• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Phonon dispersion relations of crystalline solids based on LAMMPS package?

    2021-11-23 07:28:30ZhiyongWei魏志勇TianhangQi戚天航WeiyuChen陳偉宇andYunfeiChen陳云飛
    Chinese Physics B 2021年11期
    關(guān)鍵詞:陳云

    Zhiyong Wei(魏志勇) Tianhang Qi(戚天航) Weiyu Chen(陳偉宇) and Yunfei Chen(陳云飛)

    1Jiangsu Key Laboratory for Design&Manufacture of Micro/Nano Biomedical Instruments and School of Mechanical Engineering,Southeast University,Nanjing 211189,China

    2College of Mechanical and Electronic Engineering,Nanjing Forestry University,Nanjing 210037,China

    Keywords: phonon dispersion relation,molecular dynamics,force constant,potential function

    1. Introduction

    Phonons are collective excitations and main energy carriers in crystalline solids, and also have important effects on many physical properties.[1,2]For example,phonon dispersion and scattering can determine the thermal conductivity of insulators and semiconductors.[3-5]When two solids come together to form an interface, the overlap of the phonon density of states between the two solids can influence the heat flux across the interface.[6-8]In addition, many other physical properties of solid, such as the sound velocity and the elastic constants, can be obtained from the low-frequency region of the phonon dispersion relation.[9]Several recently found physical phenomena or results are also closely related to phonon dispersion, such as hydrodynamic phonon transport,[10]curvature-related phonon transport,[11]and resonant scattering.[12]Harmonic lattice dynamics is a simple model that approximates the interactions among atoms as springs without considering the higher-order interactions,which have been established in the 1920s and 1930s by Bonn and Huang.[13]From the harmonic lattice dynamics theory,one can calculate the frequency and eigenvector of any phonon mode in the first Brillouin zone(FBZ)of the crystal,and can further obtain the phonon group velocity,capacity,irradiation heat flux,[14]etc. The optical phonon modes at some particular location (such as the center or boundary) of the FBZ would be relevant to the IR or Raman information.[15]Therefore, the rapid and accurate acquisition of phonon dispersion relations of materials or structures is of great significance for understanding the mechanical,thermal,and optical properties of solids.

    The General Utility Lattice Program(GULP)package[16]is a commonly used tool to calculate the phonon properties of crystalline solids. This package can use a large number of potential functions or force constants as input to obtain the phonon dispersion relation. However, all the internal functions of this software package are integrated together, which makes it difficult for researchers to modify the code to adapt to some new potential functions. The Phonopy package[17]is another commonly used tool to calculate the phonon properties of crystalline solids. This package can use force constants obtained from various external packages, including first principle packages (VASP[18]and QUANTUM ESPRESSO,[19]etc.) and MD package(LAMMPS),as input to get the phonon dispersion relation. However,the interfaces between Phonopy and these external packages are not easy to set up, which needs to prepare many intermediate process files. Since the LAMMPS package[20]is widely used to simulate phonon or thermal transport of crystalline solids, the MD simulation results,such as the thermal conductivity and the thermal boundary conductance, can be self-consistently interpreted if the phonon dispersion relations of the structure are obtained directly using the same potential function in the LAMMPSbased MD simulation. As far as we know, a command to calculate phonon dispersion relation has been included in the LAMMPS package,[21]but it requires constructing a large simulation system to accommodate the number of wave vectors in the FBZ.If the simulation time is short,the calculation error is also large. In addition,when the size of the unit cell is large,such as phononic crystals,the calculation is often timeconsuming.

    In this study, a new tool based on the LAMMPS package is proposed to obtain the phonon dispersion relation of crystalline solids according to the harmonic lattice dynamics principle. The main advantage of this approach is that any potential function or force field that is integrated with the LAMMPS package can be used to calculate the phonon dispersion relation corresponding to it, and the calculation is much faster even for the large unit cells. In the second section, we present the detailed method and calculation process to obtain the phonon dispersion relation based on the LAMMPS package,including the acquisition of force constant,the construction of dynamic matrix, and so on. The phonon dispersion relations of several typical materials are demonstrated in the third section. The relevant home-made code and script can be found in the supporting information.

