• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A crossed focused vortex beam with application to cold molecules*

    2021-11-23 07:26:30MengXia夏夢(mèng)YalingYin尹亞玲ChunyingPei裴春瑩YuerYe葉玉兒RuoxiGu顧若溪KangYan嚴(yán)康DiWu吳迪YongXia夏勇andJianpingYin印建平
    Chinese Physics B 2021年11期
    關(guān)鍵詞:吳迪夏夢(mèng)建平

    Meng Xia(夏夢(mèng)) Yaling Yin(尹亞玲) Chunying Pei(裴春瑩) Yuer Ye(葉玉兒) Ruoxi Gu(顧若溪)Kang Yan(嚴(yán)康) Di Wu(吳迪) Yong Xia(夏勇) and Jianping Yin(印建平)

    1State Key Laboratory of Precision Apectroscopy,School of Physics and Electronic Science,East China Normal University,Shanghai 200241,China

    2Collaborative Innovation Center of Extreme Optics,Shanxi University,Taiyuan 030006,China

    3NYU-ECNU Institute of Physics at NYU Shanghai,Shanghai 200062,China

    Keywords: cold molecule,crossed focused vortex beam,propagation characteristics,optical potential

    1. Introduction

    Recent advances in laser cooling and quantum state control of diatomic molecules propose a powerful platform for precision measurement, ultracold chemistry and quantum information science.[1,2]Tremendous progress has been made in the magneto-optical trap (MOT) of diatomic molecules, i.e.,SrF,[3]CaF,[4,5]and YO.[6,7]To date,the reported temperature of the cooled diatomic molecule is well below the Doppler limit.[4,8-10]In 2017, Anderegget al. reported that the maximum number of molecules,1.0×105,were captured through radio frequency MOT on CaF molecules.[5]Most applications of ultracold molecules require quantum state control, so the molecules in a MOT were first loaded into a conservative trap,e.g., optical dipole traps,[11]magnetic traps,[12,13]and optical tweezer arrays.[14]In 2018, Anderegget al. loaded the sub-Doppler cooled CaF molecules into a far-detuned optical dipole trap, and the trapped samples lasted for a lifetime of 750 ms at a temperature of 60 μK. The achieved densities were 8×107cm?3and in particular the phase-space densities were 2×10?9, that is, 35 times higher than that from the sub-Doppler-cooled samples in free space.[11]Williamset al.achieved magnetic trapping of laser-cooled CaF molecules in a single quantum state, and about 5×103molecules were trapped with a density of 1.2×105cm?3for a lifetime of 2 s at a temperature of 70 μK[12]McCarronet al.employed an efficient transfer of ultracold SrF molecules from a radio frequency MOT into a magnetic quadrupole trap: 600-800 molecules in a single quantum state were trapped with a density of 3×104cm?3for a lifetime of 1 s at a temperature of 260μK.[13]In 2019, Anderegget al.also reported an optical tweezer array of single ultracold CaF molecules with high-fidelity detection, opening the door for studying the intermolecular collisions and state-selective ultracold quantum chemistry.[14]

    The optical dipole trap is based on the interaction of light with the induced electric dipole moment of the trapped atoms and molecules,so it is applicable to the accurate,non-contact manipulation and control of cold samples.[15,16]The far-offresonance optical dipole traps (FORT), composed of one or two intense and continuous-wave laser beams,are used to confine an ultracold sample. In 1995,the first type of red-detuned FORT composed of two crossed focused YAG laser beams was applied to study the evaporative cooling of Na atoms.[17]Such a FORT has a wide range of applications in areas of high precision imaging of the optical clock,high-density trapping of cold samples, and all-optical atomic Bose-Einstein condensate.[18-20]One can also generate a blue-detuned,hollow FORT, which has some unique physical properties: (i)the mean photon scattering rate is lower,and the trap lifetime of atoms is longer; (ii) the well depth is deeper; (iii) there exists an intensity-gradient induced Sisyphus cooling.[16]In 1997, Kugaet al. demonstrated a Laguerre-Gaussian-beam trap for cold85Rb atoms with a blue-detuned frequency of~60 GHz. The atoms loaded from a MOT were trapped in the dark core (a cylinder box with 1.5 mm in diameter and 2 mm in height) in the transverse direction with the help of two additional,blue-detuned plug beams to confine the atomic motion along the optical axis.[21]Afterwards,several different hollow FORTs were proposed and demonstrated.[22-26]For example,the other crossed hollow beam is generated by overlapping two co-propagating, Laguerre-Gaussian (LG01) beams with orthogonal polarization. The LG01beam is then split into two co-propagating beams separated by several mm propagating through a calcite beam displacer. Using a high numerical aperture lens,the beams are tightly focused and overlapped at the center of the vacuum cell. A crossed vortex bottle beam is formed with the width of 5.5μm in the radial direction and a longitudinal length of 52μm.[24,25]However,the current hollow FORTs have two main disadvantages. Firstly, there is a large difference regarding the optical potential well between the radial and the axial directions. The well’s structure is either ellipsoidal or cylindrical tube,which causes an imperfect intensity distribution,a large trapping volume and a small intensity gradient. Secondly,the trapping volume cannot be dynamically tunable.

