• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Research on the ions’axial temperature of a sympathetically-cooled 113Cd+ion crystal?

    2021-11-23 07:26:24NongChaoXin辛弄潮ShengNanMiao苗勝楠HaoRanQin秦浩然LiMingGuo郭黎明JiZeHan韓濟澤HuaXingHu胡華星WenXinShi施文心JianWeiZhang張建偉andLiJunWang王力軍
    Chinese Physics B 2021年11期
    關鍵詞:華星弄潮文心

    Nong-Chao Xin(辛弄潮) Sheng-Nan Miao(苗勝楠) Hao-Ran Qin(秦浩然)Li-Ming Guo(郭黎明) Ji-Ze Han(韓濟澤) Hua-Xing Hu(胡華星)Wen-Xin Shi(施文心) Jian-Wei Zhang(張建偉) and Li-Jun Wang(王力軍)

    1State Key Laboratory of Precision Measurement Technology and Instruments,Department of Precision Instruments,Tsinghua University,Beijing 100084,China

    2Department of Physics,Tsinghua University,Beijing 100084,China

    Keywords: ion temperature,sympathetic cooling,electric parameters,microwave clock

    1. Introduction

    Trapping and cooling ion technique plays an important role in precision measurement field, including but not limited to frequency standards, quantum information processing, and chemical reactions. This technique is employed to acquire long-term, stable, and cold (milli-Kelvin) ion crystal. Especially, frequency standards based on ion traps and Doppler laser cooling technology demonstrate great potential in the application of time-keeping,[1]space navigation,[2,3]and deep-space exploration.[4]Among the ion cooling techniques,sympathetic cooling technology is a technique that indirectly cools another type of particles on the basis of laser cooling of one type of particles.[5,6]Therefore,the transition spectrum of atoms, ions, and molecules cooled by sympathetic cooling technology can be measured more accurately. Because only the coolant particles should be cooled by laser,the particles of similar mass can be effectively cooled through the interaction between the particles. The sympathetic-cooling technology is effective for almost all particles, and significantly important in the precise measurement of particle spectrum and the study of particle properties.[7,8]Through sympathetic cooling technique, microwave clock based on sympathetically-cooled113Cd+ions[9]has been proven to be conducive to overcoming limits, including Dick effect and second-order Doppler frequency shift(SODFS),which result from the dead time of laser cooling process and rise in temperature during the clock interrogation,respectively.[10,11]

    Study has revealed that for the sympathetically-cooled ion crystal,trapped in the linear Paul trap,there exists a complex relationship between the electric parameters,including RF(radio frequency)voltage and end-cap voltage,and the temperature of ions.[9]To study the sympathetic cooling efficiency and the ion crystal temperature, we constructed an MD (molecular dynamics) simulation model of a sympathetically-cooled113Cd+ion crystal, in which40Ca+ions were used as the coolant to sympathetically cool a large113Cd+cloud. Furthermore, both types of ions are trapped in a linear Paul trap.By applying MD simulation,detailed information of any particular ion, including but not limited to ions’velocity and location distribution,temperature,and evolution of secular motion together with micro-motion can be acquired reasonably and accurately.[12,13]After defining some parameters,such as ions’ mass-to-charge ration, ions’ quantity and potential applied on trap ions,the process of ion generating,trapping and sympathetic cooling can be simulated properly. Moreover,the pseudo-potential approximation model[14]is adopted to define motion modes of ions, and it clearly explains spatial configuration transformation and temporal evolution of the simulated three-dimensional(3D)sympathetically-cooled ion system under different voltages.

    For the ion crystal system we built, the optimum radio frequency(RF)voltage amplitude(about 260 V),corresponding to minimum temperature,was discovered. Before the optimum RF voltage,ions’axial temperature is negatively correlated with the RF voltage. While after the optimum RF voltage, ions’ axial temperature experiences a steady escalation with the increasing of RF voltage. The axial temperature is positively correlated with the end-cap voltage. The change trends of ion temperature vs. the RF voltage and the endcap voltage are consistent with the experimental results. We further proposed a simple method to estimate the axial temperature trend while tuning the voltages by a key index (see in Eq.(9)),which is determined by secular motion amplitude,average position,andqx,y(defined in Eq.(3)).

    2. MD simulation and verifications

    2.1. MD simulation model

    whereΩis the frequency of RF voltage andκis the axial equivalent geometric factor, decided by the geometry of the trap and distance between two endcapsz0. In our experiment,COMSOL software is used to construct the trap model. By setting different voltages,we fitted the corresponding trap potential,and then obtained theκcoefficient by fitting analysis.κwas set to 0.049.

