• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Alpha particle detector with planar double Schottky contacts directly fabricated on semi-insulating GaN:Fe template*

    2021-11-23 07:30:48QunSiYang羊群思QingLiu劉清DongZhou周東WeiZongXu徐尉宗YiWangWang王宜望FangFangRen任芳芳andHaiLu陸海
    Chinese Physics B 2021年11期
    關(guān)鍵詞:陸海羊群

    Qun-Si Yang(羊群思) Qing Liu(劉清) Dong Zhou(周東) Wei-Zong Xu(徐尉宗)Yi-Wang Wang(王宜望) Fang-Fang Ren(任芳芳) and Hai Lu(陸海)

    1Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials,Nanjing University,Nanjing 210093,China

    2School of Electronic Science and Engineering,Nanjing University,Nanjing 210093,China

    Keywords: GaN,alpha particle,detector,double Schottky contacts

    1. Introduction

    Over the past two decades,wide bandgap semiconductor gallium nitride(GaN)has shown extraordinary application potential in the fields of short wavelength optoelectronic devices and high-power/high frequency devices, such as blue laser diodes,[1]blue to ultraviolet (UV) light-emitting diodes,[2,3]UV detectors,[4]and high-electron-mobility transistors.[5]Meanwhile, it is also generally recognized that GaN could be used for making radiation detectors work in harsh environment due to its wide bandgap energy (~3×Eg,Si), good chemical and thermal stability as well as large displacement energy(~109 eV for N and 45 eV for Ga).[6,7]

    Compared with radiation detectors fabricated on conventional semiconductor materials like silicon and gallium arsenide,detectors made of GaN are expected capable of working stably with a long lifetime at elevated temperatures or under high doses of radiation. As summarized in the review paper by Sellinet al., GaN radiation detector could be a competitive candidate utilized in energy spectrum measurement of charged particles, which is applied specifically for the research of fusion process in nuclear reactors or particle physics in special occasions(e.g.,the Large Hadron Collider).[8]Vaiktuset al. fabricated an alpha particle detector with two Au Schottky contacts on 2-μm-thick epitaxial GaN,which gave a charge collection efficiency(CCE)of~92%.[9]Recently,the crystalline quality of epitaxial GaN film is improved steadily and large size free-standing GaN substrate are commercially available. It has been reported that GaN alpha particle detectors with mesa structure or sandwich structure have exhibited high CCE performance of nearly 100%.[10-13]Although GaN alpha particle detectors with planar Schottky structure have been reported in literature, studies on energy resolution and high temperature operation performance of this kind of detectors are very limited.[9,14]It is noticeable that planar Schottky structure has the intrinsic advantages of fabrication simplicity and process compatibility with field effect transistor technology. Another advantage of the planar Schottky structure is the low capacitance,which is important for minimizing RC related transfer delay of electrical signals.

    In this work, we have fabricated GaN alpha particle detectors with planar double Schottky contacts(DSC)directly on the semi-insulating (SI) GaN:Fe template grown by hydride vapor phase epitaxy (HVPE). Since undoped HVPE GaN is generally strongly n-type due to impurities or vacancy-related donor centers, the Schottky contact based on it could be very leaky, resulting in high background noise in energy spectrum measurement. An effective approach to enhance the resistivity of HVPE GaN is through carrier compensation by Fe doping.The leakage current can then be reduced down to a sufficiently low level, which allows the detection of weak current pulses induced by incident ionizing particles.

    The detectors fabricated in this work are characterized in terms of electrical properties and alpha particle detection performance at both room temperature and elevated temperatures.The main purpose of this work is to evaluate the future application potential of GaN-based planar DSC structure for alpha particle detection with energy resolution.

    2. Experiment

    The detectors in this work are fabricated on epitaxial Fedoped SI-GaN layer grown by HVPE on sapphire substrate.The SI-GaN layer is 5μm in thick with room temperature resistivity higher than 1×108Ω·cm. Figure 1 shows the crosssectional schematic diagram of the SI-GaN alpha particle detector with DSC.Before the metallization,the samples are degreased and sonicated in acetone,alcohol and de-ionized water for each 10 min,then dipped into dilute hydrogen fluoride solution for 60 s to remove native oxide from the GaN surface. The DSC alpha particle detectors are directly fabricated on the SI-GaN template by using standard photolithography and lift-off techniques. Semi-transparent interdigitated Ni/Au(100 ?A/100 ?A)Schottky contacts are deposited on the SI-GaN template via electron-beam evaporation. The designed contact fingers are 10μm wide and 1 mm long with an inter-spacing of 10μm. Subsequently,Ti/Au(2000 ?A/5000 ?A)pad layer is deposited on the diagonal margin of the Schottky contacts. For radiation sensitivity characterizations, the processed wafer is diced into individual dies, which are mounted onto TO packages by using conductive silver paste and via wire bonding.