    Here, we propose a scheme to construct an optical potential wells by the crossed, focused, vortex beam (CFVB).Such beam has a near-zero intensity distribution in the center with a high-intensity light outwards, which provides a repulsive potential upon being blue-detuned from resonance, so as to permit molecules being trapped in the central region. Comparing with the previous studies, the CFVB here has a much smaller trapping volume,and is tunable by changing the quantum number of the orbital angular momentum (OAM). This report consists of five sections. In Section 1, it is the introduction as already described. In Section 2, it describes the experimental scheme. In Section 3,it describes the generation and propagation characteristics of the vortex beams which are divided into two parts. In the first part,it describes the generation and intensity distributions of the single,focused,vortex beam (SFVB) in free space, and the relationship of the dark spot size (DSS) with the incident Gaussian beam’s waistw0,and the lens’focal lengthf.In the second part,it describes the generation and intensity distribution of the CFVB,and in particular the relationship of the DSS with the OAM’s quantum numberl. In Section 4,it describes the potential applications of the CFVB in trapping and cooling of MgF molecules. In Section 5,it summaries the main results and conclusions.

    2. Experimental scheme

    Figure 1 shows the experimental setup for the generation of a CFVB.The Gaussian laser beam from a He-Ne laser first passes through a linear polarizer and then an optical isolator,and then through a collimating and expanding beam system consisting of a spatial filter and lens L1(f1=400 mm). The used spatial filter consists of microscope objectives(10 times)and an aperture(50μm)to remove any higher-order diffracted terms. Next, the beam passes through a beam splitter, and is divided into two beams with equal power. Two linear polarizers are used to satisfy the polarization requirement of the SLM1and SLM2. The SLM1(Holoeye) has a resolution of 1024×768 pixels and 19 μm of pixel pitch, and the SLM2(Holoeye)has a resolution of 1920×1080 pixels and 8.0μm of pixel pitch. The two laser beams are then modulated by the hybrid holograms imprinted on the SLM; that is to say, each beam passes through an azimuthally distributed 2π-phase and is focused by a thin lens phase with a focal lengthf, and a SFVB will be produced behind the BS owing to the completely destructive interference effect at the beam center. When two SFVBs are crossed at both focal planes,a tightly focused dark spot with a small trapping volume is formed(see the right inset in Fig. 1). In this scheme, two SLMs function as the diffractive optical elements to control both the phase and the polarization for the incident light. Through the SLM software, we can switch the binary bitmap as the phase pattern (for example,OAM quantum numberl=1)shown on the SLM screen,which is shown in the left inset of Fig.1.

    Fig.1. Experimental setup for generation of crossed,focused,vortex beams.Acronyms are:LB for laser beam,P for linear polarizer,BS for beam splitter,SLM for spatial light modulator. The inset gray pattern is the hybrid hologram(HH)by a combination of a vortex phase with OAM quantum number l=1 and a lens phase.

    The phase patternφtotalused to drive the SLM includes two contributions and readsφtotal=φvortex+φl(shuí)ens.φvortexis the vortex phase, andφl(shuí)ensis the phase pattern acting as a lens,which allows us to fine-tune the focusing of the vortex beam.The hybrid holograms and corresponding phase profiles are shown in Fig.2. For the OAM,the quantum numberlis 2,5,10,and 20,respectively.

    Fig.2. Hybrid holograms(upper panel)and phase profiles(lower panel)for the generated vortex beams with the OAM’s l=2,5,10,20.

    3. Generation and propagation characteristics of vortex beam in free space

    3.1. Single focused vortex beam

    A common vortex beam has a complex amplitude with the phase,expressed as exp(il?),where?is the azimuthal angle,andlis also called the topological charge of an OAM beam.In our scheme,forl=1,the vortex phase hologram imprinted on the SLM is equivalent to a traditional,azimuthally distributed 2πphase plate.[27]Besides, a lens phase can be shown onto the SLM.We calibrate the focal lengthfof the lens phase on the SLM,and plot a quantitative curve for the lens phase with the focal lengthf. The focal lengthfis inversely proportional to the lens phase value.

    The detailed mechanism of generating the SFVB is described as follows. The phase factor of exp(il?)corresponds to a phase singularity at the beam center of which the intensity is zero-due to the destructive interference. By takingl=1,the continuous azimuthal phase retardation of the vortex phase increases from 0 to 2πwhile increases the SLM’s gray level.The phase difference between the two sides of an arbitrary straight line passing through the circular center of the hologram is always equal toπ,and the center of the hologram is a symmetric center of thisπphase deference and is azimuthally distributed.These will lead to a completely destructive interference effect at the center of the incident Gaussian laser beam. Therefore,the axial intensity of the output beam will be reduced to zero,and the generated beam is a vortex beam with an OAM order ofl=1. At the same time,when a lens phase is encoded onto the SLM,the laser beam is reflected by the hybrid hologram,so a focused vortex beam is formed.