    2. Method

    Suppose a simulation system containsLunit cells, and each unit cell containsbatoms. Then, there are totallyL×batoms in the simulation system.When all the atoms in the system are in an equilibrium state, the applied force on thej-th atom,Fj,is

    Here,Fjiis the applied force ofi-th atom on thej-th atom,kjipresents the interaction force constant matrix betweenj-th andi-th atoms,rjiis the relative displacement betweenj-th andi-th atoms. When the simulation system reaches the minimum potential energy point,the force applied to each atom is zero. Under this condition, if moving thei-th atom by a tiny distance dxalong thexdirection while keeping the positions of all other atoms still in their equilibrium positions,then the changed force ?Fjon thej-th atom can be written as

    Thus,the spring stiffness componentskjixx,kjiyx,kjizxbetweenj-th andi-th atoms can be obtained as

    In the same way,the remained six spring stiffness components can also be obtained by moving thei-th atoms along theyandzdirections,respectively. Due to the translation symmetry of the crystal,the force constant between thei-th atom and itself can be obtained by the following equation:[22]

    In the LAMMPS package, we can easily move the displacement of atoms one by one in a specified unit cell and calculate the force on all the other atoms using a loop script. The corresponding LAMMPS script can be found in the supporting information. Thus, we can quickly obtain the force constant matrix between any pair of atoms corresponding to the used potential functions with the help of the LAMMPS package.

    After obtaining all the force constant matrices, the dynamics matrixDof the simulation system can be constructed from the lattice dynamics theory as

    Figure 1 shows the flow chart for calculating the phonon dispersion relation based on the LAMMPS package. First,the simulation system should be prepared with the same atomic order in each unit cell according to the equilibrium lattice parameters of the crystal. The equilibrium lattice parameters are equivalent to the equilibrium distances between neighboring atoms at the lowest potential energy in a crystal. Note that the equilibrium lattice parameter of one crystalline solid may be not the same when simulating with different potentials or force fields. For example,the predicted carbon-carbon(C-C)bond length from the Tersoff potential in 1988 is about 1.46 ?A,while the corresponding length is 1.44 ?A from the Tersoff potential in 2010.[23]Both of them are greater than the experimentally observed value of 1.42 ?A. In order to obtain the equilibrium lattice parameters for the specified potential,one can calculate the potential energy of the simulation system as a function of the lattice parameter. The equilibrium lattice parameter is the value corresponding to the minimum potential energy. Then,a home-made LAMMPS script(see the supporting information(SI))is run to calculate the force on each atom when moving the position of the atoms of the first unit cell one by one with tiny displacement. The typical tiny displacement ranges from 0.01 to 0.001 ?A.After running this script with the LAMMPS package,several files,including the force on each atom,can be obtained. With these files as the input,Eq.(3)is used to calculate the force constant matrix between any pair of atoms,and Eq. (4) for the force constant matrix between one atom and itself according to the translational invariance of the crystal.The relevant code that deals with the output files of LAMMPS and calculates the force constant matrix can be found in the SI.After all the force constants are determined,Eq.(5)is used to construct the dynamics matrix. Lastly,after a series of phonon wavevectors are given, the eigenvalues (or the square of the phonon frequency) of the dynamic matrix corresponding to the wavevector can be solved numerically. The relation between phonon frequency and phonon wavevector, namely the phonon dispersion relation,can be obtained.The relevant code that constructs the dynamics matrix and obtains the phonon dispersion can be found in the SI.

    Fig.1. The flow chart for the calculation of phonon dispersion of crystals. The given input script for LAMMPS and the relevant codes(in the supporting information)are for the single-layer graphene model of two-atom unit cell. Some key parameters or details that need to change for other materials and structure have been explained in the comment lines of the script and codes.

    Note that the basic theory to construct the dynamical matrix in Ref. [21] is different from this work, although both are from the LAMMPS package. The former is based on the fluctuation-dissipation theory. It requires a long equilibrium molecular dynamics simulation to obtain the atomic trajectories,and the effective phonon modes depend on the simulation size. Our method is based on the lattice dynamics theory. It only needs the force constants among atom pairs. Compared with Ref.[21],our method cannot identify the temperature effect on the dispersion,but the calculation time will be several orders of magnitude shorter because it does not need the long equilibrium molecular dynamics simulations.

    3. Case studies

    3.1. Phonon dispersion of graphene

    Graphene is a two-dimensional crystalline solid that contains two atoms in the unit cell. The Tersoff potential in 2010,[23]which is fairly efficient to simulate the graphene in MD simulation due to its analytical forms,is first used to check the validity of the proposed technique for the calculation of phonon dispersion relation. First, the potential energy of every atom in the simulation system as a function of the lattice parameter is obtained in Fig. 2(a). It is found that the potential energy reaches the local minimum when the lattice parameter is 1.44 ?A, indicating that the equilibrium lattice parameter is 1.44 ?A. Then, an atomic model with the equilibrium lattice constantag=1.44 ?A is prepared for the graphene, in which 64 atoms are large enough as long as the simulation system satisfies the periodic boundary conditions. The black solid lines in Fig. 2(b) present the calculated phonon dispersion relation of graphene according to the flow chart of Fig.1.Since the parameters of the Tersoff potential in 2010 are already optimized by Lindsay and Broido,the obtained phonon dispersion agrees well with that calculated from DFT(the red solid lines in Fig.2(b)). The phonon dispersion relation calculated from the proposed technique is almost the same as previous publications.[23]The phonon density of states is also very easy to obtain by sampling the phonon wavevectors uniformly throughout the FBZ and then calculating the corresponding phonon frequencies,as shown in Fig.2(c).

