• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Ultrabright γ-ray emission from the interaction of an intense laser pulse with a near-critical-density plasma*

    2021-11-23 07:28:48AynisaTursun阿依妮薩圖爾蓀MamatAliBake買(mǎi)買(mǎi)提艾力巴克BaisongXie謝柏松YashengNiyazi亞生尼亞孜andAbuduresuliAbudurexiti阿不都熱蘇力阿不都熱西提
    Chinese Physics B 2021年11期
    關(guān)鍵詞:艾力買(mǎi)買(mǎi)提巴克

    Aynisa Tursun(阿依妮薩圖爾蓀) Mamat Ali Bake(買(mǎi)買(mǎi)提艾力巴克) Baisong Xie(謝柏松)Yasheng Niyazi(亞生尼亞孜) and Abuduresuli Abudurexiti(阿不都熱蘇力阿不都熱西提)

    1School of Physics Science and Technology,Xinjiang University,Urumqi 830046,China

    2Key Laboratory of Beam Technology of the Ministry of Education,and College of Nuclear Science and Technology,Beijing Normal University,Beijing 100875,China

    3Institute of Physics and Electrical Engineering,Kashi University,Kashgar 844009,China

    Keywords: electron acceleration, γ-ray emission, inverse Compton scattering, near-critical-density plasma,2D-QED-PIC simulation

    1. Introduction

    Owing to the rapid development of laser technology,[1,2]ultra-intense (1022W/cm2) and ultrashort (a few femtoseconds) laser pulses can be obtained in the laboratory.[3]Laser intensities in the order of 1023-1025W/cm2are expected to become available in the next few years.[4,5]When an ultrahighintensity laser interacts with a plasma,the electron motion becomes relativistic,[6,7]and quantum electrodynamics (QED)effects such asγ-ray emission[8]and electron-positron pair production become significant.[9,10]Considerable theoretical and numerical[11-13]research on the generation of high-energy electrons and ultrabrightγ-rays has been conducted for applications in medicine,[14]industry,[15]and astrophysics.[16]Many researchers have proposed various schemes for obtaining high-energy electron sources forγ-ray generation, such as laser-driven direct laser acceleration (DLA),[17,18]radiation pressure acceleration,[19]and laser wakefield acceleration(LWFA).[20,21]Among them, LWFA is the most widely studied and thought to be a more straightforwardγ-ray emission mechanism,along with the all-optical mechanism.[22]

    Recent studies have shown that electron beams with energies as high as several GeV can be obtained from laser-plasma interactions using LWFA,[23,24]andγ-photons with energies beyond the GeV regime can be produced by nonlinear Compton scattering as the wakefield-accelerated electron beam interacts with the reflected laser pulse.[25,26]Many researchers have studied effective mechanisms for producingγ-rays with a peak brilliance of 1020-1026photons/s/mm2/mrad2/0.1%BW at MeV to GeV energies using lasers with intensities of 1021-1023W/cm2.[27,28]Zhuet al.[29]recently obtainedγ-rays with a peak brilliance of 1026photons/s/mm2/mrad2/0.1%BW at 1 MeV using a multi-petawatt laser pulse in a two-stage wakefield accelerator. Guet al.[30]proposed a new mechanism for generating brilliantγ-rays using a plasma mirror and obtainedγ-rays with a peak intensity of 0.74 PW and a brilliance of 1024photons/s/mm2/mrad2/0.1%BW at 58 MeV under a laser intensity of 1023W/cm2. In a recent study, we investigated an efficient method of generating high-energyγ-photons using the interaction between a wakefield-accelerated electron beam and a counter-propagating high-intensity laser pulse with a compound target, and obtained two groups ofγ-rays with a small divergence angle.[31]Changet al.[32]proposed a new resonance acceleration scheme for generating relativistic electron bunches and brilliantγ-rays, used a three-dimensional particle-in-cell (PIC) simulation and reportedγ-ray pulses with a peak brilliance of 1025photons/s/mm2/mrad2/0.1%BW(15 MeV) at a laser intensity of 1.9× 1023W/cm2.More recently, Zhanget al.[33]reported nano-micro array thin target for ultra-short (440 as) and ultra-bright[1024photons/s/mm2/mrad2/0.1%BW(15 MeV)]γ-ray emission with high conversion efficiency. These high-energy electrons andγ-rays represent a novel light source with a broad range of applications in the production of high-energy electron-positron pairs,exploring high-energy astrophysics in the laboratory,and performing nuclear physics research.[34,35]

    Fig.1. Schematic diagram of ultrabright γ-ray emission from the interaction of an intense LP laser and a compound target. The targets consist of a uniform NCD hydrogen plasma with a density of ne=nc and an aluminum solid foil with a density of ne=700nc.Blue and orange represent the NCD plasma and solid target,respectively.

    In this study, we investigate the generation of highenergy, ultrabrightγ-rays by the interaction of an intense linearly polarized (LP) laser with a near-critical-density (NCD)plasma using two-dimensional(2D)QED PIC simulations. In the simulations,three target configurations are used to investigate the effects of target shape onγ-ray generation,as shown in Fig. 1. Theγ-photon density, energy, angular distribution,and peak brightness for each target are compared in detail.The results show that when a laser pulse with an intensity of 8.5×1022W/cm2propagates in an NCD plasma, a large amount of electrons are trapped by the self-generated magnetic field and radiation reaction(RR)trapping effects and accelerated to high energy. Consequently,γ-rays are emitted by nonlinear betatron oscillation in the first stage and by nonlinear Compton scattering in the second stage. The accelerated electrons emit GeVγ-photons by inverse Compton scattering when they collide with the reflected laser pulse. The simulation results indicate that target 3 affords better focusing of both the laser field and electron beam compared to targets 1 and 2.Consequently, well-collimatedγ-rays with high energy, high density, and low divergence angle are produced when target 3 is used. The density and cutoff energy of both the accelerated electrons and the emittedγ-rays are much higher than those obtained by other proposed mechanisms[36,37]using the same driving laser. The angular distribution of theγ-rays is within approximatelyθ ≤20°, and the cutoff energies of the accelerated electrons andγ-photons exceed 3 GeV and 2 GeV,respectively. The brilliance of theγ-rays and the conversion efficiency are higher than those reported in Ref. [38], where two counter-propagating intense laser pulses were used. The results demonstrate that it is essential to optimize the shape of the solid target to enhance theγ-ray energy and brilliance and the conversion efficiency.