    When a collimated Gaussian laser beam is incident on the hybrid hologram, the field distribution of the diffraction field- reflected by the SLM in a polar coordinate - can be obtained according to the Fresnel diffraction integration[27]

    Fig.3. (a)-(c)Normalized radial 1D intensity profiles and 2D intensity distributions of the SFVB at the propagation distance z=?150, 0, 150 mm,respectively. The experimental parameters are w0 =1.2 mm, f =250 mm.(d)Relationship of the DSS of the SFVB with the propagation distance z for w0=1.2 mm and f =250 mm.The line represents the theoretical curve,and the squares correspond to the experimental data.

    The intensity distribution of the SFVB in free space can be given by

    Based on Eqs.(1)and(2),we study the propagating properties of the SFVB in free space. We define the special parameter,the dark spot size,i.e.,DSS,as the full width at the half maximum (FWHM) of the radial-intensity distribution inside the notch of the SFVB.[28]In our experiments,forl=1,the intensity profiles of the SFVB,with the beam propagation direction atz=?150, 0 and 150 mm away from the focal plane, are measured and shown in Figs.3(a)-3(c),respectively. As seen from Figs.3(a)-3(c),owing to the completely(r=0)and partially(r ?=0)destructive interference effects around the central region of the vortex beam, a SFVB with a Gaussian intensity profile will be generated. But with the increase of the radial positionr, the function of the 2πphase for the focused laser beam shows periodic partially destructive and constructive interference effects, which results in a periodic oscillated modulation on the Gaussian intensity profile except for the focal plane ofz=0.

    The relationship of the DSS with the propagation distancezis seen in Fig.3(d).The line represents the calculated results,and the squares represent the experimental results. The waist of the incident beam isw0=1.2 mm, and the focal length of the lens isf=250 mm. There is an impressive feature of this propagation characteristic. Before the focal plane, the DSS gradually increases up to the maximum value(202.4μm)at the position ofz=?f/2 (half focal length), and then decreases to the minimum value (38.3 μm) at the focal point.After the focal plane,the focused vortex beam propagates with a constant divergent angle. In fact, the measured DSS values agree well with the modeling.

    We then investigate the relationship of the DSS in the focal plane ofz=0 with the focal lengthfand the waistw0.The experimental (dots) and theoretical (lines) results are shown in Figs. 4(a) and 4(b), which agree with each other. From Fig. 4(a), it is clear that the DSS increases linearly with an increase of the focal lengthf. From Fig. 4(b), with an increase of the waistw0, the DSS decreases exponentially instead. Therefore, with a shorter focal lengthfand a larger waistw0,an extremely small DSS for the vortex beam can be obtained.

    To measure the OAM of the SFVB,a straightforward interferometric method can be used. The principle is that due to the incomplete phase modulation of the SLM,the reflected beam contains the unmodulated portion of an incident Gaussian beam,which will interfere with the focused vortex beam to generate the petal patterns.The number of petals is in agreement with the value of the OAM that the modulated beam carries.[29]

    Fig. 4. (a) Relationship of the DSS at the focal point with the focal length f for w0 =0.6, 1.2 and 1.7 mm. (b) Relationship of the DSS at the focal point with the waist w0 for f =100,300 and 500 mm. The square,circle and triangle are experimental data. The solid lines are theoretical ones.

    3.2. Crossed focused vortex beam

    The SFVB above is a kind of 2D hollow beam,which can only be implemented for guiding and focusing of molecules.A 3D dark hollow region can be formed by the orthogonal superposition of a pair of SFVBs in the focal planes, i.e.,CFVB, which is in fact capable of cooling and trapping cold molecules. Two superimposed SFVBs do not interfere with each other due to the different polarizations, and the output mode can be expressed as a superposition of Mach-Zehnder type optical components.[30]

    In the experiment,a CCD with 45°relative to the horizontal direction was in place to detect the intensity distributions of the CFVB.Figure 5(a)gives a schematic diagram of the detection region at five positionsz1-z5. Thez1andz5planes are far away from the superposition region of the two SFVBs, while thez2andz4planes involve the partial superposition region.Thez3plane shows a full superposition in the focal planes of the two SFVBs. Figures 5(b)-5(f)show 1D(black lines)and 2D (color insets) intensity distributions for these five planes,respectively. For the case ofz1(orz5) plane in Fig. 5(b) (or Fig. 5(f)), we detect the light intensity distribution on cross section of two SFVBs. Their 2D images show two hollow circles with the same size. When the detecting plane starts to be closer to the center of the superposed region, the two hollow circles cross, which are seen in Figs.5(c)and 5(e). At thez3plane, two hollow circles superpose completely and thus become a single closed hollow circle, as seen in Fig. 5(d). So,the 3D enclosed and focused hollow trap is eventually formed.

    Importantly, we study the dependence of the DSS of the CFVB on the OAM’s quantum numberlat the focal point at differentfandw0. It can be seen from Fig.6(a)that for fixedw0=1.2 mm,the DSS of the CFVB at thez3plane is linearly proportional to the OAM’s quantum numberl. Also, smallerf,smaller DSS.Atf=150 mm,whenldecreases from 16 to 1,the DSS decreases accordingly,from 310.7μm to 23.5μm,and the corresponding trapping volume of the CFVB is compressed by a factor of up to 2.3×103times. From Fig. 6(b),for fixedf=150 mm, the DSS of the CFVB at thez3plane is also linearly proportional to the OAM’s quantum numberl. But, biggerw0,smaller DSS.Atw0=1.7 mm, whenldecreases from 16 to 1, the DSS decreases accordingly, from 388.7 μm to 16.3 μm, and the corresponding trapping volume of the CFVB is compressed by a factor of up to 1.3×104times.