    Fig. 2. Equilibrium lattice parameter (a), phonon dispersion relation(b)and vibrational density of states(c)of graphene calculated from the proposed method with the Tersoff potential in 2010. The black solid lines in(b)are the phonon dispersion of graphene from the DFT.

    Although the MD simulation is often used to model the graphene as well as its composite due to their superior physical properties and potential applications, one of the most important problems in MD simulation is the low reliability of the calculation. Since the only uncertainty in MD simulation is the atomic interactions, the accuracy of MD depends directly on the selection of the potential function used in the simulation. There have been more than five different potentials in the LAMMPS package that can be used to model graphene.Since the phonon dispersion relation is an important factor determining the mechanical and thermal properties of materials,we will use the proposed method to calculate the phonon dispersion relation of graphene and evaluate the advantages and disadvantages of these potential functions.

    Besides the above referred Tersoff potential in 2010,[23]other four commonly used potentials for MD simulation of the graphene in LAMMPS,including Tersoff potential in 1988,[23]AIREBO,[24]REAXFF,[25]and polymer consistent force field(PCFF),[26]are selected to calculate and compare the phonon dispersion relation of graphene. Tersoff potential in 1988 is mainly used to model the short-range covalent bond interactions among carbon atoms. Figure 3(a) shows that the obtained optical phonon frequency can be as high as 70 THz,which is much higher than the result of the DFT calculation(see the black solid lines in Fig.2(b)).Compared with the Tersoff potential, the AIREBO potential not only can model the short-range C-C covalent interactions but also can model the long-range interactions,such as the interlayer interactions between different graphene layers in multi-layer graphene film or bulk graphite. The obtained phonon dispersion relation from AIREBO,as shown in Fig.3(b),is also very close to the results of the DFT.However,one disadvantage of AIREBO potential is the longer simulation time. Our previous simulations have shown that the cost simulation time with the AIREBO potential is about six times longer than that with the Tersoff potential for the same three-dimensional graphene model.[27]The force field of REAXFF potential is fitted from the quantum mechanics calculation. The existed potential files in the LAMMPS can be used to model the atomic system that includes the C,O, Si, Al, etc. Figure 3(c) shows that the obtained phonon dispersion relation of graphene from REAXFF potential deviated greatly from the results of DFT,especially for the optical phonon and longitudinal acoustic phonon branches. In addition to the above three potentials, the PCFF potential is often used to model the graphene composite system[28]by dealing with atomic interactions as simple bond spring, angle spring,etc. Figure 3(d) shows that the optical phonon frequency atΓpoint from PCFF potential is slightly higher than the corresponding value from the DFT calculation. In addition, the predicted ZA phonon dispersion from PCFF potential is linear, which is also not consistent with the calculation of DFT.Therefore, it is suggested that the Tersoff potential in 2010(see Fig. 2(b)) is more suitable for simulating graphene according to the comparison between the phonon dispersion relation from the DFT calculation and those predicted by the five classical potential functions.

    Fig. 3. Comparison of phonon dispersion of graphene from Tersoff (a) in 1988, AIREBO (b), REAXFF (c) and PCFF (d) potentials. These results are compared with that of DFT to easily evaluate the accuracy of the empirical potential functions.

    3.2. Phonon dispersion of superlattice

    In this section, the validity of the proposed technique is tested for phonon dispersion relation of the crystalline solids with the large unit cells,such as the phononic crystal or superlattice. Here,the in-plane and the cross-plane phonon dispersions of SinGensuperlattice are calculated using the proposed technique. To simplify the calculation, the Stillinger-Weber(SW)potential[29]for silicon is used to model the atomic interactions between all atoms. The masses of Si and Ge atom are set to 28 g/mol and 73 g/mol,respectively. Figure 4 shows the atomic structure of the SinGenwithn=1. The corresponding periodic length along the cross-plane direction isL=2n·asi,whereasiis the conventional unit cell size of bulk silicon.

    Fig.4. The atomic model of SinGen superlattice with n=1. The corresponding periodic length along the cross-direction(or c-axis)is L=2n·asi.

    Fig.5. The in-plane(a)and cross-plane(b)phonon dispersions of SinGen superlattice for the Si1Ge1,and the in-plane(c)and cross-plane(d)phonon dispersions for the Si10Ge10. The atomic numbers in the unit cell of the Si1Ge1 and Si10Ge10 are 16 and 160,respectively.