    2. Theoretical model of γ-ray emission

    When an ultrahigh-intensity laser pulse interacts with a plasma,electrons are simultaneously affected by the RR force and emit high-energyγ-photons. When the laser intensity is relatively high, the RR force becomes non-negligible.[39]In laser-plasma interactions, the relativistic gauge-invariant parameterχedetermines the importance of the nonlinear QED effects and the ratio ofγ-ray emission.[40]In the classical description,the total radiation power of the accelerated electrons is written as[41]

    whereF= dP/dt,Pis the electron momentum,meandeare the mass and charge of the electron, respectively,cis the speed of light in vacuum, andγeis the electron Lorentz factor. The classical description of electron radiation in a strong electromagnetic field overestimates the total emitted power.In the quantum description, the emitted photon energy may not exceed the electron energy, whereas there is no such restriction in the classical description. We introduce the quantum effect functionG(χe), which decreases the electron radiation power,[43]into the classical expression. The quantum effects can be expressed as[42]

    3. Simulation setups

    To test our model, a 2D-PIC simulation was conducted using the EPOCH code,[44]which takes into account of the QED effects via a Monte Carlo algorithm. In our simulation,the simulation box has dimensions of(110×24)μm in thexandydirections, respectively, and is divided into 3300×400 grid cells,with 10 macroparticles in each cell.An LP Gaussian laser pulse with an intensity ofI0=8.5×1022W/cm2enters the simulation box from the left boundary att=0. The corresponding normalized amplitude isa0=eE0/mecω0=250,

    whereE0andω0are the laser electric field strength and laser frequency,respectively. The laser pulse duration isτ=15 fs,the laser wavelength isλ0=1 μm, and the spot size of the laser isr0=5μm in all the simulations. Three target configurations are considered,as shown in Fig.1. For target 1,a flat foil with no channel is attached behind the NCD plasma, as shown in Fig.1(a). Flat and curved foils with an NCD plasma channel are used as targets 2 and 3,as shown in Figs.1(b)and 1(c), respectively. The NCD plasma is a uniform hydrogen plasma with a densityne=nc,and solid aluminum foils with a densityne=700ncare used,whereneis the electron density,andnc=meω20/4πe2is the critical density. The NCD plasma is located betweenx=10μm andx=100μm, and betweeny=?6μm andy=6μm,and the thickness of the aluminum foil is 2μm.Simple outflow and periodic boundary conditions are applied in thexandydirections,respectively.

    4. Simulation results

    Figure 3 shows the density distributions of electrons and photons for each target after laser reflection(t=360 fs). Under the same laser and NCD plasma conditions, the electron and photon density profiles for targets 2 and 3 are completely different from that for target 1. For target 1, because of inefficient focusing by the self-generated magnetic field, a large number of electrons escape the channel center, and thus the electron beam has a large source size, as shown in Fig. 3(a).Consequently,γ-rays with low density and a large source size are produced, as shown in Fig. 3(b). However, for targets 2 and 3,because the self-generated magnetic field affords better focusing, electrons are confined in a small space on the laser propagation axis and produce high-densityγ-rays with a density distribution similar to that of the electrons, as shown in Figs. 3(d) and 3(f). The photon density was approximately 90ncand 120ncfor targets 2 and 3, which are three and four times higher, respectively, than the value of approximately 30ncfor target 1. The results indicate that up and down solid foils(the channel)plays an important role in focusing the laser and generating a magnetic field,which is favorable for obtaining a low-divergence, high-density electron beam andγ-rays.Note that more tightly focused and denserγ-photons are generated when target 3 is used than when target 2 is used. The reason is that target 3 provides better focusing of the laser field as well as the electrons.

    Figure 4 shows the energy spectra of electrons andγphotons for each target configuration att=300 and 360 fs(before and after laser reflection, respectively). In the first stage of the interaction,an intense laser propagates in the NCD plasma. Because of the additional contributions of the selfgenerated magnetic field and RR trapping effect,a large number of electrons are trapped and accelerated to high energy.The cutoff energy of the accelerated electrons att=300 fs is 3 GeV for target 3 but only approximately 1.5 GeV for target 1, as shown in Fig.4(a). Consequently, some low-energyγ-photons are emitted via nonlinear betatron oscillation when target 1 is used,as shown in Fig.4(b). However,theγ-photon cutoff energies for targets 2 and 3 are much higher than that for target 1. This result also indicates that the NCD plasma channel plays a key role in the generation of high-energyγ-rays.In the second stage,the accelerated electrons collide with the counter-propagating reflected laser, and the strong ponderomotive force of the laser changes the electron direction and thus increases the electron Lorentz factorγe. Therefore, the value of the quantum invariant parameterχeis maximized,increasing the probability ofγ-ray emission and theγ-ray energy. In this stage,because nonlinear Compton scattering occurs, the energy of some of the accelerated electrons is decreased, and high-energyγ-photons are emitted, as shown in Fig.4(d).Note that,for target 3,the cutoff energy ofγ-photons is 2.2 GeV,whereas it is only approximately 500 MeV for target 1.