    Fig.5. (a)Schematic diagram of the CCD detection near the center of the superposed region of the CFVB.z1,z2,z3,z4,and z5 represent the locations of the detection plane. (b)-(f)The 1D(black)and 2D(color)optical intensity distributions at different planes for l=1,w0=1.2 mm,and f =250 mm.

    Fig. 6. (a) Relationship of the DSS of the CFVB at the z3 plane with l at different f for fixed w0=1.2 mm. (b)Relationship of the DSS of the CFVB at the z3 plane with l at different w0 for fixed f =150 mm. The scatter plots represent the experimental data,and the solid lines represent the fitted curves.

    The above results clearly show that with a shorter focal lengthfand a larger waistw0, a desired CFVB with an extremely small DSS can be obtained. The DSS can also be dynamically tuned by the OAM’s quantum number to further increase the density of trapped molecules.

    If we compress the trapped volume,the temperature of the trapped molecule will go up because of the heating effect. For example, in Ref. [12], they demonstrate the efficient transfer of SrF molecules from a magneto-optical trap into a conservative magnetic quadrupole trap. Their scheme begins with a blue-detuned optical molasses to cool the SrF molecules to 50 μK. The gradient of the trapping magnetic field increases by 4 times during compression,so the temperature of trapped molecule is increased to 260μK.

    4. Applications to cooling and trapping of MgF molecules

    When the MgF molecule, upon electronic excitation of X2Σ+to A2Π states, moves in an inhomogeneous light field,it experiences an optical dipole force,which can be described by the AC Stark shifts of the hyperfine energy levels in the2Σ state for the Hunds case (b) to them in the A2Π state for the Hunds case(a).[11,31]The effect of the multilevel structure of molecules on their response to an electromagnetic field may be conveniently described with the help of the electric dipole polarizability.

    The AC Stark shift of a specific state|?κ〉in X2Σ+thus can be given by[31]

    We can also prepare the ultracold MgF molecules from a slowed molecular beam by using the intensity-gradient induced Sisyphus cooling.[31,33]The cooling is based on a bluedetuned CFVB and a weak repumping laser beam. Because of the strong intensity-gradient force and the low-rate spontaneous emission,the molecules in the CFVB trap can be cooled to the lower temperature of several photon recoils.

    5. Conclusion

    In conclusion, we generate a dynamically adjustable,crossed, focused, vortex beam by imprinting a pair of hybrid holograms with the vortex phase and the lens phase onto a SLM.We study the propagation characteristics of such vortex beam in free space. Our study shows that at the focal point,with a shorter focal length and a larger incident Gaussian beam’s waist, an extremely small DSS at the 3D dark hollow region of the crossed, focused, vortex beam can be obtained,which is 16.3μm. Forf=150 mm andw0=1.7 mm,when the OAM’s quantum numberldecreases from 16 to 1,the DSS decreases accordingly,from 388.7μm to 16.3μm,and the corresponding trapping volume of the CFVB can be compressed by a factor of up to 1.3×104times. Looking forward to the future applications, when cold molecules are loaded from a standard magneto-optical trap, they can be trapped in a 3D dark hollow region, and then cooled by intensity-gradient induced Sisyphus cooling. Thus, even an all-optically cooled and trapped Bose-Einstein condensate in the crossed,focused,vortex beam is feasible.[16]