    Figure 2 shows the assembled system for energy spectrum measurement of alpha particles. The TO packaged detector is placed within a shielded aluminum cylinder to prevent external electromagnetic interference. An241Am radioisotope source fixed by a polytetrafluoroethylene(PTFE)holder is collimated towards the front surface of the detector. During the detection process,incident alpha particles interacting with the active semiconductor lattice would generate multiple electron-hole pairs,which would be separated and swept towards respective electrodes by junction electrical field. The resulting current pulses are too weak to be measured directly, which have to be fed into a charge sensitive amplifier. The collected charge signals are then converted into linear-tail voltage pulses. The voltage pulse height ?Vequals toQ/CF,in whichQis the total charge induced by an alpha particle andCFis the feedback capacitor of the charge sensitive amplifier. Thus, the voltage pulse height distribution contains the information of energy deposited by incident particles within the device active layer.The feedback capacitor used in the charge sensitive preamplifier is 1 pF, resulting in a conversion gain of nominally 18.2 mV/MeV for the GaN alpha particle detector. Next, a shaping amplifier(ORTEC 672)is used to shape and amplify the output signals into linear semi-Gaussian voltage pulses.Finally, a multichannel analyzer (AMPTEK MCA-8000D) is used to complete the pulse height counting. During the energy spectrum measurement, the bias voltage applied on the detector is provided by a Keithley 2636A sourcemeter, while an oscilloscope(Tektronix MSO54)is used for the waveform monitoring. The total electronic noise of the detection system is measured by using a Tektronix AFG3102C function generator. A standard ORTEC Si alpha particle detector with a nominal CCE of~100%is adopted for the energy calibration.

    Fig.1. Cross-sectional schematic diagram of SI-GaN based DSC detector.

    Fig.2. Schematic of the experimental setup for alpha particle detection with the SI-GaN detector.

    3. Results and discussion

    The current-voltage (I-V) characteristics of the SI-GaN DSC detector are shown in Fig. 3(a). Since the two Schottky junctions of the detector are back-to-back connected, one Schottky diode is always reverse biased, while the other is forward biased. A good symmetric rectifying behavior can be observed on theI-Vcurve, which indicates that the two diodes have similar Schottky Ni/GaN interfacial barrier properties. Under 10 V bias, the detector exhibits a low roomtemperature dark current of less than 5.0×10?11A, corresponding to a linear current density of 5.0×10?10A/cm. Low leakage current is important for energy resolved particle detection, as random fluctuations in leakage current would add electrical noise into the momentary current flow caused by an ionizing event, leading to a significant source of distortion in subsequently processed signals.Figure 3(b)shows the temperature dependentI-Vcharacteristics of the GaN detector plotted in semi-log scale. In the temperature range of 30-90°C,the overall reverse leakage increases at higher temperatures.Meanwhile, at high reverse bias, the leakage current versus bias shows a linear relationship at various temperatures,which suggests that Pool-Frenkel emission is the dominant leakage conduction mechanism.[15,16]

    Fig.3. (a)The I-V characteristics of the SI-GaN DSC detector measured in low bias range;(b)the semi-log I-V characteristics of the detector measured at various temperatures.

    The energy spectral response of the SI-GaN detector is characterized by using the above-mentioned alpha particle detection system. The alpha radiation source used in this experiment is an241Am radioactive source with an exemption category of V, which has a typical radioactivity of less than 370 kBq. There are four possible alpha-particle transitions during the decay process of241Am. Each kind of transitions involves the emission of alpha particles with different energy and relative abundance, which include 5.389 MeV (1.0%),5.443 MeV (12.5%), 5.486 MeV (86.0%), and 5.545 MeV(0.3%).[17]Since their energies are very close and hard to be distinguished from each other in the energy spectrum,all following calculations conducted in this work are based on the particle energy of 5.486 MeV.The output signal from the GaN detector is firstly fed into the charge sensitive preamplifier and an oscilloscope is used to temporally monitor the amplified signal. A typical pulse waveform excited by a single alpha particle is shown in Fig. 4, which is a fast-rise voltage pulse with an exponential decay back to the baseline. Its rise time and fall time are 0.7μs and 2.2 ms,respectively. Such waveforms are further processed by the shaping amplifier, which has a shaping time set at 2 μs during energy spectrum measurement.

    Fig.4. A typical pulse signal of the SI-GaN detector through the preamplifier with a pulse amplitude of ~21 mV.