    Fig.2. Distribution of self-generated magnetic field Bz in(x,y)plane for three targets before(t =350 fs,top row)and after(t =360 fs,bottom row)laser reflection. The magnetic field is normalized by B0=meω0/e.

    Fig.3. Distribution of electron(top row)and photon(bottom row)densities in(x,y)plane for each target after laser reflection(t=360 fs). The electron and photon densities are normalized by the critical density nc.

    Fig.4. Energy spectra of electrons[(a)and(c)]and γ-photons[(b)and(d)]for each target before(top row)and after(bottom row)laser reflection.

    Fig. 5. Energy angular distribution of γ-photons for each target after laser reflection (t =360 fs). The color bar shows the photon number (Nγ) on a logarithmic(log10 Nγ)scale with arbitrary units.

    Table 1. γ-ray peak brilliance B(k)(photons/s/mm2/mrad2/0.1%BW)for each target at t=360 fs.

    Figure 5 plots the energy angular distribution ofγphotons for each target configuration after laser reflection(t= 360 fs). Low-energyγ-photons with a large divergence angle (~37°) are generated when target 1 is used,as shown in Fig. 5(a). However, for targets 2 and 3,the divergence angles of theγ-photons are approximately 25.5°and 20.5°, as shown in Figs. 5(b) and 5(c), respectively. The correspondingγ-ray peak brilliance for each target att= 360 fs is given in Table 1. It can be concluded that, for target 1, there are 2×1014and 3.67×1011photons at 100 MeV and 500 MeV, respectively, within a source size of 7.2×4 μm2, which gives a peak brightness of approximately 1×1024photons/s/mm2/mrad2/0.1%BW at 100 MeV and 2×1021photons/s/mm2/mrad2/0.1%BW at 500 MeV. By contrast, for target 2, the peak brightness of theγ-rays at 100 MeV (source size is 1.63×2.05 μm2) is 1.6×1026photons/s/mm2/mrad2/0.1%BW, and for target 3,it is 4.6×1026photons/s/mm2/mrad2/0.1%BW(source size is 1.37×1.45 μm2), which is two orders of magnitude larger than that for target 1. The well-collimated, high-density, and ultrabrightγ-rays obtained using our scheme may be suitable for the generation of energetic positrons and for laboratory astrophysics research.

    5. Discussion

    The fraction of energy coupled to electrons and the relaxation time are related to the laser and plasma parameters, as discussed in previous papers.[45-47]Therefore,in this section,we discuss in detail the effects of plasma channel length, target curvature radius,laser polarization,laser intensity,and the RR force on the electron acceleration andγ-ray emission.

    5.1. Effect of plasma channel length

    We study the effects of NCD plasma channel length on the electron acceleration andγ-ray emission for target 3 with a fixed target curvature radius ofr=6μm. To ensure that the laser is reflected from the foil and collides with the accelerated electrons, we consider the following times and channel lengths:t=300 fs forL=80μm,t=330 fs forL=90μm,t=360 fs forL=100 μm,t=390 fs forL=110 μm, andt=420 fs forL=120μm. The simulation results show that for short channels, for example,L=80 μm andL=90 μm,trapped electrons are accelerated to lower energies because of the short acceleration distance, and thus lower-energy electrons andγ-photons are produced,as shown in Figs.6(a)and 6(b). However, for long channels, for example,L=110 μm andL=120μm,the travel time is longer,and most of the laser energy is depleted before laser reflection(the laser energy after reflection is approximately 100 J, which is one-tenth the initial laser energy). Under these conditions,the photons also have lower energies than those produced atL=100 μm. As shown in Fig. 9(b), the electron energy conversion efficiency increased linearly untilt=300 fs,remained constant for 60 fs,and then decreased. This result indicates that a long channel(i.e.,a long travel time)is not favorable for electron acceleration. When a channel length ofL=100μm is used,the accelerated electron cutoff energy is as high as 3 GeV,and the correspondingγ-photon energy exceeds that obtained using the other channel lengths. Figures 6(c) and 6(d) show that the peak brightness ofγ-photons and the conversion efficiency of laser energy to electrons andγ-photons are higher than those at the other channel lengths. This result shows that to obtain high-energyγ-rays,it is very important to choose an appropriate channel length.

    Fig.6.Energy spectra of(a)electrons and(b)γ-photons,(c)γ-ray peak brilliance(photons/s/mm2/mrad2/0.1%BW),and(d)energy conversion efficiency of electrons and γ-photons for different plasma channel lengths.

    Fig.7.Energy spectra of(a)electrons and(b)γ-photons,(c)γ-ray peak brilliance(photons/s/mm2/mrad2/0.1%BW),and(d)energy conversion efficiency of electrons and γ-photons for different target curvature radii after laser reflection(t=360 fs).

    Fig. 8. Energy angular distribution of γ-photons for different foil curvature radii after laser reflection (t =360 fs). The color bar shows the photon number(Nγ)on a logarithmic(log10 Nγ)scale with arbitrary units.