    猜你喜歡
    吳迪夏夢(mèng)建平
    《夏夢(mèng)》水彩畫
    新型城鎮(zhèn)化對(duì)農(nóng)民收入的影響
    你在哪里
    The Effect of Grammar Teaching on Writing in China
    卷宗(2016年3期)2016-05-10 07:41:06
    我心碎 夢(mèng)一場(chǎng)
    戲劇之家(2015年16期)2015-09-12 19:54:22
    Nozzle Spray Diffusivity Changing Law for Ultra Fast Cooling in Hot Strip Mill
    風(fēng)過(guò)處,揉碎一池夏夢(mèng)
    轉(zhuǎn)呼拉圈
    影像站等
    文史天地(2009年11期)2009-12-09 05:55:10
    金庸的夢(mèng)中情人
    成人国语在线视频| 国内久久婷婷六月综合欲色啪| 成熟少妇高潮喷水视频| 色综合欧美亚洲国产小说| 一级片'在线观看视频| 男男h啪啪无遮挡| 在线观看66精品国产| 乱人伦中国视频| 99国产精品免费福利视频| av网站免费在线观看视频| 亚洲成a人片在线一区二区| 正在播放国产对白刺激| 男女午夜视频在线观看| 嫩草影院精品99| 欧美日韩一级在线毛片| 久久久久久久久免费视频了| 久久国产精品影院| 亚洲片人在线观看| 一级,二级,三级黄色视频| 欧美一级毛片孕妇| 激情在线观看视频在线高清| 亚洲精品在线观看二区| 天天添夜夜摸| 精品熟女少妇八av免费久了| 国产精品野战在线观看 | 黑丝袜美女国产一区| 国产欧美日韩一区二区精品| 国产激情欧美一区二区| 三上悠亚av全集在线观看| 亚洲av美国av| 又大又爽又粗| 欧美中文综合在线视频| 亚洲午夜精品一区,二区,三区| 亚洲成人免费av在线播放| 一二三四社区在线视频社区8| 国产亚洲精品久久久久5区| 交换朋友夫妻互换小说| 久久精品亚洲av国产电影网| 午夜老司机福利片| 午夜成年电影在线免费观看| 两人在一起打扑克的视频| 91国产中文字幕| 国产av又大| 老司机午夜十八禁免费视频| 人妻久久中文字幕网| 亚洲在线自拍视频| 国产亚洲精品综合一区在线观看 | 亚洲av成人不卡在线观看播放网| 久久久国产欧美日韩av| 久久精品国产亚洲av香蕉五月| 欧美日本中文国产一区发布| 欧美人与性动交α欧美精品济南到| 黑人猛操日本美女一级片| 一区二区三区国产精品乱码| 亚洲一区二区三区不卡视频| 久久久久国产精品人妻aⅴ院| 国产精品亚洲一级av第二区| 悠悠久久av| 欧美av亚洲av综合av国产av| 国产91精品成人一区二区三区| 久久久精品欧美日韩精品| 一个人观看的视频www高清免费观看 | 一夜夜www| 久久性视频一级片| 国产成人欧美在线观看| 十分钟在线观看高清视频www| 久久这里只有精品19| 国产精品久久电影中文字幕| 91精品国产国语对白视频| 高清欧美精品videossex| 亚洲 欧美 日韩 在线 免费| 亚洲精品在线观看二区| 18禁国产床啪视频网站| 久久精品人人爽人人爽视色| 高清黄色对白视频在线免费看| 午夜精品在线福利| 成人国语在线视频| 欧美最黄视频在线播放免费 | 五月开心婷婷网| 黄色片一级片一级黄色片| 中文字幕av电影在线播放| 国产99白浆流出| 啦啦啦免费观看视频1| 国产免费av片在线观看野外av| 国产三级在线视频| 国产av一区二区精品久久| 国产一区二区在线av高清观看| 亚洲国产精品一区二区三区在线| 日日干狠狠操夜夜爽| 长腿黑丝高跟| 国产精品香港三级国产av潘金莲| 亚洲成人久久性| 国产精品98久久久久久宅男小说| 91在线观看av| 最近最新中文字幕大全电影3 | 天天添夜夜摸| 日韩欧美三级三区| 天天影视国产精品| 久久欧美精品欧美久久欧美| 夜夜看夜夜爽夜夜摸 | 每晚都被弄得嗷嗷叫到高潮| 午夜免费成人在线视频| 久久中文看片网| 少妇裸体淫交视频免费看高清 | 一级作爱视频免费观看| 国产1区2区3区精品| 999久久久国产精品视频| 国产免费现黄频在线看| 中出人妻视频一区二区| 亚洲色图av天堂| 另类亚洲欧美激情| 久99久视频精品免费| 高潮久久久久久久久久久不卡| 变态另类成人亚洲欧美熟女 | 欧美人与性动交α欧美精品济南到| 国产区一区二久久| 国产高清videossex| 一本综合久久免费| 12—13女人毛片做爰片一| 少妇被粗大的猛进出69影院| 亚洲中文av在线| 1024视频免费在线观看| 久久九九热精品免费| 无人区码免费观看不卡| 久久热在线av| 欧美 亚洲 