic limit,the positions of holes would tend to infinity, and the holes contribute nothing to the energy.These boundary holes correspond to the Majorana modes at the two boundaries.[34]

    We solve Eq.(39)using the Fourier transformation

    According to Eqs. (36) and (45), we obtain the ground state energy of the system as follows:

    In order to show the correctness of Eq.(46),we calculate the ground state energy of the system(1)using the density matrix renomalization group(DMRG)method and compare the results with those obtained from Eq.(46),as shown in Fig.1. We can see that the energy difference ?Etends to zero with the increasing system size. The data satisfy the scaling law ?E=γ(2N)m,

    wherem<0. Thus in the thermodynamic limit,the expression(46)gives the actual value of the ground state energy.

    Fig. 1. The energy difference ?E =ED ?Eg with the different system sizes,where ED is the ground state energy calculated by using the DMRG method and Eg is the ground state energy calculated by Eq.(46).The model parameters are taken as a=0.66i, p=1.6, q=1.3 and ξ =1.2. The ?E decreases with the increasing system size 2N and the data can be fitted as ?E =3.124(2N)?0.9292. When the system size tends to infinity,the energy difference ?E would be zero.

    6. Conclusion

    In summary, we have proposed a new integrable quantum spin chain which includes the NN,NNN,chiral three-spin couplings,DM interactions and unparallel boundary magnetic fields. By means of the off-diagonal Bethe ansatz, we obtain the exact solution of the system. The inhomogeneousT-Qrelation and Bethe ansatz equations are given explicitly. We further calculate the ground state energy in the regime of ˉp ≥0 and ˉq ≥0.

    The method given in this paper can be used to construct other new integrable models with some interesting interactions. For example, if we start from the trigonometric or ellipticR-matrix,[2]we can study the anisotropic version of the integrable Hamiltonian(1). Meanwhile,if we put the alternate inhomogeneous parameters into theR-matrix[35]of the Hubbard model, we can construct an exactly solved strongly correlated electronic model which contains many possible physical processes. For example, besides the electrons hopping and on-site interaction, other terms such as the electron-pairs hopping, extended nearest-neighbor interactionsnjnj+1, and spin flipped behavior after reflecting. Due to the competitions among these couplings, some nontrivial phenomena such as the finite critical on-site interactionUcof the metal-insulator transition, new quantum states, novel charge and spin excitations may appear.

    Acknowledgment

    We would like to thank Professor Y. Wang for his valuable discussion and continuous encouragement.