    5.2. Effect of target curvature radius

    The effects of target curvature radius on the electron acceleration andγ-ray emission are also investigated for target 3 with a fixed channel length ofL=100μm. The simulation results show that when the radius of curvature of the target is equal to or smaller than the laser spot size,r0=5 μm, the number of trapped electrons is limited;thus,a relatively small number of electrons interact with the reflected laser,and thus the electron and photon energies are low,as shown in Figs.7(a)and 7(b). Figures 7(c)and 7(d)show that the peak brightness of theγ-rays and the energy conversion efficiency decrease with increasing curvature radius. The primary reason is that the laser field is less focused at a relatively large curvature radius, which results in a largeγ-ray divergence. In addition,the divergence angle ofγ-photons is also relatively wide at a small curvature radius, as shown in Fig. 8(a). Atr=6 μm,more electrons are trapped in the channel and they are accelerated to higher energy than in the other cases. Consequently,γ-photons with higher energy and a smaller divergence angle are emitted. For this optimal radius, the electron and photon cutoff energies are 3 GeV and 2.2 GeV, respectively, and the divergence angle of theγ-rays is approximately 20.5°, as shown in Fig.8(b). The results show that the maximum electron and photon energies both decrease significantly with increasing radius of curvature. From these simulation results,we can conclude that large and small curvature radii decrease the focusing of the laser field and the trapping of electrons in the channel,and ultimately decrease the maximum energy and increase theγ-ray divergences angle.For both simulations and experiments,it is crucial to select a target with an appropriate curvature radius to generate high-qualityγ-rays.

    Fig.9. Energy spectra of(a)electrons and γ-photons for LP and CP lasers at t=360 fs,(b)time evolution of energy conversion efficiency for LP and CP lasers at t=360 fs.

    5.3. Effect of laser polarization

    5.4. Effect of laser intensity

    It is essential to investigate the effect of laser intensity on ultrabrightγ-ray emission from laser-plasma interaction.Using another simulation, we investigated the effect of laser intensity using the optimal laser (the LP laser) and plasma parameters and the results are summarized in the Table 2.The simulation results show that the electron andγ-ray energies increase with increasing laser intensitya0,as shown in Figs.10(a)and 10(b).The reason is that the higher laser intensity produces more energetic electrons owing to the combined effects of the stronger acceleration field, self-generated magnetic field, and RR trapping effect, ultimately strengthening the emission of well-collimatedγ-rays,as shown in Fig.10(c).Figure 10(d)shows the energy conversion efficiencies of electrons andγ-photons as a function of laser amplitudea0for the optimal laser and plasma parameters. The energy conversion efficiency of electrons increased linearly up toa0=150 and then increased more steeply witha0.The conversion efficiency to photons increased rapidly from a few percent to 26%, and the conversion efficiencies of electrons andγ-photons were comparable at approximatelya0=300 (see Table 2). As the laser intensity increased, photons absorbed more energy than electrons,as shown in Fig.10(d).

    5.5. Effect of radiation reaction

    For comparison, we also performed additional simulations without the RR effect using the optimal target parameters for the LP laser and the results are also summarized in the Table 2. The simulation results indicated that without the RR trapping effect,the strong ponderomotive force of the intense laser tends to push electrons from the high-intensity region.Consequently,few electrons are trapped in the channel center,and they diverge in the transverse direction at the acceleration stage, as shown in Figs.11(a)and 11(b). However, when the RR effect is considered,the electrons in the NCD plasma experience a strong RR force due to radiating photons. When the RR force becomes large enough to compensate for the expelling ponderomotive force of the laser, the RR causes electrons to be trapped inside the laser instead of removed by ponderomotive pressure.[48]Consequently,electrons gradually accumulate in the high-intensity region (channel center) and form a high-density electron bunch, as shown in Figs.11(a1)and 11(b1). This electron bunch then co-propagates with the laser pulse and is accelerated to high energy in the first stage;thus,it emits more high-energy,well-collimatedγ-photons in the first stage, as shown in Figs. 11(c1) and 11(d1). We see from this figure that the photon density exceeds 50ncwhen the RR is considered,which is much higher than that without the RR, as shown in Figs. 11(c) and 11(d). In the second stage of the interaction,this well-collimated electron beam counterpropagates with the reflected laser pulse, and theγ-ray emission is enhanced by inverse Compton scattering,as discussed in Section 4.

    Fig.10. Energy spectra of(a)electrons and(b)γ-photons at t =360 fs. (c)Angular distribution of γ-photons at laser intensities of a0=50,100,150,200,250,and 300 at t=360 fs. (d)Energy conversion efficiencies of electrons and γ-photons at t=360 fs.

    Fig.11. Distribution of electrons at t =250 fs[(a)and(a1)]and t =350 fs[(b)and(b1)]and of γ-photons at t =250 fs[(c)and(c1)]and t =350 fs[(d)and(d1)]without(top row)and with RR effects for the same laser and target parameters(target 3). Electron and γ-photon densities are normalized by the critical density nc.

    Table 2. The Ne and Nγ are the number of electrons and γ-photons with energy of 1 GeV,Ee and Eγ are the cutoff energies of electrons and γ-photons,ηe and ηγ are the laser energy conversion efficiencies to electrons and γ-photons in the cases of laser intensities from a0=50 to a0=300(for LP laser with RR),CP laser(for a0=250 and with RR),and without RR(for LP laser and a0=250)at t=360 fs for target 3. The channel length and curvature radius are fixed to their optimal values.

    6. Summary

    An efficient scheme for the generation of ultrabrightγrays from the interaction of an intense laser pulse with an NCD plasma was studied by using a 2D-PIC simulation. When the intense laser propagates in the NCD plasma, some electrons are trapped in the channel by the self-generated magnetic field and the RR trapping effect and are accelerated to energies of several GeV in the first stage. High-energy, high-density ultrabrightγ-photons are emitted by nonlinear Compton scattering as the accelerated electrons collide with the reflected laser pulse in the second stage. The effects of target shape on the generation of brightγ-rays are investigated using three target configurations. Simulation results showed that the presence of a channel and the use of a curved foil target significantly affect the generation of low-divergence, high-energyγ-rays when targets 2 and 3 are used. For target 3, the beam quality of the accelerated electrons is improved, and the density ofγ-photons is 4.5 and 1.5 times higher than those for targets 1 and 2, respectively. The peakγ-ray brightness is 4.6×1026photons/s/mm2/mrad2/0.1%BW at 100 MeV. Furthermore,the optimal plasma channel length and curvature radius of target 3 for efficientγ-ray emission were also analyzed.The results indicate that the optimal channel length and curvature radius of target 3 areL=100μm andr=6μm,respectively.Finally,we investigated the effects of the laser polarization,laser intensity,and RR force onγ-ray emission. A comparison of LP and CP lasers revealed that the laser polarization strongly affects the electron acceleration and the generation of brightγ-rays. With increasing laser intensity, many electrons in the NCD plasma are trapped in the strong laser field region owing to the strong RR trapping effect and form an ultradense electron bunch. As a result, high-density ultrabrilliant GeVγ-rays can be obtained via Compton scattering.