    The alpha particle energy spectra of the SI-GaN detector under various bias voltages are shown in Fig. 5. A double peak structure (“high peak” and “l(fā)ow peak”) is observed in the channels ranging from~1000 to 1900, in which the low peak stays in the low energy direction. During the measurement process, the counting time at each bias is intentionally adjusted so that all high peaks have nearly the same peak heights. It is clear that to reach the same magnitude of high peaks, the counting time has to be reduced at higher bias.Meanwhile,the overall count rate around the low peak drops.This behavior can be explained by the lateral expansion of depletion region within the DSC structure at higher bias, as illustrated in Fig.6. Due to the high resistivity of the SI-GaN,even at a bias voltage of 10 V, the GaN layer between the two inter-digitated contact electrodes is largely depleted, and the depletion layer would reach a maximum depth of 5 μm.Thus, an absence of bias dependence of the peak centroid is observed. As illustrated by the equipotential lines in Fig. 6,the applied bias mostly drops on the reverse biased junction.As bias increases, the width of the lateral depletion region would gradually broaden,until the remaining region between the two electrodes is fully depleted. Meanwhile,some regions outside the contact boundary would also be depleted. During this process,more particles impinging on the detector surface would contribute to effective counts. Thus,the higher the bias voltage, the shorter the accumulative counting time required to achieve a consistent height of the high peaks. In addition,charge collection efficiency should also increase with the rise of bias,which would contribute some high energy counts.

    Fig.5. 241Am alpha particle spectrum obtained with the SI-GaN detector at different bias.

    Fig.6. Cross sectional schematic of the DSC alpha particle detector during operation. The white arc lines and the dash lines illustrate the equipotential lines below the Schottky electrodes and boundary of the depletion region induced by external bias,respectively.

    To further analyze the double-peak characteristics,Gaussian function is used to fit the energy spectrum measured at a bias voltage of 30 V, which gives the energy positions of the peak centroids and their corresponding full widths at the half maximum(FWHM)values. As shown in Fig.7,the low peak can be fitted by Gaussian curve G1,while the high peak can be fitted by Gaussian curves G2 and G3. Apparent peak broadening and count fluctuations of the original spectrum curve can be observed. There are at least three main factors determining the energy resolution(FWHMall)of the detector,which is described by

    where FWHMstatis statistical-noise-related spectral broadening caused by the discrete nature of the count signal itself(i.e.,Fano noise),FWHMelecis caused by the random noise of the overall system including the detector and the readout circuit,and FWHMotheris spectral broadening caused by the other factors,such as performance drift of the detector during measurement process and energy straggling in the incident window of the detector.[18]The energy distribution of Fano noise can be described by the following equation:[19]

    whereFis the Fano factor,ε0is the average energy required for formation of an electron-hole pair,andEαis the alpha particle energy. By taking the Fano factor of 0.1 andε0of 8.9 eV for GaN, the calculated FWHMstatfor 5.486 MeV alpha particles is~5.18 keV.[20]The electronic noise (FWHMelec) of the entire readout circuit system is tested by feeding periodic short pulse signals produced by a functional signal generator into the circuit,which is determined as~2.3 keV.During the measurement,all parameters of the system are set as same as those used in real energy spectrum measurement. The energy separation between the peak centroids of G1 and G3 is~425 channels,which corresponds to a calibrated energy of 284 keV.Clearly,such a large energy difference between the two peaks can only be caused by FWHMother,which will be discussed in detail later.

    Fig.7. Gaussian fitting to the energy spectrum curve of the SI-GaN detector measured under a bias of 30 V.

    Fig. 8. Bragg ionization curves of 5.48 MeV alpha particles in gold layer and titanium layer calculated by the SRIM tool.

    Considering the special planar structure of the detector,its thick metal pad with an area of 300×300μm2is likely to account for the double-peak characteristics. In this model,alpha particles are emitted radially from241Am radioactive source to the surface of the detector. Some particles falling on the metal pad would inevitably lose certain amount of their energy due to the blocking effect of the pad metal. According to a report by Vigneshwaraet al.,for 5.486 MeV alpha particles vertically passing through a metal layer(500 ?A Ti/1500 ?A Au),the average energy loss is less than 110 keV.[21]Figure 8 shows the Bragg ionization curves for 5.48 MeV alpha particles in gold and titanium determined from the stopping range of Ions in matter (SRIM) simulation.[22]Based on these two curves, the average energy loss of 5.48 MeV alpha particles passing through 5000 ?A Au layer and 2000 ?A Ti layer are 220 keV and 45 keV,respectively. The sum of these two energies is 265 keV,which is close to the measured energy difference of 284 keV between G1 and G3. Thus,in Fig.7 the G1 peak should be caused by alpha particles passing through the Ti/Au(2000 ?A/5000 ?A)metal pad and then depositing energy into the underlying GaN layer, while G3 is caused by alpha particles directly penetrating through the GaN layer. Meanwhile, random interactions of particles and different incident angles would cause energy scattering to a certain extent,which thereby broadens the energy peaks.

    Interestingly, the high peak cannot be simply fitted by a single Gaussian curve G3, but a shoulder peak G2 with lower energy has to be combined. The FWHM of the two Gaussian peaks are 117 channels for G2 and 91 channels for G3, respectively. These two peaks are separated by approximately 100 channels, corresponding to an energy of 67 keV. Similar feature has been found in the alpha particle spectra of other GaN-based radiation detectors,[23]but not in SiC-based counterparts.[24,25]In the past studies, it has been well accepted that high-density defect states exist in SI-GaN materials.[26,27]These defect states are caused by dislocations,vacancies,impurities and especially Fe-ion-related compensation centers. Then a reasonable explanation for the shoulder peak is that certain amount of excited carriers are trapped by defect states along their drift path, resulting in an incomplete collection of carriers.[28]Thus, the main energy peak of incident alpha particles would broaden towards its low energy direction in the energy spectrum curve.