    The random collision forceFistochastic(Ref. [15]) and the laser forceFilaser(Ref. [12]) have already been described at Ref.[10].The evolution process uses the Leapfrog algorithm,[1,16,17]which is a second-order stable and time reversible algorithm. In addition,the choice of time step is critical in molecular dynamics simulation;it is appropriate to include dozens to one hundred time steps in an RF cycle. The time step of the model built in this article is selected as 5 ns,1/100 of the RF cycle,and it ensures the stability of the algorithm and simultaneously guarantees the accuracy of the calculation. The time step can be changed artificially in the simulation program.

    The cardinal parameters of the simulated linear Paul trap are depicted in Fig.1.[19]Our trap is composed of four threesection cylindrical copper electrodes. The diameter of each electrode is 14.2 mm, and the shortest distance between the electrodes and the ion trap center is 6.2 mm.To trap ions in the axial direction, the end-cap voltage(Uend, direct current voltage) is applied on the adjacent section (A and C parts) of all electrodes. Meanwhile,to achieve confinement of ions in the radial direction, RF voltage (Urf=(Vrf/2)cosΩt), frequency fixed at 2.06 MHz,is assigned to the central section(B part)of electrodes 2 and 4,and the central section of electrodes 1 and 3 is well grounded. The adjustment range of amplitude of RF voltage is 150 V-500 V,and the output amplitude of end-cap voltage can be varied from 0 V to 100 V.The cooling laser and the probe laser are shined on ions in the direction of the axial of trap.Thus,axial temperature of the ion cloud is investigated in the following analysis.

    Fig. 1. Sketch of linear Paul trap: (a) axial view and (b) side view. The origin of z axis of our coordinate is centered between endcaps.

    2.2. Verifications

    Before the investigation,our simulation program was validated by comparing the simulated results to the analytic and experimental results. These tests allows detection if modifications introduce errors;thus,ensuring correctness of the further illustrations.

    By using pseudo-potential approximation, motion of a single ion can be depicted as[20,21]

    In radial direction, the motion of one single ion is separated into a secular motion at frequencyωi,i=x,yand a swift‘micromotion’at frequencyΩ. In axial direction,the single ion only oscillates at frequencyωz.

    Apparently,these frequencies depend on end-cap and RF voltages. Motion of one ion is simulated by our program,and the oscillation frequencies are extracted along each axis, as demonstrated in Fig. 2(a), which validates the correctness of end-cap and RF voltages.

    Fig. 2. (a) Oscillation frequencies extracted from simulation of one single ion. The frequencies are all from the Fourier component with the largest amplitude. (b)Relationship between minimum separation of ions and Uend.The number of ions is 64.

    Moreover, when the number of ions is sufficiently small that all ions are aligned through thezaxis, the distance betweenNions(quantity of electric charge of each ion isQandmis the ion mass)will increase away from the center ofzaxis.The minimum separation between ions is expressed as[22]

    Figure 2(b)shows the minimum simulated separation and the value predicted by theory. Because the simulated ions experience forces,including the voltage confinement alongzaxis and the Coulomb force from the other ions,simulation of the minimum separation of ions tests the realization of both the Coulomb force and voltage confinement.

    The forces experienced by ions decide the spatial configuration of ion crystal. In our experiment, an explicit ion crystal picture of Ca+was obtained by an EMCCD(electronmultiplying charge coupled device). Under our experimental settings, we estimated the number of ions based on the size of the ion cloud,[23]and after repeated release of trapped ions, we selected the experimental results of approximately 1.9(0.5)×104Ca+ions as the correctness verification of the simulation model. The corresponding ion number was calculated as 1.9(0.5)×104. Figure 3 shows pictures of ion crystal obtained from the experiment and simulation, verifying that our simulation results are consistent with the real experimental results.

    Fig.3. Ca+ ion crystal obtained from experiment and simulation at different RF voltages and end-cap voltages. (a)Vrf=400 V.(b)Vrf=240 V.The number of Ca+ is 1.9(0.5)×104.

    3. Relationship between ions’ temperature and electric parameters

    3.1. Simulation results

    As shown in Fig.4,increasement of RF and end-cap voltages change the spatial configuration of ion crystal. Typically,increasing RF voltage and end-cap voltage lead to substantial compression and extension on the radial distribution of the ion system, respectively. Because the effect of laser force is significant,[24-26]during the simulation process,the laser force is set as a constant value,verified by Subsection 2.2.

    Fig. 4. Spatial configuration of ion crystal obtained from simulation. (a)Spatial configuration of ion crystal cloud changes with end-cap voltage at Vrf =520 V.(b)Spatial configuration of ion crystal cloud changes with RF voltage at Uend =10 V. Red dots represent the ions of Ca+ and green dots represent the ions of Cd+. The ion numbers of Ca+ and Cd+ are 192 and 960,respectively.