    猜你喜歡
    王健
    王健
    美聯(lián)儲(chǔ)的艱難選擇:穩(wěn)通脹還是穩(wěn)金融市場(chǎng)
    鉗工機(jī)械操作的質(zhì)量控制策略
    疫情期間,甲狀腺結(jié)節(jié)患者該怎么辦
    抗癌之窗(2020年1期)2020-05-16 01:37:26
    每天只練五分鐘
    “王健扇藝展”
    我們?cè)谝黄鸬膬r(jià)值是相愛
    家庭百事通(2017年7期)2017-07-04 10:04:39
    你像春神
    初冬
    “平移”檢測(cè)題
    三级国产精品片| 五月开心婷婷网| 肉色欧美久久久久久久蜜桃| 少妇人妻 视频| 男女国产视频网站| 国产成人aa在线观看| 欧美成人午夜免费资源| 大香蕉久久网| 日韩伦理黄色片| 在线观看国产h片| 大香蕉97超碰在线| 99久久人妻综合| a级片在线免费高清观看视频| 国产熟女欧美一区二区| av免费观看日本| 搡老乐熟女国产| 美女国产高潮福利片在线看| 日韩精品免费视频一区二区三区 | 老女人水多毛片| 看免费成人av毛片| 男人操女人黄网站| 国产日韩一区二区三区精品不卡 | 亚洲国产精品999| 永久网站在线| 精品午夜福利在线看| 热re99久久国产66热| 亚洲精品456在线播放app| 赤兔流量卡办理| 赤兔流量卡办理| 国产成人精品久久久久久| 久久精品久久久久久噜噜老黄| 国产片内射在线| 中文乱码字字幕精品一区二区三区| 国产在线一区二区三区精| 欧美+日韩+精品| 夜夜看夜夜爽夜夜摸| 国产一区二区在线观看日韩| 一区二区三区四区激情视频| 特大巨黑吊av在线直播| 亚洲中文av在线| 日本与韩国留学比较| 国产亚洲欧美精品永久| 亚洲四区av| 亚洲精品乱码久久久v下载方式| 十八禁网站网址无遮挡| 免费观看a级毛片全部| 搡老乐熟女国产| 少妇 在线观看| 国产日韩欧美在线精品| 22中文网久久字幕| 久久久久人妻精品一区果冻| 另类精品久久| 日韩熟女老妇一区二区性免费视频| 午夜av观看不卡| 亚洲欧洲日产国产| 一级黄片播放器| 精品视频人人做人人爽| 日韩av不卡免费在线播放| 爱豆传媒免费全集在线观看| 久久国内精品自在自线图片| 日本欧美视频一区| 成人毛片a级毛片在线播放| 色吧在线观看| 春色校园在线视频观看| 日本欧美视频一区| 国产女主播在线喷水免费视频网站| 久久久久久伊人网av| 91在线精品国自产拍蜜月| 韩国高清视频一区二区三区| 91精品三级在线观看| 午夜日本视频在线| 久久综合国产亚洲精品| 国产精品一二三区在线看| 80岁老熟妇乱子伦牲交| 免费高清在线观看视频在线观看| 男女国产视频网站| 亚洲国产欧美日韩在线播放| 五月开心婷婷网| 美女主播在线视频| 91在线精品国自产拍蜜月| 亚洲成人一二三区av| 久久亚洲国产成人精品v| 91午夜精品亚洲一区二区三区| 一边亲一边摸免费视频| 一边摸一边做爽爽视频免费| 考比视频在线观看| 国产免费现黄频在线看| 女人精品久久久久毛片| 欧美日韩视频高清一区二区三区二| 色婷婷久久久亚洲欧美| 少妇被粗大的猛进出69影院 | 黄片无遮挡物在线观看| 久久青草综合色| 国产亚洲一区二区精品| 欧美日本中文国产一区发布| 国产极品粉嫩免费观看在线 | 日韩在线高清观看一区二区三区| 亚洲色图 男人天堂 中文字幕 | 精品少妇内射三级| 日本91视频免费播放| 狠狠婷婷综合久久久久久88av| 各种免费的搞黄视频| 午夜老司机福利剧场| 久久久久久久久久久丰满| 久久女婷五月综合色啪小说| 免费不卡的大黄色大毛片视频在线观看| 国产精品久久久久成人av| 涩涩av久久男人的天堂| 成人毛片60女人毛片免费| 久久久国产一区二区| 日韩亚洲欧美综合| 一区二区日韩欧美中文字幕 | 日韩中字成人| 能在线免费看毛片的网站| 涩涩av久久男人的天堂| 日韩av在线免费看完整版不卡| 成人影院久久| 如何舔出高潮| 欧美日韩一区二区视频在线观看视频在线| 91久久精品国产一区二区三区| 久久精品国产亚洲网站| 国产精品.