国产 日韩一| 色哟哟哟哟哟哟| 男女做爰动态图高潮gif福利片 | 日韩欧美一区视频在线观看| 叶爱在线成人免费视频播放| 后天国语完整版免费观看| 欧美另类亚洲清纯唯美| 中文字幕高清在线视频| 在线观看免费视频日本深夜| 亚洲片人在线观看| 18禁美女被吸乳视频| 操出白浆在线播放| 国产精品一区二区在线不卡| 精品福利观看| av天堂在线播放| 视频区欧美日本亚洲| 亚洲美女黄片视频| 欧美日韩亚洲国产一区二区在线观看| 亚洲专区字幕在线| 神马国产精品三级电影在线观看 | 国产91精品成人一区二区三区| 18美女黄网站色大片免费观看| 久久久久国产一级毛片高清牌| 精品福利永久在线观看| 97超级碰碰碰精品色视频在线观看| 国产高清国产精品国产三级| 久久久久久亚洲精品国产蜜桃av| 人妻丰满熟妇av一区二区三区| 精品国产国语对白av| 老汉色∧v一级毛片| 男女午夜视频在线观看| avwww免费| 高清毛片免费观看视频网站 | 亚洲精品美女久久av网站| 国产av一区二区精品久久| 久久精品国产99精品国产亚洲性色 | 成人永久免费在线观看视频| 欧美精品亚洲一区二区| 搡老岳熟女国产| 久久中文字幕一级| 亚洲一区高清亚洲精品| 精品卡一卡二卡四卡免费| 老司机靠b影院| 精品人妻1区二区| 国产精品二区激情视频| 麻豆国产av国片精品| 真人做人爱边吃奶动态| 欧美日韩亚洲高清精品| 欧美日韩亚洲高清精品| 亚洲片人在线观看| 久久久久久久午夜电影 | 黄网站色视频无遮挡免费观看| 18禁国产床啪视频网站| 日韩人妻精品一区2区三区| 最新美女视频免费是黄的| 老熟妇乱子伦视频在线观看| 自线自在国产av| 国产精品国产av在线观看| 宅男免费午夜| av视频免费观看在线观看| 免费不卡黄色视频| 久久精品国产99精品国产亚洲性色 | 欧美日韩国产mv在线观看视频| 黄片播放在线免费| 精品久久久久久电影网| 精品第一国产精品| 天堂俺去俺来也www色官网| 午夜福利欧美成人| 俄罗斯特黄特色一大片| e午夜精品久久久久久久| 美国免费a级毛片| 亚洲精品一区av在线观看| 久久久久久大精品| 免费看十八禁软件| 欧美日韩中文字幕国产精品一区二区三区 | 人成视频在线观看免费观看| 久久人妻av系列| 国产精品亚洲一级av第二区| 亚洲精品美女久久av网站| 亚洲成a人片在线一区二区| 美国免费a级毛片| 99国产极品粉嫩在线观看| 国产精品日韩av在线免费观看 | 欧洲精品卡2卡3卡4卡5卡区| 中文字幕精品免费在线观看视频| 欧美在线黄色| 最近最新中文字幕大全免费视频| av天堂久久9| 久久精品91蜜桃| 老汉色av国产亚洲站长工具| 国产精品99久久99久久久不卡| 在线观看66精品国产| 丰满的人妻完整版| 国产av精品麻豆| 免费在线观看黄色视频的| 脱女人内裤的视频| 精品一区二区三区视频在线观看免费 | 久久精品国产亚洲av香蕉五月| 国产精品久久久久久人妻精品电影| 操美女的视频在线观看| 又黄又粗又硬又大视频| 色在线成人网| 在线看a的网站| 91麻豆av在线| 一二三四在线观看免费中文在| 国产欧美日韩一区二区三| 桃红色精品国产亚洲av| 91老司机精品| 国产高清视频在线播放一区| 一个人免费在线观看的高清视频| 午夜精品在线福利| 黄色毛片三级朝国网站| 亚洲va日本ⅴa欧美va伊人久久| 99香蕉大伊视频| 色综合欧美亚洲国产小说| 黑人欧美特级aaaaaa片| 日本三级黄在线观看| 日韩三级视频一区二区三区| 欧美av亚洲av综合av国产av| 国产一区二区激情短视频| 俄罗斯特黄特色一大片| 最新在线观看一区二区三区| 国产熟女xx| 国产成人系列免费观看| 一夜夜www| 国产激情久久老熟女| 国产乱人伦免费视频| 久久天堂一区二区三区四区| 如日韩欧美国产精品一区二区三区| 人人妻人人添人人爽欧美一区卜| 麻豆久久精品国产亚洲av | 在线av久久热| 久久精品亚洲熟妇少妇任你| av在线播放免费不卡| 久久久久久久久久久久大奶| 9色porny在线观看| 国产无遮挡羞羞视频在线观看| 欧美日本中文国产一区发布| 国产精品偷伦视频观看了| 搡老乐熟女国产| 亚洲精品在线观看二区| 在线天堂中文资源库| 色综合站精品国产| 午夜免费激情av| 免费在线观看日本一区| 18禁国产床啪视频网站| 国产成人av教育| 岛国在线观看网站| 亚洲精品一二三| 久久这里只有精品19| 亚洲精品在线美女| 最近最新中文字幕大全免费视频| 天堂影院成人在线观看| 91成人精品电影| tocl精华| 黑人巨大精品欧美一区二区mp4| 国产伦人伦偷精品视频| 国产成+人综合+亚洲专区| 免费高清视频大片| 夜夜躁狠狠躁天天躁| 国产蜜桃级精品一区二区三区| 