    For the superlattice withL= 2asi, there are totally 16 atoms in the unit cell, and thus 48 phonon branches for each wavevector.Figures 5(a)and 5(b)show the calculated in-plane and cross-plane phonon dispersions,respectively. The results indicate that there are many phonon bandgaps above 10.5 THz along the cross-plane direction,while there is only one phonon bandgap around 11 THz along the in-plane direction. A similar technique is also performed to calculate the phonon dispersion relation of superlattice structures withL=20asias shown in Figs.5(c)and 5(d). The atom numberNin the unit cell of Si10Ge10isN=160. The running timetfor the LAMMPS script is aboutt=305 s in a laptop with an Intel single-core CPU@2.7 THz.Figure 6 presents the time needed to calculate the phonon dispersion of SinGensuperlattice with variable unit cell sizes using the same laptop. It indicates that the needed time is less than one minute when the atomic number in the unit cell is less than 100.For larger unit cells,parallel computing with multiple cores in LAMMPS can be used conveniently to reduce the running time. Therefore,the proposed tool also can be used for the fast calculation of the phonon dispersion with large unit cells.

    Fig.6. The needed time t for the dispersion of SinGen superlattice with variable periodic length L or atomic number N in the unit cell. The data is obtained by a laptop with an Intel single-core CPU@2.7 THz.

    4. Conclusions

    In summary, we have proposed a simple and fast tool to calculate the phonon dispersion relation of crystalline solids.When the LAMMPS package is used to simulate crystalline solids,this technique can obtain the interatomic force constant matrix corresponding to the used potential by moving atomic displacements. After obtaining the interatomic force constant matrix,the phonon dispersion relation can be obtained by constructing the dynamic matrix and solving the eigenvalue of the dynamic matrix. Therefore, the proposed technique for the calculation of the phonon dispersion relation can be used to compare and verify the reliability of the potential functions before MD simulation.

    We have also used the proposed technique to compare the phonon dispersion relation of graphene with several commonly used potentials. It is found that the Tersoff potential in 2010 and the AIREBO potential can better predict the phonon dispersion relation of graphene than the force field potential,such as REAXFF and PCFF potential. We also use this technique to predict the in-plane and cross-plane phonon dispersions of SinGensuperlattices with much larger unit cells.It is found that there is no phonon band gap along the inplane direction, while there exists a phonon band gap along the cross-plane direction. After obtaining the phonon dispersion relation of the crystal, the sound velocity along the high-symmetry directions of solid and the corresponding elastic constant components can be obtained. In addition, the interatomic force constant matrix would also be used to calculate the thermal conductance from the non-equilibrium Green function technique[30]within the framework of local equilibrium.