久久久| 一区二区av电影网| 在现免费观看毛片| 亚洲无线观看免费| 少妇丰满av| 美女内射精品一级片tv| 美女中出高潮动态图| 亚洲一区二区三区欧美精品| 日日爽夜夜爽网站| 亚洲美女搞黄在线观看| 永久免费av网站大全| 男女边吃奶边做爰视频| 晚上一个人看的免费电影| 精品酒店卫生间| 最近最新中文字幕免费大全7| 热99国产精品久久久久久7| 中文字幕久久专区| 日本av免费视频播放| av在线播放精品| 99久久人妻综合| 午夜福利在线观看免费完整高清在| 国产国拍精品亚洲av在线观看| 51国产日韩欧美| 人妻一区二区av| 久久精品久久久久久噜噜老黄| 能在线免费看毛片的网站| 中文字幕久久专区| 免费观看a级毛片全部| 日韩欧美精品免费久久| 免费看不卡的av| 免费观看a级毛片全部| 亚洲高清免费不卡视频| 日韩一区二区视频免费看| 午夜日本视频在线| 精品少妇内射三级| 亚洲人成网站在线观看播放| 精品久久久久久久久亚洲| 一区二区三区免费毛片| 蜜桃在线观看..| 日本午夜av视频| av国产久精品久网站免费入址| 大又大粗又爽又黄少妇毛片口| 2022亚洲国产成人精品| 久久午夜福利片| 国产免费又黄又爽又色| 国产 一区精品| videossex国产| 日本欧美视频一区| 国产精品一国产av| 高清欧美精品videossex| 精品亚洲乱码少妇综合久久| 国产成人精品无人区| 久久久精品94久久精品| 久久久久久久国产电影| 久久99一区二区三区| 夫妻午夜视频| 熟妇人妻不卡中文字幕| 国产精品 国内视频| 亚洲国产精品一区三区| 国产亚洲精品第一综合不卡 | 一级a做视频免费观看| 妹子高潮喷水视频| 日本-黄色视频高清免费观看| 免费av中文字幕在线| 国产一级毛片在线| 久久99一区二区三区| 亚洲av电影在线观看一区二区三区| 久久精品国产亚洲av天美| 高清午夜精品一区二区三区| 久久人人爽av亚洲精品天堂| 国产色爽女视频免费观看| 亚洲一区二区三区欧美精品| 插阴视频在线观看视频| 在线播放无遮挡| 视频区图区小说| 日本欧美国产在线视频| 日韩,欧美,国产一区二区三区| 爱豆传媒免费全集在线观看| 欧美日韩亚洲高清精品| 交换朋友夫妻互换小说| 一区二区三区免费毛片| 精品少妇黑人巨大在线播放| 日本猛色少妇xxxxx猛交久久| 18禁动态无遮挡网站| 国产精品久久久久久久电影| 校园人妻丝袜中文字幕| 高清在线视频一区二区三区| 国产熟女午夜一区二区三区 | 亚洲精品,欧美精品| 欧美日韩国产mv在线观看视频| 日韩精品免费视频一区二区三区 | 亚洲国产欧美在线一区| 晚上一个人看的免费电影| 永久网站在线| 中文字幕av电影在线播放| 又黄又爽又刺激的免费视频.