    As shown in Fig.9,SRIM simulation can also be used to determine the relationship between energy deposition and penetration depth of 5.48 MeV incident alpha particles in GaN,which shows that a total energy loss of 1.48 MeV is deposited within the 5μm SI-GaN.The CCE could be calculated by dividing the experimentally obtained value of energy deposition by its theoretical one(i.e.,1.48 MeV).Meanwhile,energy resolution is of great importance for evaluating the performance of radiation detectors, which is conventionally defined as the FWHM of the energy peak divided by the channel number of the peak centroid.[29]Then, based on the fitting curve with double Gaussian components, it can be determined that the energy resolution of the SI-GaN DSC detector is~8.6% at 1.209 MeV with a corresponding CCE of~81.7%. Thus, it is concluded that the DSC structure is feasible for high energy particle detectors, which provides a simple and low-cost way for radiation detection with reasonable performance. Compared with the traditional vertical Schottky devices with whole electrode, the interdigital approach in DSC design can effectively bring down the proportion of dead region and reduce the energy loss of incident particles.

    Finally, to further evaluate the potential performance of the SI-GaN detector, high temperature alpha particle energy spectrum is acquired at 90°C.As shown in the inset of Fig.10,the detector biased at 30 V is heated by using a metal ceramics heater bonded to the back of the TO package,and chip temperature is continuously monitored by a thermocouple mounted next to the detector. By comparing with the energy spectrum profile (gray area) measured at room temperature, it is found that the FWHM of high peak P1 is roughly 235 keV at high temperature, which is almost twice than that at room temperature(see Fig.10). However,little shift of peak energy is observed,which suggests that the GaN detector have potential to operate stably in high-temperature environment.

    Fig.9. Bragg ionization curve of 5.48 MeV alpha particles in GaN layer.

    Fig. 10. Alpha particle energy spectra of the SI-GaN detector acquired at room temperature(~27 °C)and 90 °C.

    4. Conclusion

    In this work, a planar double Schottky contacts alpha particle detector is directly fabricated on HVPE-grown semiinsulating GaN:Fe template. The detector exhibits low leakage current and is proved capable of detecting partial energies of alpha particles from241Am radioactive source.Distinct double-peak characteristic is observed in the energy spectrum,which is explained by energy attenuation effect of the surface metal pad. The detector exhibits a reasonable energy resolution of~8.6%at deposited energy of 1.209 MeV,and a charge collection efficiency of~81.7% at 30 V bias. The energyresolution limiting factor is found to be the trapping effect of defect states within the SI-GaN:Fe layer, resulting in an incomplete collection of excited charges. The GaN detector also exhibit potential to operate in high temperature environment.This study provides a feasible way to fabricate low-cost and radiation hard GaN-based high energy particle detectors with reasonable performance. To further improve the device performance in terms of energy resolution,thicker SI-GaN layer with improved crystalline quality should be developed.