    Acknowledgment

    The authors are particularly grateful to CFSA at the University of Warwick for allowing us to use the EPOCH code (developed under UK EPSRC Grants (Grant Nos.EP/G054940/1,EP/G055165/1,and EP/G056803/1)).

    猜你喜歡
    艾力買(mǎi)買(mǎi)提巴克
    《天山牧人家》
    《黑馬》(油畫(huà))
    第六章 對(duì)人的熱愛(ài)
    智斗雙面婆婆
    婦女生活(2021年8期)2021-08-26 09:00:26
    巴克的掌控
    最美可麗餅
    艾力江·買(mǎi)買(mǎi)提國(guó)畫(huà)作品
    五千個(gè)買(mǎi)買(mǎi)提
    專心的小瑪妮雅
    国产又爽黄色视频| 999精品在线视频| 日本91视频免费播放| 久久精品国产亚洲av涩爱| 又大又爽又粗| 在线观看国产h片| 国产片特级美女逼逼视频| 激情视频va一区二区三区| 91字幕亚洲| 天堂俺去俺来也www色官网| 免费看av在线观看网站| 午夜视频精品福利| 韩国高清视频一区二区三区| 亚洲 国产 在线| 巨乳人妻的诱惑在线观看| 最近中文字幕2019免费版| 视频区图区小说| 亚洲人成电影免费在线| 丝袜在线中文字幕| 国语对白做爰xxxⅹ性视频网站| 女性被躁到高潮视频| 午夜两性在线视频| 亚洲av综合色区一区| 在线观看一区二区三区激情| 国产精品麻豆人妻色哟哟久久| 免费在线观看完整版高清| 肉色欧美久久久久久久蜜桃| 亚洲激情五月婷婷啪啪| 亚洲伊人久久精品综合| 欧美大码av| 国产精品久久久久成人av| 亚洲欧美一区二区三区国产| 精品国产超薄肉色丝袜足j| 一级黄色大片毛片| 亚洲欧美激情在线| 蜜桃在线观看..| 国产成人精品无人区| 桃花免费在线播放| 天天躁日日躁夜夜躁夜夜| 精品亚洲乱码少妇综合久久| 午夜福利在线免费观看网站| 日韩大码丰满熟妇| 亚洲一卡2卡3卡4卡5卡精品中文| 最黄视频免费看| 亚洲人成电影观看| 精品久久蜜臀av无| www.熟女人妻精品国产| 日韩中文字幕视频在线看片| 一级片'在线观看视频| 男女高潮啪啪啪动态图| 啦啦啦在线免费观看视频4| 亚洲 欧美一区二区三区| 好男人视频免费观看在线| 国产精品一区二区在线不卡| 久久精品久久精品一区二区三区| www.自偷自拍.com| 狠狠婷婷综合久久久久久88av| 老司机午夜十八禁免费视频| 欧美 亚洲 国产 日韩一| 久久精品国产a三级三级三级| 欧美激情极品国产一区二区三区| 极品人妻少妇av视频| 在线观看免费高清a一片| 久久久久久久国产电影| 亚洲九九香蕉| 亚洲国产中文字幕在线视频| 亚洲欧美精品综合一区二区三区| 亚洲男人天堂网一区| 欧美成狂野欧美在线观看| 一级毛片女人18水好多 | 纵有疾风起免费观看全集完整版| 大片电影免费在线观看免费| 水蜜桃什么品种好| 中文字幕人妻丝袜一区二区| 欧美日韩福利视频一区二区| 女人爽到高潮嗷嗷叫在线视频| 在线观看人妻少妇| 亚洲欧美一区二区三区黑人| 国产高清videossex| 国产日韩欧美视频二区| 99re6热这里在线精品视频| 欧美精品一区二区免费开放| 啦啦啦中文免费视频观看日本| 久久久久久久国产电影| 精品国产乱码久久久久久男人| 日韩中文字幕视频在线看片| 亚洲精品国产av成人精品| 国产日韩欧美在线精品| 日韩大码丰满熟妇| 久久国产亚洲av麻豆专区| 午夜视频精品福利| 叶爱在线成人免费视频播放| 国产男人的电影天堂91| 少妇 在线观看| 午夜福利一区二区在线看| 久久99精品国语久久久| 国产成人精品久久二区二区免费| 国产亚洲av片在线观看秒播厂| 国产av精品麻豆| 操美女的视频在线观看| 欧美精品亚洲一区二区| 少妇被粗大的猛进出69影院| 亚洲一卡2卡3卡4卡5卡精品中文| 99九九在线精品视频| 国产在线一区二区三区精| 亚洲av成人不卡在线观看播放网 | 免费观看a级毛片全部| 亚洲,一卡二卡三卡| 午夜视频精品福利| 久久人妻熟女aⅴ| 成年女人毛片免费观看观看9 | 看十八女毛片水多多多| 国产精品亚洲av一区麻豆| 日本欧美国产在线视频| 另类亚洲欧美激情| 欧美日韩成人在线一区二区| 国产av国产精品国产| 亚洲精品一区蜜桃| 人成视频在线观看免费观看| 国产片内射在线| 日韩一区二区三区影片| 99国产精品免费福利视频| 十八禁人妻一区二区| 欧美日韩视频高清一区二区三区二| 