| av在线观看视频网站免费| 大片免费播放器 马上看| 亚洲三级黄色毛片| 搡女人真爽免费视频火全软件| 亚洲欧美一区二区三区国产| 最近中文字幕2019免费版| 一级毛片电影观看| 乱码一卡2卡4卡精品| 国产精品国产三级专区第一集| 一区二区三区四区激情视频| 国产午夜精品一二区理论片| 18禁裸乳无遮挡动漫免费视频| 三级国产精品片| 99精国产麻豆久久婷婷| 久久午夜综合久久蜜桃| 中文字幕久久专区| 99热网站在线观看| 18禁动态无遮挡网站| 天天操日日干夜夜撸| 青青草视频在线视频观看| 丁香六月天网| 日韩精品有码人妻一区| 久久精品国产亚洲网站| 国产女主播在线喷水免费视频网站| 国产免费视频播放在线视频| 日韩在线高清观看一区二区三区| 一级片'在线观看视频| 国产精品久久久久久久久免| 18在线观看网站| 丰满少妇做爰视频| 日韩,欧美,国产一区二区三区| 午夜激情久久久久久久| 亚洲图色成人| 婷婷色综合大香蕉| 日韩 亚洲 欧美在线| videosex国产| 制服人妻中文乱码| 国产免费又黄又爽又色| 99热网站在线观看| 亚洲不卡免费看| 亚洲av中文av极速乱| 一本久久精品| 九草在线视频观看| 日韩成人av中文字幕在线观看| 黄色欧美视频在线观看| 亚洲av.av天堂| 啦啦啦啦在线视频资源| 日韩人妻高清精品专区| 一本大道久久a久久精品| 伊人久久精品亚洲午夜| 欧美性感艳星| h视频一区二区三区| 又大又黄又爽视频免费| 999精品在线视频| 亚洲av日韩在线播放| 91精品国产国语对白视频| 一区二区日韩欧美中文字幕 | 激情五月婷婷亚洲| 在线观看一区二区三区激情| 免费高清在线观看视频在线观看| 久久青草综合色| 亚洲精品国产av蜜桃| 欧美+日韩+精品| 天天躁夜夜躁狠狠久久av| 啦啦啦在线观看免费高清www| 国产成人免费无遮挡视频| 欧美丝袜亚洲另类| 在线精品无人区一区二区三| 久久99蜜桃精品久久| 爱豆传媒免费全集在线观看| 欧美日韩国产mv在线观看视频| 国产精品久久久久久精品古装| av专区在线播放| 人成视频在线观看免费观看| 日本wwww免费看| 黄片播放在线免费| 国产精品99久久99久久久不卡 | 一个人看视频在线观看www免费| 爱豆传媒免费全集在线观看| 极品少妇高潮喷水抽搐| 免费观看a级毛片全部| 亚洲欧美中文字幕日韩二区| 国产熟女欧美一区二区| 热re99久久国产66热| 日韩成人伦理影院| 777米奇影视久久| 晚上一个人看的免费电影| 亚洲av欧美aⅴ国产| 国产成人a∨麻豆精品| 久久久久久久久久成人| 日韩强制内射视频| 少妇被粗大的猛进出69影院 | 男女国产视频网站| 一区二区日韩欧美中文字幕 | 99九九线精品视频在线观看视频| 各种免费的搞黄视频| 香蕉精品网在线| 欧美精品人与动牲交sv欧美| 国产精品熟女久久久久浪| 国产精品.久久久| 中国国产av一级| 精品久久久噜噜| 日韩不卡一区二区三区视频在线| 国产无遮挡羞羞视频在线观看| 天天操日日干夜夜撸| av在线播放精品| 亚洲丝袜综合中文字幕| 亚洲国产欧美在线一区| 国产一区有黄有色的免费视频| 少妇人妻久久综合中文| 三上悠亚av全集在线观看| 日本与韩国留学比较| 国产精品99久久99久久久不卡 | 少妇 在线观看| 在线看a的网站| 美女内射精品一级片tv| 波野结衣二区三区在线| 久久人人爽av亚洲精品天堂| 日韩视频在线欧美| 各种免费的搞黄视频| 成年av动漫网址| 哪个播放器可以免费观看大片| 人妻系列 视频| av网站免费在线观看视频| av不卡在线播放| 亚洲成色77777| 国产精品女同一区二区软件| 另类亚洲欧美激情| 夫妻午夜视频| 少妇被粗大的猛进出69影院 | 色视频在线一区二区三区| 国产精品人妻久久久久久| 精品久久久久久久久av| 欧美一级a爱片免费观看看| 草草在线视频免费看| 国产69精品久久久久777片| 日韩av在线免费看完整版不卡| av不卡在线播放| 久久国产精品大桥未久av| 亚洲,一卡二卡三卡| 国产伦理片在线播放av一区| av一本久久久久| 