    猜你喜歡
    陸海羊群
    上海出發(fā)愛達(dá)世界
    陸海之縱
    陸海新通道鐵海聯(lián)運(yùn)班列今年開行破1000班
    和狼的第一次交戰(zhàn)
    新少年(2020年4期)2020-05-26 01:59:19
    羊群莫名蒸發(fā)疑案
    羊群莫名蒸發(fā)疑案
    城里的羊群
    中國詩歌(2018年3期)2018-11-14 19:09:21
    陸海統(tǒng)籌推進(jìn)海岸帶地質(zhì)調(diào)查
    不止一個(gè)
    一種奇巧的測(cè)角法
    热re99久久国产66热| 在现免费观看毛片| av一本久久久久| 亚洲精品乱码久久久久久按摩| 九九在线视频观看精品| 老司机影院毛片| 免费看光身美女| 欧美激情极品国产一区二区三区 | 考比视频在线观看| 亚洲av在线观看美女高潮| 欧美日韩亚洲高清精品| 欧美日韩av久久| 亚洲精品国产av成人精品| 色视频在线一区二区三区| 欧美日韩视频高清一区二区三区二| 久久ye,这里只有精品| 亚洲av电影在线观看一区二区三区| 国产精品欧美亚洲77777| 欧美少妇被猛烈插入视频| 啦啦啦在线观看免费高清www| 激情五月婷婷亚洲| 国产视频首页在线观看| 亚洲国产av影院在线观看| 亚洲精品日韩在线中文字幕| 全区人妻精品视频| 人人妻人人爽人人添夜夜欢视频| 十八禁高潮呻吟视频| 九色亚洲精品在线播放| 高清欧美精品videossex| 综合色丁香网| 久久久国产一区二区| 日韩制服骚丝袜av| 精品国产乱码久久久久久小说| 五月伊人婷婷丁香| 久久久久久久久久久久大奶| 女性生殖器流出的白浆| 在线精品无人区一区二区三| 亚洲,欧美,日韩| 午夜免费观看性视频| 少妇的逼水好多| 少妇被粗大的猛进出69影院 | 欧美变态另类bdsm刘玥| 午夜免费男女啪啪视频观看| 久久亚洲国产成人精品v| 国产高清三级在线| 91成人精品电影| 亚洲精品一区蜜桃| 乱码一卡2卡4卡精品| 午夜福利视频在线观看免费| 久久精品国产亚洲av天美| 激情视频va一区二区三区| 曰老女人黄片| 高清不卡的av网站| 高清不卡的av网站| 美女内射精品一级片tv| 毛片一级片免费看久久久久| 老司机亚洲免费影院| 国产精品久久久久成人av| 中文字幕精品免费在线观看视频 | 欧美+日韩+精品| 国产成人精品福利久久| 日产精品乱码卡一卡2卡三| 在线看a的网站| 亚洲av欧美aⅴ国产| 国产精品国产三级专区第一集| 汤姆久久久久久久影院中文字幕| 日韩人妻精品一区2区三区| 久久免费观看电影| 久久久亚洲精品成人影院| 日韩av在线免费看完整版不卡| 国产精品无大码| 少妇人妻久久综合中文| 亚洲美女视频黄频| 中文精品一卡2卡3卡4更新| 青春草亚洲视频在线观看| 亚洲欧美日韩卡通动漫| 一区二区三区四区激情视频| 中文字幕精品免费在线观看视频 | av有码第一页| 久久久久久久久久人人人人人人| 亚洲第一区二区三区不卡| 久久99精品国语久久久| 亚洲av成人精品一二三区| 国产一区亚洲一区在线观看| 美女xxoo啪啪120秒动态图| 一本久久精品| 亚洲欧美一区二区三区国产| 性色av一级| 国产在线一区二区三区精| h视频一区二区三区| 久久精品国产亚洲av涩爱| 人体艺术视频欧美日本| 成人毛片60女人毛片免费| 久久99蜜桃精品久久| 两性夫妻黄色片 | xxxhd国产人妻xxx| 热re99久久国产66热| 亚洲精品日本国产第一区| 久久99热6这里只有精品| 韩国精品一区二区三区 | 五月玫瑰六月丁香| 97在线视频观看| 免费高清在线观看视频在线观看| 婷婷色综合大香蕉| 2018国产大陆天天弄谢| 大片免费播放器 马上看| 国产亚洲一区二区精品| 欧美亚洲日本最大视频资源| 乱码一卡2卡4卡精品| 又黄又爽又刺激的免费视频.