首页视频小说图片口味搜索| 亚洲伊人色综图| 欧美精品一区二区免费开放| 国产乱人伦免费视频| 国产午夜精品久久久久久| 久久草成人影院| 国产深夜福利视频在线观看| 国产成人av教育| 身体一侧抽搐| 免费女性裸体啪啪无遮挡网站| 国产精品永久免费网站| 午夜a级毛片| 亚洲成a人片在线一区二区| ponron亚洲| 中文欧美无线码| 不卡av一区二区三区| 88av欧美| 亚洲精品国产色婷婷电影| 国产不卡一卡二| 国产97色在线日韩免费| 99久久人妻综合| 欧美人与性动交α欧美精品济南到| 欧美成人午夜精品| 超色免费av| 亚洲欧美精品综合一区二区三区| 69av精品久久久久久| 高清欧美精品videossex| 久久久精品欧美日韩精品| 日日爽夜夜爽网站| 女生性感内裤真人,穿戴方法视频| 9色porny在线观看| 国产成年人精品一区二区 | 女生性感内裤真人,穿戴方法视频| 9色porny在线观看| 欧美黑人欧美精品刺激| 两个人看的免费小视频| 婷婷六月久久综合丁香| 国内久久婷婷六月综合欲色啪| 国产xxxxx性猛交| 在线av久久热| 丁香欧美五月| 久久久久久亚洲精品国产蜜桃av| 国产男靠女视频免费网站| 国产成人影院久久av| 在线国产一区二区在线| 在线观看66精品国产| 看黄色毛片网站| 色婷婷久久久亚洲欧美| 日韩精品免费视频一区二区三区| 18禁黄网站禁片午夜丰满| 女性被躁到高潮视频| 1024香蕉在线观看| 欧美丝袜亚洲另类 | av片东京热男人的天堂| 亚洲一区二区三区不卡视频| 久久精品国产亚洲av香蕉五月| 极品人妻少妇av视频| 夜夜看夜夜爽夜夜摸 | 亚洲成国产人片在线观看| 亚洲人成网站在线播放欧美日韩| 香蕉丝袜av| 最新美女视频免费是黄的| 日韩成人在线观看一区二区三区| 久久久精品欧美日韩精品| 国产成人啪精品午夜网站| 99国产极品粉嫩在线观看| 欧美乱妇无乱码| 欧美一区二区精品小视频在线| 国产熟女xx| 欧美午夜高清在线| 狂野欧美激情性xxxx| 亚洲欧美精品综合一区二区三区| 欧美激情极品国产一区二区三区| 一区二区三区精品91| 亚洲精品久久午夜乱码| 激情视频va一区二区三区| 日韩视频一区二区在线观看| 国产日韩一区二区三区精品不卡| 九色亚洲精品在线播放| 国产精品一区二区三区四区久久 | 欧美激情久久久久久爽电影 | 国产又色又爽无遮挡免费看| 欧美日韩福利视频一区二区| 亚洲欧美精品综合一区二区三区| 亚洲欧美激情综合另类| 日日摸夜夜添夜夜添小说| 嫩草影视91久久| 亚洲国产精品一区二区三区在线| 人人澡人人妻人| 国产深夜福利视频在线观看| 午夜免费激情av| a级毛片黄视频| 日韩欧美免费精品| 老司机福利观看| 黑人巨大精品欧美一区二区蜜桃| 性色av乱码一区二区三区2| 国产av一区在线观看免费| 欧美日韩亚洲高清精品| 欧美黑人精品巨大| 亚洲一区二区三区欧美精品| 在线国产一区二区在线| 久久天堂一区二区三区四区| 十分钟在线观看高清视频www| 精品国产超薄肉色丝袜足j| 最近最新中文字幕大全免费视频| 国产精品野战在线观看 | 欧美在线一区亚洲| 看黄色毛片网站| 亚洲第一青青草原| 可以免费在线观看a视频的电影网站| 亚洲成人久久性| 日韩人妻精品一区2区三区| 久久精品国产综合久久久| 亚洲第一青青草原| 国产亚洲欧美98| 亚洲 欧美 日韩 在线 免费| 波多野结衣一区麻豆| 丝袜在线中文字幕| 18禁黄网站禁片午夜丰满| 日本五十路高清| 少妇的丰满在线观看| 欧美在线黄色| 国产高清国产精品国产三级| 免费高清视频大片| 在线国产一区二区在线| 一个人免费在线观看的高清视频| 欧美乱色亚洲激情| 免费搜索国产男女视频| 黄网站色视频无遮挡免费观看| 两性夫妻黄色片| 少妇粗大呻吟视频| 精品国产一区二区久久| 午夜影院日韩av| 老司机午夜福利在线观看视频| 在线观看一区二区三区| 黑人欧美特级aaaaaa片| 久久精品人人爽人人爽视色| 热99国产精品久久久久久7| 在线看a的网站| 亚洲欧美精品综合一区二区三区| 国产av又大| 亚洲专区中文字幕在线| 最新在线观看一区二区三区| 日本 av在线| www.