在线观看www视频免费| 亚洲成av片中文字幕在线观看| 女警被强在线播放| 在现免费观看毛片| 男女床上黄色一级片免费看| 极品人妻少妇av视频| 国产在视频线精品| 国产91精品成人一区二区三区 | 亚洲精品久久久久久婷婷小说| 黄色怎么调成土黄色| 欧美日韩亚洲高清精品| 国产成人精品久久久久久| 亚洲国产中文字幕在线视频| 热re99久久精品国产66热6| 国产在线视频一区二区| 桃花免费在线播放| 国产黄色视频一区二区在线观看| 国产亚洲欧美在线一区二区| 国产精品免费大片| 妹子高潮喷水视频| 大陆偷拍与自拍| av网站在线播放免费| 亚洲中文字幕日韩| 香蕉丝袜av| 亚洲精品国产色婷婷电影| 欧美日韩黄片免| 国产高清不卡午夜福利| 中文字幕最新亚洲高清| 亚洲 国产 在线| 日本a在线网址| av天堂久久9| 狂野欧美激情性bbbbbb| 黄色视频不卡| 国产精品三级大全| 亚洲图色成人| 1024视频免费在线观看| 欧美日韩国产mv在线观看视频| 免费黄频网站在线观看国产| 成年人黄色毛片网站| 精品卡一卡二卡四卡免费| 国产一区有黄有色的免费视频| av网站免费在线观看视频| svipshipincom国产片| 午夜视频精品福利| 老鸭窝网址在线观看| 脱女人内裤的视频| 在线观看免费视频网站a站| 十八禁人妻一区二区| 中文字幕高清在线视频| 亚洲视频免费观看视频| 少妇人妻 视频| 欧美日韩国产mv在线观看视频| 亚洲国产精品国产精品| 久久天躁狠狠躁夜夜2o2o | 久久女婷五月综合色啪小说| 国产成人91sexporn| 日韩 亚洲 欧美在线| 日韩,欧美,国产一区二区三区| 久久这里只有精品19| 一边摸一边抽搐一进一出视频| 国产精品二区激情视频| 狂野欧美激情性xxxx| 国产日韩欧美视频二区| 深夜精品福利| 国产精品亚洲av一区麻豆| 久久久久国产精品人妻一区二区| 91麻豆精品激情在线观看国产 | 免费久久久久久久精品成人欧美视频| 激情视频va一区二区三区| 五月开心婷婷网| 国产成人精品在线电影| 啦啦啦在线观看免费高清www| 99国产精品一区二区三区| 美女中出高潮动态图| 一级片免费观看大全| 黄色怎么调成土黄色| 亚洲 国产 在线| 最近最新中文字幕大全免费视频 | 人体艺术视频欧美日本| 日本av手机在线免费观看| 亚洲欧美色中文字幕在线| 色精品久久人妻99蜜桃| 一级毛片我不卡| 欧美激情 高清一区二区三区| 亚洲av成人精品一二三区| 国产精品久久久久久精品电影小说| 宅男免费午夜| 色综合欧美亚洲国产小说| 悠悠久久av| 99国产精品一区二区蜜桃av | 欧美xxⅹ黑人| 精品高清国产在线一区| 国产伦理片在线播放av一区| 高清av免费在线| 国产爽快片一区二区三区| 久久精品国产亚洲av高清一级| 黄片播放在线免费| 性色av一级| 成人午夜精彩视频在线观看| 国产一区二区在线观看av| 男人爽女人下面视频在线观看| 黄色一级大片看看| 久久热在线av| 久久久精品免费免费高清| 国产精品秋霞免费鲁丝片| a 毛片基地| 熟女av电影| 亚洲国产av影院在线观看| 777久久人妻少妇嫩草av网站| 久久久国产精品麻豆| 精品欧美一区二区三区在线| 久久久久久久国产电影| 婷婷色麻豆天堂久久| 亚洲精品国产av成人精品| 国产成人一区二区在线| 自拍欧美九色日韩亚洲蝌蚪91| 色婷婷久久久亚洲欧美| 一二三四社区在线视频社区8| 又粗又硬又长又爽又黄的视频| 午夜视频精品福利| 国产黄频视频在线观看| 高清欧美精品videossex| 一二三四社区在线视频社区8| 女人精品久久久久毛片| 精品少妇一区二区三区视频日本电影| 大型av网站在线播放| 国产1区2区3区精品| 国产午夜精品一二区理论片| 久久久久国产一级毛片高清牌| 国产欧美日韩一区二区三区在线| 最新的欧美精品一区二区| 91精品伊人久久大香线蕉| 亚洲精品一二三| 国产精品人妻久久久影院| 999久久久国产精品视频| 汤姆久久久久久久影院中文字幕| 婷婷色综合www| 久久鲁丝午夜福利片| 多毛熟女@视频| 午夜两性在线视频| 男女边摸边吃奶| 高清欧美精品videossex| 黄色一级大片看看| 一级毛片电影观看| 精品一品国产午夜福利视频| 两性夫妻黄色片| 久久久久网色| 男女免费视频国产| 亚洲欧美日韩高清在线视频 | 亚洲伊人色综图| 1024视频免费在线观看| 99国产精品一区二区三区| 国产亚洲欧美在线一区二区| 亚洲 欧美一区二区三区| 80岁老熟妇乱子伦牲交| 亚洲欧洲日产国产| 日韩精品免费视频一区二区三区| 亚洲av成人精品一二三区| 免费看av在线观看网站| 国产黄频视频在线观看| 亚洲成人免费电影在线观看 | 