| 天天影视国产精品| 熟女av电影| 性高湖久久久久久久久免费观看| 欧美日韩一区二区视频在线观看视频在线| 亚洲av日韩在线播放| 久久99蜜桃精品久久| 街头女战士在线观看网站| 一级毛片 在线播放| 久久精品久久精品一区二区三区| 中文字幕免费在线视频6| 久久精品人人爽人人爽视色| 大片电影免费在线观看免费| 51国产日韩欧美| a级片在线免费高清观看视频| 欧美精品一区二区免费开放| 国产在视频线精品| 国产伦理片在线播放av一区| 亚洲综合色惰| 国产黄色视频一区二区在线观看| 人人妻人人爽人人添夜夜欢视频| 一区二区av电影网| 又黄又粗又硬又大视频| 亚洲图色成人| 免费女性裸体啪啪无遮挡网站| 国产精品三级大全| 亚洲美女搞黄在线观看| 男的添女的下面高潮视频| 久久热在线av| 国产精品麻豆人妻色哟哟久久| 午夜福利网站1000一区二区三区| 中文字幕最新亚洲高清| 国产在线一区二区三区精| 亚洲av日韩在线播放| 国产高清国产精品国产三级| 国产在线一区二区三区精| 亚洲av日韩在线播放| 在线观看国产h片| 女人被躁到高潮嗷嗷叫费观| 日本黄大片高清| 一级a做视频免费观看| 天堂俺去俺来也www色官网| 中国美白少妇内射xxxbb| a级毛片在线看网站| 亚洲精品久久久久久婷婷小说| 亚洲图色成人| 人妻 亚洲 视频| 免费看光身美女| 人成视频在线观看免费观看| 最近最新中文字幕免费大全7| 男男h啪啪无遮挡| 99久国产av精品国产电影| 天天躁夜夜躁狠狠躁躁| 另类亚洲欧美激情| 永久免费av网站大全| 国产精品秋霞免费鲁丝片| 国产成人91sexporn| 久久人人爽av亚洲精品天堂| 国内精品宾馆在线| 99久久人妻综合| 人人妻人人爽人人添夜夜欢视频| 成人毛片60女人毛片免费| 国产精品秋霞免费鲁丝片| 久久久久久久精品精品| 韩国高清视频一区二区三区| 久久亚洲国产成人精品v| 2022亚洲国产成人精品| 免费播放大片免费观看视频在线观看| 91久久精品国产一区二区三区| 国产一区亚洲一区在线观看| 美女福利国产在线| 九色亚洲精品在线播放| 男女午夜视频在线观看 | 一区二区av电影网| 国产综合精华液| 久久久久精品性色| 男女无遮挡免费网站观看| 亚洲av国产av综合av卡| 国产精品一区二区在线不卡| 最近的中文字幕免费完整| 两个人免费观看高清视频| 伦理电影大哥的女人| 美女中出高潮动态图| 免费观看av网站的网址| 精品久久蜜臀av无| 亚洲五月色婷婷综合| 国产毛片在线视频| 国产一区二区三区av在线| 亚洲情色 制服丝袜| 熟女人妻精品中文字幕| 亚洲久久久国产精品| 久久精品久久久久久噜噜老黄| 国产免费一区二区三区四区乱码| 日韩制服丝袜自拍偷拍| 欧美xxⅹ黑人| 九色成人免费人妻av| 久久久久国产精品人妻一区二区| 少妇的逼水好多| 婷婷色综合大香蕉| 久久99热这里只频精品6学生| 国产欧美日韩一区二区三区在线| 亚洲人成77777在线视频| 大码成人一级视频| 国产老妇伦熟女老妇高清| 久久久欧美国产精品| 2022亚洲国产成人精品| 人人妻人人添人人爽欧美一区卜| 亚洲精品中文字幕在线视频| 在线天堂中文资源库| 哪个播放器可以免费观看大片| 亚洲 欧美一区二区三区| 亚洲少妇的诱惑av| 国产成人精品久久久久久| 日韩大片免费观看网站| 午夜老司机福利剧场| 一级爰片在线观看| 亚洲av欧美aⅴ国产| 午夜免费鲁丝| 成人二区视频| 欧美激情极品国产一区二区三区 | 久久精品国产综合久久久 | 99热国产这里只有精品6| 中国国产av一级| 三级国产精品片| 少妇高潮的动态图| 一级毛片 在线播放| av卡一久久| 老女人水多毛片| 国产免费一级a男人的天堂| av天堂久久9| 飞空精品影院首页| 久久久久久人人人人人| 成人免费观看视频高清| 国产精品人妻久久久影院| 狂野欧美激情性bbbbbb| 中国美白少妇内射xxxbb| 久久久久精品久久久久真实原创| 一级毛片我不卡| 精品一区二区三卡| 高清黄色对白视频在线免费看| 亚洲欧洲精品一区二区精品久久久 | 亚洲av日韩在线播放| 国产精品 国内视频| 视频中文字幕在线观看| 精品国产国语对白av| 亚洲国产毛片av蜜桃av| 22中文网久久字幕| 中国国产av一级| 狂野欧美激情性xxxx在线观看| 如何舔出高潮| 99国产综合亚洲精品| 成人黄色视频免费在线看| av一本久久久久| 美女视频免费永久观看网站| 少妇的逼水好多| 成人毛片a级毛片在线播放| 久久99热这里只频精品6学生| 亚洲精品国产av蜜桃| 成人亚洲精品一区在线观看| 啦啦啦在线观看免费高清www| 国产精品久久久久久精品电影小说| 久久毛片免费看一区二区三区| 亚洲av成人精品一二三区| 国产精品嫩草影院av在线观看| 亚洲人成网站在线观看播放| 亚洲美女黄色视频免费看| av电影中文网址| 久久av网站| av免费在线看不卡| 99热这里只有是精品在线观看| 高清视频免费观看一区二区| 欧美人与性动交α欧美精品济南到 | 国产精品不卡视频一区二区| 日韩精品有码人妻一区| 欧美另类一区| 亚洲欧洲日产国产| 久久人人爽人人片av| 90打野战视频偷拍视频| 欧美少妇被猛烈插入视频| 九九爱精品视频在线观看| 高清黄色对白视频在线免费看| 综合色丁香网| 高清在线视频一区二区三区| 欧美xxⅹ黑人| 日本爱情动作片www.