熟女人妻精品国产| 精品乱码久久久久久99久播| 麻豆一二三区av精品| 91成年电影在线观看| 亚洲一区二区三区不卡视频| av超薄肉色丝袜交足视频| 精品少妇一区二区三区视频日本电影| 69精品国产乱码久久久| 99国产极品粉嫩在线观看| 中文字幕色久视频| 另类亚洲欧美激情| 两人在一起打扑克的视频| 国产三级在线视频| 午夜久久久在线观看| 国产精品国产av在线观看| 黄色怎么调成土黄色| 露出奶头的视频| 国产成+人综合+亚洲专区| av网站免费在线观看视频| 夜夜看夜夜爽夜夜摸 | 一级黄色大片毛片| av福利片在线| 亚洲国产精品999在线| 多毛熟女@视频| 亚洲久久久国产精品| 色播在线永久视频| 亚洲aⅴ乱码一区二区在线播放 | 夜夜夜夜夜久久久久| 美女大奶头视频| 久久久久精品国产欧美久久久| 亚洲熟妇中文字幕五十中出 | 亚洲一码二码三码区别大吗| 9热在线视频观看99| 精品福利永久在线观看| 欧美日韩瑟瑟在线播放| 亚洲av电影在线进入| 亚洲在线自拍视频| 日韩 欧美 亚洲 中文字幕| 很黄的视频免费| 99久久人妻综合| 三级毛片av免费| 久久人人97超碰香蕉20202| 视频在线观看一区二区三区| 日韩精品中文字幕看吧| 欧美日韩乱码在线| 一级毛片高清免费大全| 国产一区二区三区综合在线观看| 正在播放国产对白刺激| avwww免费| 精品日产1卡2卡| 精品国产一区二区三区四区第35| 国产亚洲欧美精品永久| 两个人免费观看高清视频| 多毛熟女@视频| 精品一品国产午夜福利视频| 成熟少妇高潮喷水视频| 国产又爽黄色视频| 老司机午夜福利在线观看视频| 涩涩av久久男人的天堂| 亚洲成a人片在线一区二区| 人人妻,人人澡人人爽秒播| 99热国产这里只有精品6| 亚洲全国av大片| 久久久国产成人免费| 中文亚洲av片在线观看爽| 18禁裸乳无遮挡免费网站照片 | 中文字幕色久视频| 岛国视频午夜一区免费看| 久久精品国产综合久久久| 母亲3免费完整高清在线观看| 在线观看www视频免费| 久久久精品国产亚洲av高清涩受| 亚洲国产看品久久| 看免费av毛片| 高清黄色对白视频在线免费看| 999久久久精品免费观看国产| av片东京热男人的天堂| 久久精品国产清高在天天线| 99久久99久久久精品蜜桃| 亚洲五月天丁香| 亚洲国产欧美日韩在线播放| 自拍欧美九色日韩亚洲蝌蚪91| 黄片小视频在线播放| 国产精品电影一区二区三区| 高清黄色对白视频在线免费看| cao死你这个sao货| 女同久久另类99精品国产91| 日本一区二区免费在线视频| 亚洲片人在线观看| 真人做人爱边吃奶动态| 电影成人av| 天天躁夜夜躁狠狠躁躁| 夫妻午夜视频| 91成年电影在线观看| 国产精品99久久99久久久不卡| 日本一区二区免费在线视频| 一区二区日韩欧美中文字幕| 亚洲色图综合在线观看| 精品福利永久在线观看| 热re99久久精品国产66热6| 成人国语在线视频| 男女床上黄色一级片免费看| 欧美 亚洲 国产 日韩一| 制服诱惑二区| 欧美在线黄色| 国产精品野战在线观看 | 亚洲国产欧美日韩在线播放| 成人亚洲精品av一区二区 | 757午夜福利合集在线观看| tocl精华| 国产不卡一卡二| 丁香六月欧美| 国产精品久久视频播放| 婷婷精品国产亚洲av在线| 成人影院久久| 91av网站免费观看| 亚洲精品国产区一区二| 成人亚洲精品av一区二区 | 欧美激情久久久久久爽电影 | 丝袜美足系列| 国产成人影院久久av| 国产野战对白在线观看| 我的亚洲天堂| 日本a在线网址| 午夜视频精品福利| 多毛熟女@视频| 久久久精品欧美日韩精品| 中文亚洲av片在线观看爽| 亚洲一区高清亚洲精品| www.999成人在线观看| 欧美 亚洲 国产 日韩一| 波多野结衣一区麻豆| avwww免费| 看黄色毛片网站| 又大又爽又粗| av中文乱码字幕在线| 两个人看的免费小视频| 亚洲七黄色美女视频| 午夜精品国产一区二区电影| 国产片内射在线| 嫩草影院精品99| 激情视频va一区二区三区| 婷婷丁香在线五月| 久久久久久久午夜电影 | 很黄的视频免费| 欧美激情 高清一区二区三区| 日韩国内少妇激情av| 精品熟女少妇八av免费久了| 在线永久观看黄色视频| 久久精品亚洲精品国产色婷小说| 国产精华一区二区三区| 国产真人三级小视频在线观看| 看片在线看免费视频| www.www免费av| 国产亚洲精品第一综合不卡| xxxhd国产人妻xxx| 最近最新免费中文字幕在线| 久久人人精品亚洲av| 久久久久久久久免费视频了| 69av精品久久久久久| 国产精品影院久久| 国产成人av激情在线播放| 亚洲黑人精品在线| 亚洲精品一区av在线观看| 人人妻人人添人人爽欧美一区卜| 一个人观看的视频www高清免费观看 | 黄色成人免费大全| 精品久久久久久电影网| 99国产精品免费福利视频| 97人妻天天添夜夜摸| 最新在线观看一区二区三区| 日韩三级视频一区二区三区| 侵犯人妻中文字幕一二三四区| www国产在线视频色| 色综合站精品国产| 亚洲 欧美 日韩 在线 免费| 亚洲精品国产一区二区精华液| 亚洲狠狠婷婷综合久久图片| 亚洲一区二区三区色噜噜 | 搡老岳熟女国产| 美女福利国产在线| 中文欧美无线码| 久热这里只有精品99| 又黄又粗又硬又大视频| 18禁黄网站禁片午夜丰满|