婷婷色av中文字幕| 国产精品偷伦视频观看了| 啦啦啦中文免费视频观看日本| 成年动漫av网址| 十分钟在线观看高清视频www| 777久久人妻少妇嫩草av网站| 国产精品av久久久久免费| 日日爽夜夜爽网站| 欧美激情 高清一区二区三区| 婷婷色综合大香蕉| 国产亚洲av高清不卡| 大型av网站在线播放| 一本久久精品| 欧美激情高清一区二区三区| av电影中文网址| 赤兔流量卡办理| 可以免费在线观看a视频的电影网站| 啦啦啦啦在线视频资源| 久久性视频一级片| 国产精品一二三区在线看| 人成视频在线观看免费观看| 50天的宝宝边吃奶边哭怎么回事| 高清视频免费观看一区二区| 亚洲国产欧美在线一区| 国产免费又黄又爽又色| 色综合欧美亚洲国产小说| 精品亚洲成a人片在线观看| 亚洲色图 男人天堂 中文字幕| 久久人人爽人人片av| 国产精品久久久久久人妻精品电影 | 18在线观看网站| 一本久久精品| 免费女性裸体啪啪无遮挡网站| 王馨瑶露胸无遮挡在线观看| 五月开心婷婷网| 精品第一国产精品| 18禁国产床啪视频网站| 久久热在线av| 中文字幕人妻丝袜一区二区| 精品少妇久久久久久888优播| 欧美在线黄色| 日韩av免费高清视频| 一个人免费看片子| 亚洲欧洲国产日韩| 亚洲精品一区蜜桃| 亚洲免费av在线视频| 亚洲伊人色综图| 女警被强在线播放| 老熟女久久久| 国产欧美日韩综合在线一区二区| 飞空精品影院首页| 国产色视频综合| 国产精品一二三区在线看| 婷婷色麻豆天堂久久| 一二三四在线观看免费中文在| 精品福利永久在线观看| 亚洲精品一卡2卡三卡4卡5卡 | 麻豆国产av国片精品| 另类精品久久| 欧美日韩成人在线一区二区| 国产日韩欧美视频二区| 国产黄色免费在线视频| 丰满饥渴人妻一区二区三| 波野结衣二区三区在线| 黄色片一级片一级黄色片| 天天操日日干夜夜撸| 激情五月婷婷亚洲| 女人被躁到高潮嗷嗷叫费观| 最近中文字幕2019免费版| 2018国产大陆天天弄谢| 欧美+亚洲+日韩+国产| 久久久亚洲精品成人影院| 国产成人a∨麻豆精品| 欧美激情 高清一区二区三区| 国产97色在线日韩免费| 丰满饥渴人妻一区二区三| 中文字幕人妻丝袜一区二区| 人人妻人人澡人人看| 亚洲午夜精品一区,二区,三区| 久久久精品免费免费高清| 亚洲美女黄色视频免费看| 久久精品亚洲熟妇少妇任你| 久久鲁丝午夜福利片| 男女边吃奶边做爰视频| 国产爽快片一区二区三区| 香蕉丝袜av| 久久综合国产亚洲精品| 日韩制服丝袜自拍偷拍| 亚洲一区二区三区欧美精品| xxxhd国产人妻xxx| 捣出白浆h1v1| 色播在线永久视频| 男女之事视频高清在线观看 | 亚洲精品久久成人aⅴ小说| 国产成人啪精品午夜网站| 久久精品aⅴ一区二区三区四区| 国产亚洲午夜精品一区二区久久| 精品国产一区二区三区四区第35| 一级毛片电影观看| 欧美黑人欧美精品刺激| 黄色毛片三级朝国网站| 久久久国产精品麻豆| 丁香六月欧美| 丝袜美腿诱惑在线| 国产精品久久久久久精品电影小说| 日本a在线网址| 女性被躁到高潮视频| 亚洲欧美精品自产自拍| 国产精品免费视频内射| 欧美精品一区二区免费开放| 婷婷成人精品国产| 后天国语完整版免费观看| 丝袜在线中文字幕| 国产欧美日韩综合在线一区二区| 国产爽快片一区二区三区| 亚洲人成电影免费在线| 精品人妻一区二区三区麻豆| av网站在线播放免费| 人妻 亚洲 视频| 欧美国产精品一级二级三级| 亚洲精品一二三| 欧美日韩视频高清一区二区三区二| 日本黄色日本黄色录像| 国产成人免费无遮挡视频| av有码第一页| 王馨瑶露胸无遮挡在线观看| 香蕉丝袜av| 女性被躁到高潮视频| 国产福利在线免费观看视频| 亚洲精品成人av观看孕妇| 亚洲美女黄色视频免费看| 欧美日韩黄片免| 免费在线观看黄色视频的| 人人妻,人人澡人人爽秒播 | av在线app专区| 桃花免费在线播放| 午夜影院在线不卡| av电影中文网址| 中文字幕人妻丝袜制服| 亚洲一区中文字幕在线| 在线观看免费日韩欧美大片| 久久人人97超碰香蕉20202| 七月丁香在线播放| 欧美黑人精品巨大| 久久热在线av| 国产精品一区二区在线观看99| 午夜福利视频精品| 亚洲七黄色美女视频| 亚洲欧美精品综合一区二区三区| 制服诱惑二区| 亚洲精品国产av蜜桃| 七月丁香在线播放| 一区二区日韩欧美中文字幕| 黄色怎么调成土黄色| 19禁男女啪啪无遮挡网站| 亚洲欧美精品综合一区二区三区| 18在线观看网站| 丰满饥渴人妻一区二区三| 亚洲精品久久久久久婷婷小说| 美女国产高潮福利片在线看| 久久久久精品人妻al黑| 天天添夜夜摸| 脱女人内裤的视频| 欧美变态另类bdsm刘玥| 国产精品亚洲av一区麻豆| 