在线观看| 午夜影院在线不卡| 看非洲黑人一级黄片| 黄色视频在线播放观看不卡| 久久精品人人爽人人爽视色| 啦啦啦在线观看免费高清www| 性色av一级| 成年美女黄网站色视频大全免费| 搡老乐熟女国产| 乱人伦中国视频| 日产精品乱码卡一卡2卡三| 又黄又粗又硬又大视频| 免费看光身美女| 777米奇影视久久| 飞空精品影院首页| 精品熟女少妇av免费看| 日本av手机在线免费观看| 亚洲欧美色中文字幕在线| 国产一区二区在线观看日韩| av女优亚洲男人天堂| 大香蕉久久网| av天堂久久9| 免费少妇av软件| 中文字幕人妻熟女乱码| 老司机亚洲免费影院| 久久久久国产网址| 多毛熟女@视频| 免费黄频网站在线观看国产| av在线观看视频网站免费| 久久国内精品自在自线图片| 国产成人一区二区在线| av免费在线看不卡| 啦啦啦啦在线视频资源| 满18在线观看网站| 亚洲色图综合在线观看| av视频免费观看在线观看| 国产麻豆69| 啦啦啦啦在线视频资源| 国产福利在线免费观看视频| xxxhd国产人妻xxx| 成人综合一区亚洲| 亚洲熟女精品中文字幕| 一级毛片我不卡| 热99久久久久精品小说推荐| 亚洲欧洲国产日韩| 美女国产高潮福利片在线看| 亚洲国产日韩一区二区| 欧美另类一区| 国产在线一区二区三区精| 国产极品天堂在线| 精品少妇内射三级| 男女无遮挡免费网站观看| 欧美日韩精品成人综合77777| 精品久久久精品久久久| 亚洲欧美成人精品一区二区| 91国产中文字幕| 亚洲欧美清纯卡通| 十八禁网站网址无遮挡| 亚洲内射少妇av| 狠狠精品人妻久久久久久综合| 亚洲av中文av极速乱| 美女福利国产在线| 免费看不卡的av| 少妇人妻 视频| 韩国av在线不卡| 欧美日韩综合久久久久久| 黑人猛操日本美女一级片| 香蕉精品网在线| 天天操日日干夜夜撸| 久久精品国产综合久久久 | 亚洲欧美成人综合另类久久久| 在线 av 中文字幕| 大香蕉久久网| 久热这里只有精品99| 99热国产这里只有精品6| 99久久精品国产国产毛片| 热99久久久久精品小说推荐| 久久精品国产自在天天线| 久久国内精品自在自线图片| 欧美激情国产日韩精品一区| 国产精品国产三级国产av玫瑰| 久久人人爽人人片av| 老司机影院毛片| 日韩av免费高清视频| 亚洲精品中文字幕在线视频| 90打野战视频偷拍视频| 精品久久蜜臀av无| 丰满饥渴人妻一区二区三| 永久网站在线| 日本猛色少妇xxxxx猛交久久| 欧美亚洲日本最大视频资源| 免费高清在线观看日韩| 人人澡人人妻人| 又黄又爽又刺激的免费视频.| 看非洲黑人一级黄片| 欧美日韩av久久| 国产一区二区三区综合在线观看 | 欧美成人午夜免费资源| 日韩人妻精品一区2区三区| 婷婷色综合www| 国产成人精品在线电影| 午夜免费鲁丝| 精品国产一区二区三区四区第35| 欧美bdsm另类| 欧美3d第一页| 在线看a的网站| 国精品久久久久久国模美| 精品人妻在线不人妻| 日韩制服骚丝袜av| 国产精品一区www在线观看| 免费av不卡在线播放| 91久久精品国产一区二区三区| 国产成人精品一,二区| 免费播放大片免费观看视频在线观看| 韩国高清视频一区二区三区| 午夜福利网站1000一区二区三区| 国产免费一区二区三区四区乱码| 十八禁网站网址无遮挡| 一级毛片电影观看| 国产成人精品一,二区| 一区二区av电影网| 国产日韩欧美视频二区| 国产高清不卡午夜福利| av卡一久久| 在线天堂中文资源库| 亚洲欧洲日产国产| 日韩制服丝袜自拍偷拍| 欧美日韩成人在线一区二区| 久久久久网色| 老司机影院毛片| 久久 成人 亚洲| 精品酒店卫生间| 日本爱情动作片www.在线观看| 国产不卡av网站在线观看| xxx大片免费视频| 十八禁高潮呻吟视频| 亚洲熟女精品中文字幕| 亚洲欧美日韩另类电影网站| 欧美日韩一区二区视频在线观看视频在线| xxxhd国产人妻xxx| 97超碰精品成人国产| 国产激情久久老熟女| 免费黄频网站在线观看国产| 成人国产麻豆网| 欧美成人精品欧美一级黄| 国产极品天堂在线| 一二三四在线观看免费中文在 | 草草在线视频免费看| 国产深夜福利视频在线观看| 国产欧美另类精品又又久久亚洲欧美| 久久久精品免费免费高清| 天堂8中文在线网| 伦理电影大哥的女人| 最近手机中文字幕大全| 一级片免费观看大全| 性色av一级| 免费播放大片免费观看视频在线观看| 天天影视国产精品| 午夜激情久久久久久久| 99久久人妻综合| 精品一区二区免费观看| 