    猜你喜歡
    陳云
    加快構(gòu)建旅游產(chǎn)業(yè)創(chuàng)新生態(tài)系統(tǒng)
    Biased random walk with restart for essential proteins prediction
    Noncollinear phase-matching geometries in ultra-broadband quasi-parametric amplification
    基于大數(shù)據(jù)分析與審計(jì)的關(guān)系研究
    My plan for new term
    向陳云學(xué)習(xí)錘煉“筆力”
    陳云:我黨干部的楷模
    A Study of ρ-ω Mixing in Resonance Chiral Theory?
    陳云貴:你是泥土你是光
    海峽姐妹(2016年2期)2016-02-27 15:15:59
    TransitivityandCharacterization:AnalysisonDickinTenderisTheNight
    亚洲精品成人久久久久久| 午夜久久久久精精品| 亚洲自偷自拍三级| 黄色欧美视频在线观看| 欧美zozozo另类| 大型黄色视频在线免费观看| 别揉我奶头 嗯啊视频| 国产一区二区亚洲精品在线观看| 亚洲色图av天堂| 欧美极品一区二区三区四区| 免费高清视频大片| 亚洲性久久影院| 嫩草影院入口| 日韩国内少妇激情av| 99热这里只有是精品在线观看| 天堂动漫精品| 白带黄色成豆腐渣| 97超级碰碰碰精品色视频在线观看| 乱人视频在线观看| 免费无遮挡裸体视频| 男人和女人高潮做爰伦理| 国产一区二区在线观看日韩| 99久国产av精品| 天堂动漫精品| 亚洲国产日韩欧美精品在线观看| 嫩草影院入口| 黄片wwwwww| 精品国内亚洲2022精品成人| 欧美成人a在线观看| 欧美一区二区精品小视频在线| 老司机福利观看| 欧美性感艳星| 伦理电影大哥的女人| 久久九九热精品免费| 1000部很黄的大片| 成年女人毛片免费观看观看9| 国产成人福利小说| 中文字幕高清在线视频| 亚洲五月天丁香| av天堂在线播放| 久久国产精品人妻蜜桃| 男女之事视频高清在线观看| 亚洲专区中文字幕在线| 国内久久婷婷六月综合欲色啪| 搡老妇女老女人老熟妇| 精品人妻1区二区| 日日摸夜夜添夜夜添av毛片 | 18禁黄网站禁片午夜丰满| 精品久久久久久久久av| av.在线天堂| 高清在线国产一区| 最近最新免费中文字幕在线| 热99在线观看视频| 午夜视频国产福利| 精品久久久久久成人av| 国产黄色小视频在线观看| 日日啪夜夜撸| 亚洲av五月六月丁香网| 国产久久久一区二区三区| 亚洲精品日韩av片在线观看| 麻豆一二三区av精品| 日韩 亚洲 欧美在线| eeuss影院久久| 不卡一级毛片| 真人做人爱边吃奶动态| 别揉我奶头~嗯~啊~动态视频| 亚洲国产欧洲综合997久久,| 身体一侧抽搐| 尤物成人国产欧美一区二区三区| 免费人成视频x8x8入口观看| 日韩精品有码人妻一区| 黄色配什么色好看| 女的被弄到高潮叫床怎么办 | 女人十人毛片免费观看3o分钟| 国产精品福利在线免费观看| 波多野结衣巨乳人妻| 精品欧美国产一区二区三| 久久精品国产亚洲av香蕉五月| 免费无遮挡裸体视频| 中文在线观看免费www的网站| 一区二区三区四区激情视频 | av天堂中文字幕网| 国产aⅴ精品一区二区三区波| 国产精华一区二区三区| 五月玫瑰六月丁香| 欧美一区二区精品小视频在线| 91狼人影院| 国产大屁股一区二区在线视频| 熟女人妻精品中文字幕| 极品教师在线免费播放| 国产 一区精品| 欧美绝顶高潮抽搐喷水| 欧美xxxx性猛交bbbb| 国产黄a三级三级三级人| 欧美激情国产日韩精品一区| 精品一区二区三区视频在线| 在线免费观看的www视频| 成人高潮视频无遮挡免费网站| 亚洲图色成人| 夜夜爽天天搞| 国产不卡一卡二| 天天一区二区日本电影三级| 婷婷丁香在线五月| 国产精品人妻久久久影院| 又紧又爽又黄一区二区| 亚洲不卡免费看| 制服丝袜大香蕉在线| 亚洲自拍偷在线| 网址你懂的国产日韩在线| 免费看日本二区| 色播亚洲综合网| 丰满的人妻完整版| 国产女主播在线喷水免费视频网站 | 一级黄片播放器| 亚洲一级一片aⅴ在线观看| 欧美三级亚洲精品| 亚洲人成网站高清观看| 成人性生交大片免费视频hd| 中文字幕av成人在线电影| 中文字幕av在线有码专区| 桃色一区二区三区在线观看| 十八禁网站免费在线| 国产精品福利在线免费观看| 欧美日韩黄片免| 少妇的逼水好多| 亚洲av免费高清在线观看| 88av欧美| 亚洲欧美日韩无卡精品| 少妇熟女aⅴ在线视频| 成年版毛片免费区| 美女被艹到高潮喷水动态| 国产成人aa在线观看| 嫩草影院精品99| 99久久中文字幕三级久久日本| 国产高潮美女av| 国产伦在线观看视频一区| 亚洲最大成人手机在线| 亚洲精品一区av在线观看| 色综合色国产| 亚洲中文字幕日韩| 日日夜夜操网爽| 亚洲男人的天堂狠狠| 国产日本99.