亚洲av综合色区一区| 一区二区三区精品91| 少妇 在线观看| 国产伦人伦偷精品视频| 国产高清videossex| 青青草视频在线视频观看| 久久国产精品男人的天堂亚洲| 18禁黄网站禁片午夜丰满| 97精品久久久久久久久久精品| 欧美日韩亚洲综合一区二区三区_| 我的亚洲天堂| 1024香蕉在线观看| 一级片'在线观看视频| 亚洲成人免费av在线播放| 日韩伦理黄色片| 999精品在线视频| 国产有黄有色有爽视频| 丁香六月欧美| 亚洲久久久国产精品| 久久久国产一区二区| 美女午夜性视频免费| 久久久国产一区二区| 免费黄频网站在线观看国产| 操出白浆在线播放| 国产无遮挡羞羞视频在线观看| 大话2 男鬼变身卡| 一本久久精品| 亚洲成色77777| 免费在线观看日本一区| 国产精品香港三级国产av潘金莲 | 一区二区三区激情视频| 国产成人精品久久二区二区91| 在线 av 中文字幕| 男人操女人黄网站| 女人高潮潮喷娇喘18禁视频| 一级毛片电影观看| 视频区欧美日本亚洲| 成年人午夜在线观看视频| 男女边摸边吃奶| 亚洲精品国产av蜜桃| 菩萨蛮人人尽说江南好唐韦庄| 日韩制服丝袜自拍偷拍| 成人亚洲欧美一区二区av| 免费在线观看黄色视频的| 久久精品久久久久久久性| 亚洲精品自拍成人| 日本欧美国产在线视频| 国产男女超爽视频在线观看| 亚洲色图综合在线观看| 成人午夜精彩视频在线观看| 高清av免费在线| 极品少妇高潮喷水抽搐| 精品久久久久久电影网| 午夜视频精品福利| 91国产中文字幕| 又黄又粗又硬又大视频| 国产高清不卡午夜福利| 好男人视频免费观看在线| 亚洲人成网站在线观看播放| 欧美少妇被猛烈插入视频| 国产日韩欧美在线精品| 一本—道久久a久久精品蜜桃钙片| 精品国产超薄肉色丝袜足j| 久久精品亚洲av国产电影网| 亚洲成人免费电影在线观看 | 高清不卡的av网站| 久久毛片免费看一区二区三区| 在线av久久热| 国产亚洲av片在线观看秒播厂| 午夜久久久在线观看| 男女床上黄色一级片免费看| 亚洲自偷自拍图片 自拍| 在线观看免费日韩欧美大片| 国产野战对白在线观看| 亚洲情色 制服丝袜| 国产精品一区二区在线观看99| 婷婷色综合www| 天天操日日干夜夜撸| 亚洲精品日本国产第一区| 国产福利在线免费观看视频| 美女国产高潮福利片在线看| 国产成人精品久久久久久| 亚洲熟女毛片儿| 女人精品久久久久毛片| 日韩欧美一区视频在线观看| 校园人妻丝袜中文字幕| 在线看a的网站| 久久精品久久久久久久性| 一级毛片 在线播放| 国产伦理片在线播放av一区| 无限看片的www在线观看| 欧美精品一区二区免费开放| 国产亚洲精品第一综合不卡| 青青草视频在线视频观看| av有码第一页| 99国产精品99久久久久| 夫妻性生交免费视频一级片| 欧美乱码精品一区二区三区| 亚洲九九香蕉| 黄色视频在线播放观看不卡| 一级片免费观看大全| 天堂俺去俺来也www色官网| 一区二区三区精品91| 性色av一级| 日本午夜av视频| videos熟女内射| 免费av中文字幕在线| av视频免费观看在线观看| 国产片内射在线| 亚洲视频免费观看视频| 我的亚洲天堂| 久久鲁丝午夜福利片| 午夜日韩欧美国产| 你懂的网址亚洲精品在线观看| a 毛片基地| av福利片在线| 亚洲国产看品久久| 亚洲成人手机| 免费观看av网站的网址| 热99国产精品久久久久久7| 99国产精品一区二区蜜桃av | 国产av精品麻豆| 欧美精品亚洲一区二区| 视频区图区小说| 一区二区日韩欧美中文字幕| 精品国产国语对白av| 一级,二级,三级黄色视频| 又紧又爽又黄一区二区| 精品人妻熟女毛片av久久网站| 美女大奶头黄色视频| 日本欧美国产在线视频| 日韩一本色道免费dvd| 少妇 在线观看| 韩国精品一区二区三区| 女人精品久久久久毛片| 久久精品aⅴ一区二区三区四区| 久久久久久久精品精品| 午夜福利在线免费观看网站| www日本在线高清视频| 天天躁夜夜躁狠狠久久av| 国产亚洲av高清不卡| 久9热在线精品视频| 亚洲精品一区蜜桃| 精品欧美一区二区三区在线| 久热这里只有精品99| 制服人妻中文乱码| 十八禁网站网址无遮挡| 真人做人爱边吃奶动态| 国产成人精品久久久久久| 午夜两性在线视频| 久久精品久久久久久噜噜老黄| 免费黄频网站在线观看国产| 欧美国产精品一级二级三级| 黄片小视频在线播放| 美女福利国产在线| 一级毛片黄色毛片免费观看视频| 日韩 亚洲 欧美在线| 美女主播在线视频| 亚洲国产毛片av蜜桃av| 国产亚洲午夜精品一区二区久久| 91麻豆精品激情在线观看国产 | 久久久久视频综合| 97在线人人人人妻| 桃花免费在线播放| 久久国产精品男人的天堂亚洲|