我的女老师完整版在线观看| 中文天堂在线官网| 亚洲熟女精品中文字幕| 婷婷色综合www| 波野结衣二区三区在线| 久久综合国产亚洲精品| 久久国产精品男人的天堂亚洲 | 大香蕉97超碰在线| 免费大片黄手机在线观看| 欧美国产精品一级二级三级| 久久久a久久爽久久v久久| 如日韩欧美国产精品一区二区三区| 精品卡一卡二卡四卡免费| 一个人免费看片子| 日本色播在线视频| 丝袜在线中文字幕| 日本与韩国留学比较| 国产欧美日韩一区二区三区在线| 精品午夜福利在线看| 国产精品不卡视频一区二区| 亚洲婷婷狠狠爱综合网| 纵有疾风起免费观看全集完整版| 97精品久久久久久久久久精品| 制服诱惑二区| 又黄又爽又刺激的免费视频.| 伦理电影免费视频| 国产免费现黄频在线看| 9热在线视频观看99| 久久99蜜桃精品久久| 亚洲av在线观看美女高潮| 又粗又硬又长又爽又黄的视频| 国产色婷婷99| 中文精品一卡2卡3卡4更新| 国产高清三级在线| 亚洲国产精品专区欧美| 天堂俺去俺来也www色官网| 国产成人精品无人区| 亚洲国产最新在线播放| 亚洲久久久国产精品| 国产亚洲午夜精品一区二区久久| 涩涩av久久男人的天堂| 亚洲国产av影院在线观看| 秋霞在线观看毛片| 日韩一本色道免费dvd| 老司机影院成人| 亚洲在久久综合| 制服人妻中文乱码| 欧美激情国产日韩精品一区| 欧美精品av麻豆av| 另类精品久久| 日本-黄色视频高清免费观看| 夜夜骑夜夜射夜夜干| 久久久久精品人妻al黑| 成人漫画全彩无遮挡| 蜜桃在线观看..| 欧美少妇被猛烈插入视频| 免费少妇av软件| 一级片'在线观看视频| 夜夜爽夜夜爽视频| 黑人高潮一二区| 伊人久久国产一区二区| 一区在线观看完整版| 国产一级毛片在线| 欧美日韩精品成人综合77777| 欧美丝袜亚洲另类| 国产av码专区亚洲av| 亚洲国产精品一区二区三区在线| 最近手机中文字幕大全| 中文字幕人妻丝袜制服| 春色校园在线视频观看| 国产又色又爽无遮挡免| 一级毛片电影观看| 人人妻人人爽人人添夜夜欢视频| 国产成人av激情在线播放| 日韩成人伦理影院| 久久久久人妻精品一区果冻| 国产亚洲av片在线观看秒播厂| 亚洲av男天堂| 新久久久久国产一级毛片| www.色视频.com| 97在线人人人人妻| 亚洲av成人精品一二三区| 99热这里只有是精品在线观看| 免费高清在线观看视频在线观看| a 毛片基地| 男女边摸边吃奶| 欧美xxxx性猛交bbbb| 亚洲av国产av综合av卡| 侵犯人妻中文字幕一二三四区| 久久久久久久久久久久大奶| 我要看黄色一级片免费的| 亚洲欧美一区二区三区黑人 | 嫩草影院入口| 99精国产麻豆久久婷婷| 国语对白做爰xxxⅹ性视频网站| 成人亚洲欧美一区二区av| 咕卡用的链子| 日本黄大片高清| 97精品久久久久久久久久精品| 极品人妻少妇av视频| h视频一区二区三区| 热re99久久国产66热| av网站免费在线观看视频| 久久精品夜色国产| 男人操女人黄网站| videos熟女内射| 欧美性感艳星| 大陆偷拍与自拍| www日本在线高清视频| 边亲边吃奶的免费视频| 丝袜在线中文字幕| 亚洲成国产人片在线观看| 免费在线观看完整版高清| 国内精品宾馆在线| 免费在线观看黄色视频的| 精品人妻在线不人妻| 丰满少妇做爰视频| 日本与韩国留学比较| 国产免费又黄又爽又色| 亚洲,一卡二卡三卡| 91午夜精品亚洲一区二区三区| 韩国精品一区二区三区 | 看免费成人av毛片| 午夜激情av网站| www.色视频.com| 欧美人与善性xxx| 曰老女人黄片| 少妇人妻久久综合中文| 欧美+日韩+精品| 丝袜脚勾引网站| 99热网站在线观看| 欧美激情国产日韩精品一区| 国产精品久久久久久精品电影小说| 草草在线视频免费看| 色5月婷婷丁香| 中文乱码字字幕精品一区二区三区| 日韩不卡一区二区三区视频在线| 国产精品不卡视频一区二区| 国产精品嫩草影院av在线观看| 日韩精品有码人妻一区| 日韩成人伦理影院| av女优亚洲男人天堂| 日本vs欧美在线观看视频| 午夜福利,免费看| 国产精品久久久久久精品电影小说| 日韩制服骚丝袜av| 99国产精品免费福利视频| 国产精品99久久99久久久不卡 | 日韩中字成人| 国产精品人妻久久久久久| 热99国产精品久久久久久7| 亚洲美女视频黄频| 亚洲,欧美,日韩| 九色亚洲精品在线播放| 一本—道久久a久久精品蜜桃钙片| 免费大片黄手机在线观看| 久久人人爽人人片av| 777米奇影视久久| 免费高清在线观看日韩| 美女视频免费永久观看网站| 夫妻午夜视频|