免费观看| 真人一进一出gif抽搐免费| 欧美黑人巨大hd| 亚洲狠狠婷婷综合久久图片| 国产精品国产三级国产av玫瑰| 一区福利在线观看| 又紧又爽又黄一区二区| 九色国产91popny在线| 一级黄片播放器| 精品欧美国产一区二区三| 久久天躁狠狠躁夜夜2o2o| 国产一区二区亚洲精品在线观看| 日本色播在线视频| 日本黄大片高清| 欧美日韩综合久久久久久 | 国产69精品久久久久777片| 亚洲最大成人手机在线| 97超视频在线观看视频| 国产男靠女视频免费网站| 国产精品久久久久久久电影| 久久久久免费精品人妻一区二区| 国产高清三级在线| 男人狂女人下面高潮的视频| 成年人黄色毛片网站| 亚洲七黄色美女视频| 变态另类丝袜制服| 久久精品久久久久久噜噜老黄 | 日日撸夜夜添| 亚洲经典国产精华液单| 免费人成在线观看视频色| 免费在线观看成人毛片| 亚洲精品久久国产高清桃花| 国内揄拍国产精品人妻在线| 国产精品98久久久久久宅男小说| 亚洲av中文字字幕乱码综合| 国产大屁股一区二区在线视频| 男人的好看免费观看在线视频| 深爱激情五月婷婷| 国产精品一及| 免费av观看视频| 亚洲第一电影网av| 精品无人区乱码1区二区| 日本 欧美在线| 黄色视频,在线免费观看| 国产91精品成人一区二区三区| eeuss影院久久| 色综合色国产| 国产亚洲精品av在线| 午夜精品一区二区三区免费看| 亚洲美女搞黄在线观看 | 五月玫瑰六月丁香| 成年女人永久免费观看视频| 久久精品综合一区二区三区| 国产av不卡久久| 久久精品影院6| 久久这里只有精品中国| 精华霜和精华液先用哪个| 在线观看av片永久免费下载| 免费观看在线日韩| 女同久久另类99精品国产91| 国产毛片a区久久久久| 国产在视频线在精品| 欧美高清性xxxxhd video| 国产欧美日韩精品亚洲av| 国产伦精品一区二区三区视频9| 婷婷精品国产亚洲av在线| 日本黄大片高清| 黄色日韩在线| 国产精品亚洲美女久久久| 亚洲色图av天堂| 联通29元200g的流量卡| 亚洲人成网站高清观看| 99热6这里只有精品| x7x7x7水蜜桃| 两人在一起打扑克的视频| 国产精品伦人一区二区| 国产真实乱freesex| 男插女下体视频免费在线播放| 欧美成人a在线观看| 国国产精品蜜臀av免费| 精品人妻视频免费看| 免费电影在线观看免费观看| av在线天堂中文字幕| 简卡轻食公司| 亚洲久久久久久中文字幕| 美女 人体艺术 gogo| 国产精品美女特级片免费视频播放器| 俺也久久电影网| 日日干狠狠操夜夜爽| 91久久精品国产一区二区三区| 丰满人妻一区二区三区视频av| 国产精品无大码| 人妻制服诱惑在线中文字幕| 真实男女啪啪啪动态图| 亚洲国产精品久久男人天堂| 91精品国产九色| 精品人妻熟女av久视频| 很黄的视频免费| 老司机福利观看| 九色国产91popny在线| 中国美白少妇内射xxxbb| 一个人看视频在线观看www免费| 在线a可以看的网站| 国产午夜福利久久久久久| 精品人妻偷拍中文字幕| 婷婷色综合大香蕉| 丰满的人妻完整版| 国产亚洲91精品色在线| 欧美在线一区亚洲| 国产高清有码在线观看视频| 国产精品三级大全| 国产一区二区激情短视频| 欧美日韩精品成人综合77777| 国产午夜精品久久久久久一区二区三区 | 热99re8久久精品国产| 三级毛片av免费| 热99re8久久精品国产| 美女高潮的动态| 中出人妻视频一区二区| 免费看av在线观看网站| 久久精品国产99精品国产亚洲性色| 亚洲av熟女| 国内毛片毛片毛片毛片毛片| 狂野欧美激情性xxxx在线观看| 91久久精品国产一区二区三区| 国产精品爽爽va在线观看网站| 免费大片18禁| 日本a在线网址| 欧美日韩乱码在线| 免费搜索国产男女视频| 久久久久久久精品吃奶| 欧美zozozo另类| 国产成人影院久久av| 亚洲欧美日韩高清专用| 国产成人av教育| 韩国av在线不卡| 国产人妻一区二区三区在| 亚洲精品久久国产高清桃花| av视频在线观看入口| 91久久精品国产一区二区三区| 亚洲无线在线观看| 精品久久国产蜜桃| 免费高清视频大片| 亚洲综合色惰| 哪里可以看免费的av片| av视频在线观看入口| 亚洲一区高清亚洲精品| 国产精品伦人一区二区| 午夜福利在线观看吧| 男人的好看免费观看在线视频| 能在线免费观看的黄片| 久久6这里有精品| 日韩欧美精品免费久久| 一本一本综合久久| 最近在线观看免费完整版| 亚洲av第一区精品v没综合| 国产一区二区三区在线臀色熟女| 国产一区二区三区在线臀色熟女| 久久99热这里只有精品18| 91午夜精品亚洲一区二区三区 | 国产高清视频在线播放一区| 国产精品久久久久久久电影| .