精品一区二区三卡| 五月玫瑰六月丁香| 亚洲三级黄色毛片| 国产成人精品婷婷| 成人综合一区亚洲| 777米奇影视久久| 精品亚洲成国产av| 免费不卡的大黄色大毛片视频在线观看| videos熟女内射| 美女国产视频在线观看| 亚洲少妇的诱惑av| 久久久久久久久大av| 亚洲av在线观看美女高潮| 日韩av不卡免费在线播放| 色婷婷久久久亚洲欧美| 亚洲av日韩在线播放| av电影中文网址| 99国产综合亚洲精品| 91精品伊人久久大香线蕉| 人人妻人人爽人人添夜夜欢视频| 久久午夜综合久久蜜桃| 亚洲精品一二三| 亚洲欧洲精品一区二区精品久久久 | 啦啦啦啦在线视频资源| 中文欧美无线码| 人妻系列 视频| 亚洲精品乱码久久久久久按摩| 美女国产高潮福利片在线看| 边亲边吃奶的免费视频| 狂野欧美激情性bbbbbb| 欧美日韩成人在线一区二区| 久久99热6这里只有精品| 一区二区三区精品91| 亚洲精品第二区| 边亲边吃奶的免费视频| 国产 精品1| 91久久精品电影网| 国产成人aa在线观看| 欧美精品一区二区大全| 亚洲欧美一区二区三区国产| 亚洲精品视频女| 亚洲欧美中文字幕日韩二区| 母亲3免费完整高清在线观看 | 精品久久蜜臀av无| 丝袜喷水一区| 在线观看三级黄色| 精品视频人人做人人爽| 男女国产视频网站| 蜜桃在线观看..| 日韩强制内射视频| 亚洲国产精品999| 国产视频首页在线观看| 亚洲人成网站在线观看播放| 国产精品一区二区在线不卡| 国产探花极品一区二区| 亚洲精品av麻豆狂野| 五月开心婷婷网| 丰满少妇做爰视频| 亚洲av日韩在线播放| 亚洲国产色片| 免费人妻精品一区二区三区视频| 啦啦啦啦在线视频资源| 国产欧美日韩综合在线一区二区| 老熟女久久久| 亚洲一级一片aⅴ在线观看| 国产免费又黄又爽又色| a级毛片免费高清观看在线播放| 国产av一区二区精品久久| 免费av中文字幕在线| 久久av网站| 在线观看美女被高潮喷水网站| 国产一区二区三区综合在线观看 | 久久精品国产亚洲av天美| 色婷婷av一区二区三区视频| 国产免费又黄又爽又色| 久久午夜综合久久蜜桃| 看免费成人av毛片| 国模一区二区三区四区视频| 制服丝袜香蕉在线| 久久精品夜色国产| 欧美日韩视频精品一区| 内地一区二区视频在线| 爱豆传媒免费全集在线观看| 国产av一区二区精品久久| 久久综合国产亚洲精品| 看十八女毛片水多多多| 国产亚洲精品久久久com| 欧美精品一区二区大全| 国产亚洲一区二区精品| 视频区图区小说| 中文字幕人妻熟人妻熟丝袜美| 日韩三级伦理在线观看| 亚洲人成网站在线观看播放| 人人妻人人添人人爽欧美一区卜| 国产白丝娇喘喷水9色精品| 高清欧美精品videossex| 91久久精品电影网| 久久精品久久久久久久性| 美女主播在线视频| 精品亚洲成国产av| a级毛片免费高清观看在线播放| 亚洲国产av影院在线观看| av有码第一页| 视频中文字幕在线观看| 久久av网站| 一级毛片 在线播放| 51国产日韩欧美| 免费观看av网站的网址| 在线观看美女被高潮喷水网站| 99国产精品免费福利视频| 日本爱情动作片www.