国产精品久久| 婷婷精品国产亚洲av| 一区二区三区高清视频在线| 午夜福利在线在线| 亚洲美女视频黄频| 亚洲av.av天堂| 麻豆国产97在线/欧美| 国产精品爽爽va在线观看网站| 久久久久久久久久黄片| or卡值多少钱| 午夜福利在线观看吧| 一个人观看的视频www高清免费观看| a在线观看视频网站| 一进一出抽搐动态| 日韩欧美国产在线观看| 国产激情偷乱视频一区二区| 别揉我奶头 嗯啊视频| 欧美丝袜亚洲另类 | 色综合亚洲欧美另类图片| 国产精品av视频在线免费观看| 国产午夜精品久久久久久一区二区三区 | 色精品久久人妻99蜜桃| 国国产精品蜜臀av免费| 美女高潮喷水抽搐中文字幕| 一区福利在线观看| 久久婷婷人人爽人人干人人爱| 亚洲欧美日韩无卡精品| 欧美+亚洲+日韩+国产| 精品人妻偷拍中文字幕| 亚洲专区中文字幕在线| 国产乱人视频| 又黄又爽又免费观看的视频| 国产一区二区在线观看日韩| 国产私拍福利视频在线观看| 男女之事视频高清在线观看| 亚洲人与动物交配视频| 国产高清三级在线| 看十八女毛片水多多多| 午夜影院日韩av| 成人特级av手机在线观看| 亚洲人与动物交配视频| 国产探花在线观看一区二区| 久久精品91蜜桃| 免费av毛片视频| 午夜亚洲福利在线播放| 久久久久性生活片| 日韩大尺度精品在线看网址| 一级黄色大片毛片| 国产一区二区在线观看日韩| 日韩强制内射视频| 可以在线观看的亚洲视频| 精品国内亚洲2022精品成人| 黄色配什么色好看| 亚洲成人精品中文字幕电影| 少妇裸体淫交视频免费看高清| av女优亚洲男人天堂| 亚洲在线观看片| av.在线天堂| 精品乱码久久久久久99久播| 国产精品久久久久久av不卡| 精品日产1卡2卡| 久久久久国产精品人妻aⅴ院| 村上凉子中文字幕在线| 嫩草影院精品99| 免费在线观看成人毛片| 人人妻人人看人人澡| 老熟妇仑乱视频hdxx| 我的女老师完整版在线观看| а√天堂www在线а√下载| 99在线视频只有这里精品首页| 国产精品一区www在线观看 | 18禁黄网站禁片午夜丰满| 狂野欧美激情性xxxx在线观看| 久久婷婷人人爽人人干人人爱| 日韩欧美国产一区二区入口| 国产亚洲91精品色在线| 俺也久久电影网| 高清在线国产一区| h日本视频在线播放| 少妇丰满av| 免费人成视频x8x8入口观看| 干丝袜人妻中文字幕| 看黄色毛片网站| 人人妻,人人澡人人爽秒播| 天堂动漫精品| 久久久色成人| 久久久久久久亚洲中文字幕| 全区人妻精品视频| 午夜a级毛片| 色播亚洲综合网| 91麻豆av在线| 午夜日韩欧美国产| 国产精品久久久久久久电影| 亚洲av.av天堂| 午夜老司机福利剧场| 国产在视频线在精品| 亚洲无线观看免费| 狠狠狠狠99中文字幕| 亚洲人与动物交配视频| 日本在线视频免费播放| a级一级毛片免费在线观看| 动漫黄色视频在线观看| 麻豆国产97在线/欧美| 热99re8久久精品国产| 看黄色毛片网站| 久久人人精品亚洲av| 免费搜索国产男女视频| 又爽又黄a免费视频| 国产精品久久久久久久电影| 亚洲自偷自拍三级| 国产成人av教育| 国产精品国产高清国产av| 美女高潮喷水抽搐中文字幕| 最近在线观看免费完整版| 日日摸夜夜添夜夜添小说| 男女啪啪激烈高潮av片| 亚洲最大成人av| 久久99热6这里只有精品| 内射极品少妇av片p| 香蕉av资源在线| 久久久色成人| 色综合婷婷激情| 成人国产麻豆网| 日韩 亚洲 欧美在线| 国产免费男女视频| 久久99热这里只有精品18| 久久久色成人| 国产伦在线观看视频一区| 亚洲综合色惰| 在线看三级毛片| 欧美日韩国产亚洲二区| 男人舔女人下体高潮全视频| 午夜福利视频1000在线观看| 中文字幕高清在线视频| 色噜噜av男人的天堂激情| 最近在线观看免费完整版| 少妇熟女aⅴ在线视频| 精品乱码久久久久久99久播| 简卡轻食公司| 欧美精品啪啪一区二区三区| 国产国拍精品亚洲av在线观看| 久久99热6这里只有精品| 欧美最新免费一区二区三区| 国产成人福利小说| 久久精品国产亚洲网站| 亚洲av二区三区四区| 欧美黑人欧美精品刺激| 在线看三级毛片| 黄色日韩在线| 亚洲av日韩精品久久久久久密| 最新在线观看一区二区三区| 在线a可以看的网站| 国产精品日韩av在线免费观看| 国产日本99.免费观看| 亚洲经典国产精华液单| 国产精品日韩av在线免费观看| 一级a爱片免费观看的视频| 美女免费视频网站| 好男人在线观看高清免费视频| 不卡视频在线观看欧美| 国产精品免费一区二区三区在线| 少妇人妻精品综合一区二区 | 国产三级中文精品| 夜夜爽天天搞| 赤兔流量卡办理| 99热网站在线观看| 久久久久性生活片| 欧美日韩综合久久久久久 | www.www免费av| 国产精品人妻久久久久久| 日韩欧美一区二区三区在线观看| 国内精品久久久久久久电影| 免费av不卡在线播放| 最近视频中文字幕2019在线8| 国产色爽女视频免费观看| 日韩欧美精品v在线| 简卡轻食公司| 99久久九九国产精品国产免费| 久久久精品欧美日韩精品| 日韩欧美国产在线观看| 色在线成人网| 亚洲av免费高清在线观看| 日韩国内少妇激情av| 女生性感内裤真人,穿戴方法视频| 一卡2卡三卡四卡精品乱码亚洲| 日韩精品青青久久久久久| 一边摸一边抽搐一进一小说| netflix在线观看网站| 亚洲av美国av| 国产69精品久久久久777片| 麻豆久久精品国产亚洲av| 少妇猛男粗大的猛烈进出视频 | 国产精品亚洲美女久久久| 搡女人真爽免费视频火全软件 | 亚洲综合色惰| 热99re8久久精品国产| 欧美区成人在线视频| 偷拍熟女少妇极品色| 天堂网av新在线| 亚洲美女视频黄频| 欧美色欧美亚洲另类二区| 精品一区二区三区视频在线观看免费| 男女之事视频高清在线观看| 人妻丰满熟妇av一区二区三区| 黄片wwwwww| 久久久色成人| 白带黄色成豆腐渣| 国产精品精品国产色婷婷| 成人美女网站在线观看视频| 少妇被粗大猛烈的视频| 麻豆精品久久久久久蜜桃| 我的老师免费观看完整版| 久久午夜福利片| 亚洲午夜理论影院| 天堂动漫精品| 高清在线国产一区| 欧美日韩精品成人综合77777| 国内精品久久久久久久电影| 永久网站在线| 99riav亚洲国产免费| 看十八女毛片水多多多| 深爱激情五月婷婷| 亚洲三级黄色毛片| 久久99热这里只有精品18| 成年女人毛片免费观看观看9| 亚洲精品亚洲一区二区| 日本欧美国产在线视频| 三级男女做爰猛烈吃奶摸视频| 欧美日韩乱码在线| 九九久久精品国产亚洲av麻豆| 国产麻豆成人av免费视频| 久久精品91蜜桃| 久久久久久久精品吃奶| 成人永久免费在线观看视频| 女生性感内裤真人,穿戴方法视频| 午夜福利成人在线免费观看| 97人妻精品一区二区三区麻豆| 麻豆精品久久久久久蜜桃| ponron亚洲| 国产欧美日韩一区二区精品| av天堂中文字幕网| 99久久精品国产国产毛片| 亚洲av五月六月丁香网| 免费观看人在逋| 久久久久久久久中文| 成年女人永久免费观看视频| 久久国产精品人妻蜜桃| 久久久成人免费电影| 亚洲男人的天堂狠狠| 亚洲精品成人久久久久久| 亚洲一区高清亚洲精品| 12—13女人毛片做爰片一| 亚洲四区av| 日本黄色视频三级网站网址| 在线观看午夜福利视频| 一级黄色大片毛片| 夜夜爽天天搞| 日韩,欧美,国产一区二区三区 | 国产亚洲91精品色在线| 国产精品一区二区免费欧美| 久久久久久久久大av| 国产av一区在线观看免费| 一a级毛片在线观看| 91麻豆av在线| 一级a爱片免费观看的视频| 免费看av在线观看网站| 精品人妻1区二区| 99热这里只有是精品在线观看| 人人妻,人人澡人人爽秒播| 18禁黄网站禁片午夜丰满| 午夜福利高清视频| 国产亚洲av嫩草精品影院| 亚洲第一区二区三区不卡| 高清毛片免费观看视频网站| 国产乱人伦免费视频| 欧美成人一区二区免费高清观看| 国产精品乱码一区二三区的特点| 国产高清有码在线观看视频| 不卡视频在线观看欧美| 国产高清有码在线观看视频| 国产精品乱码一区二三区的特点| 淫秽高清视频在线观看| 欧美潮喷喷水| 九九热线精品视视频播放| 国产亚洲精品av在线| 国产精品女同一区二区软件 | 有码 亚洲区| 国产激情偷乱视频一区二区| 欧美一区二区国产精品久久精品| 赤兔流量卡办理| 听说在线观看完整版免费高清| 在线国产一区二区在线| 中文字幕熟女人妻在线| 欧美高清成人免费视频www| 久久久精品欧美日韩精品| 欧美日本视频| 一级毛片久久久久久久久女| 特级一级黄色大片| 亚洲欧美日韩卡通动漫| 亚洲经典国产精华液单| a在线观看视频网站| 999久久久精品免费观看国产| 亚洲欧美清纯卡通| 午夜福利在线观看免费完整高清在 | 久久久国产成人精品二区| 欧美日韩精品成人综合77777| 99热这里只有精品一区| 97超视频在线观看视频| 天堂网av新在线| 久久久久久大精品| 国产精品亚洲美女久久久|