在线观看| 国产精品一区二区三区四区免费观看| 午夜老司机福利剧场| 亚洲欧美一区二区三区黑人 | 亚洲av福利一区| 亚洲精品久久成人aⅴ小说 | 一级爰片在线观看| 97在线视频观看| 亚洲性久久影院| 亚洲欧美日韩卡通动漫| 熟女电影av网| 久久久久人妻精品一区果冻| 久久精品国产亚洲av涩爱| 91精品国产国语对白视频| 大陆偷拍与自拍| 高清欧美精品videossex| 成人毛片a级毛片在线播放| 最近2019中文字幕mv第一页| 午夜av观看不卡| 亚洲美女搞黄在线观看| 日本wwww免费看| 国产高清三级在线| 男女边吃奶边做爰视频| 国产精品99久久久久久久久| 91久久精品国产一区二区成人| 黑丝袜美女国产一区| 热99国产精品久久久久久7| 国产精品 国内视频| 黄色视频在线播放观看不卡| 日本-黄色视频高清免费观看| 欧美 亚洲 国产 日韩一| 久久久久久久久久久久大奶| 最近2019中文字幕mv第一页| 一级,二级,三级黄色视频| 国内精品宾馆在线| 久久久亚洲精品成人影院| 妹子高潮喷水视频| 一区二区av电影网| 亚洲国产毛片av蜜桃av| 欧美少妇被猛烈插入视频| 国产欧美亚洲国产| 最后的刺客免费高清国语| 大话2 男鬼变身卡| 人妻系列 视频| 精品国产一区二区久久| videos熟女内射| 色哟哟·www| 国产成人一区二区在线| 亚洲婷婷狠狠爱综合网| 国产永久视频网站| 国产精品久久久久久精品古装| 美女国产视频在线观看| 日韩一区二区视频免费看| 久久久久久久精品精品| 精品国产一区二区三区久久久樱花| 曰老女人黄片| 国产国语露脸激情在线看| 国产成人精品一,二区| 成人影院久久| 夫妻性生交免费视频一级片| 国产精品一区www在线观看| 观看av在线不卡| 亚洲第一av免费看| 久久综合国产亚洲精品| 亚洲人成77777在线视频| 欧美精品亚洲一区二区| 国产一区二区三区av在线| 亚洲不卡免费看| 精品久久国产蜜桃| 欧美激情国产日韩精品一区| 性色avwww在线观看| 男女啪啪激烈高潮av片| 久久久久久人妻| 亚洲综合色网址| 97超碰精品成人国产| videossex国产| 久久热精品热| 纯流量卡能插随身wifi吗| 日韩大片免费观看网站| kizo精华| 大片免费播放器 马上看| 亚洲av欧美aⅴ国产| 91精品国产九色| 黑人高潮一二区| 亚洲无线观看免费| 国模一区二区三区四区视频| a级毛片在线看网站| 中文字幕制服av| 自拍欧美九色日韩亚洲蝌蚪91| 国产毛片在线视频| 免费观看的影片在线观看| 91aial.com中文字幕在线观看| 中文字幕人妻熟人妻熟丝袜美| 国产精品一区二区在线不卡| 波野结衣二区三区在线| 狂野欧美激情性bbbbbb| 视频区图区小说| 日韩精品免费视频一区二区三区 | 亚洲精品国产av成人精品| 久久99蜜桃精品久久| videos熟女内射| av天堂久久9| 夫妻性生交免费视频一级片| 欧美xxxx性猛交bbbb| 最黄视频免费看| 久久狼人影院| 亚洲,一卡二卡三卡| 欧美精品一区二区大全| 熟妇人妻不卡中文字幕| 伦理电影免费视频| 五月开心婷婷网| 亚洲欧美清纯卡通| 久久久午夜欧美精品| 欧美精品高潮呻吟av久久| 久久97久久精品| 国产永久视频网站| 国产日韩欧美亚洲二区| 校园人妻丝袜中文字幕| 日韩人妻高清精品专区| 老女人水多毛片| av在线播放精品| 男女边摸边吃奶| 久久久国产欧美日韩av| 亚洲,一卡二卡三卡| 亚洲精品自拍成人| 欧美精品高潮呻吟av久久| 久久99热这里只频精品6学生| 人成视频在线观看免费观看| 伊人久久国产一区二区| 校园人妻丝袜中文字幕| 男女啪啪激烈高潮av片| 国产色爽女视频免费观看| 中文字幕av电影在线播放| 18在线观看网站| 国产免费又黄又爽又色| 嫩草影院入口| 国产一区二区三区av在线| 日韩欧美一区视频在线观看| 亚洲婷婷狠狠爱综合网| 日本av免费视频播放| 一区二区日韩欧美中文字幕 | 亚洲五月色婷婷综合| 99久久中文字幕三级久久日本| 亚洲精品美女久久av网站| 在线免费观看不下载黄p国产| 国产一区亚洲一区在线观看|