    Note that although reducing the end-cap voltage will lead to the decline of ion temperature,considering the actual situation that the ions should be stably trapped,the end-cap voltage should have a lower limit. In our previous sympathetic cooling experiment,[27]we found that when the end-cap voltage is lower than 10 V, the ion loss rate increases; thus, we usually set the end-cap voltage above 10 V. The specific lower limit of the end-cap voltage is related to the specific trap parameters,vacuum degree,laser parameters,and other experimental conditions.

    Theoretically, the temperature of the ions in the thermal equilibrium state affected by the voltages can be explained by the RF heating effect.[21,28,29]The RF heating effect is correlated with the oscillation amplitude and frequency of the ions. Through the image obtained from the simulation (see in Fig.4),it can be observed that when the end-cap voltage increases and the RF voltage decreases,more ions are arranged outside the central axis, which means that oscillation amplitude is amplified. Further, it is verified that the frequency of the motion is affected by the voltages. When the oscillation amplitude and the movement frequency both affected by the voltages, the specific changes of the ion temperature need to be discussed in detail. In Subsection 3.2,motion equation under the pseudo-potential model is applied to provide a more reasonable and clear explanation.

    Figure 5 demonstrates the specific ions’axial temperature at different RF voltage and end-cap voltage. According to the simulation results, the optimum RF voltage corresponding to the lowest temperature is approximately 520 V. Still, before the optimum RF voltage, the temperature decreases with the increasement of RF voltage, and after the optimum voltage,the temperature increases with the increasing of RF voltage.Furthermore, the end-cap voltage and temperature are positively correlated.

    Fig. 5. Temperature from simulation: (a) axial temperature at different end-cap voltages with Vrf =320 V; (b) axial temperature at different end-cap voltages with Vrf =520 V; (c) axial temperature at different end-cap voltages with Vrf =720 V; (d) axial temperature at different RF voltages with Uend=10 V;(e)axial temperature at different RF voltages with Uend=50 V;(f)axial temperature at different RF voltages with Uend=90 V.The ion numbers of 40Ca+ and 113Cd+ are 192 and 960,respectively.

    3.2. Energy and temperature

    The motion of one single ion can be well expressed by Eq. (3). When considering large-scale ion cloud trapping,modifications and assumptions should be mentioned. Owing to the Coulomb force, more ions will distribute around the z axis. Average position of ions are placed to (r1x,r1y,r1z),which causes ‘excess micro-motion’.[21]Thus the motion of ions is modified as

    To illustrate the energy change of ion cloud clearly, it is better to first fully describe the ion motion modes. According to Eq. (5), the one-dimensional motion of the ions can be mainly described by the superposition of the secular motion and the micro-motion. However,considering that the ions move in three-dimensional(3D)space,the movement of ions in the 3D direction will be coupled with each other, resulting in more complicated ion movement patterns. Therefore,although the motion modes of ions become complex due to mutual coupling, they are result of combined secular motion and micro-motion. By calculating the kinetic energy of the ions in the micro-motion and secular motion modes,the overall energy of the ions can be reflected. In addition,due to the high coupling of ion motion modes,the energies of ions in the three degrees of freedom are positively correlated. Therefore,we can use the motion equation of the ion in one direction to estimate the total energy of the ion in the complex motion within the three-dimensional space.

    For a 3D ion system,interaction among ions leads to motion and energy coupling under different dimensions. Thus,it is assumed that ions’ triaxial energy is in the same order of magnitude and positively correlated:

    Furthermore, according to our simulation, ions’ axial micro-motion mainly results from motion coupling among different dimensions and is less affected by the RF driving field,while ions’radial motion is a direct superposition of the micromotion and secular motion.[30]To analyze the energy and temperature evolution of the ions more comprehensively,we used the axial motion equation of the ions,obtained from the equivalent harmonic pseudo-potential approximation, to figure out the energy and temperature of ions in the 3D sympatheticallycooled ion system.

    Averaged over a period of secular motion,the kinetic energy of ions inxdirection can be obtained as[21]

    where the number of ions isN,r1xiis the average position ofi-th ion alongxdirection, indicating the deviation of ions towards the central axis.

    By using Eq.(9),the evolution process of sympathetically cooled ions’temperature and energy under different voltages,portrayed by Fig.5,can be distinctly described:

    According to Eq. (9), energy and temperature of ions in a 3D ion sympathetic cooling system are positively correlated with the amplitude of secular motion,average position of ions andqx,y. On the one hand, by increasing the RF voltage, the spatial configuration is compressed, indicating the decline of secular motion amplitude and average position value. Thus,increasingqx,y(determined by increasing RF voltage)and decreasing secular motion amplitude together with average position value imply the minimum ion energy and temperature at a certain RF voltage. On the other hand, because increasing end-cap voltage amplifies the secular motion amplitude and average position,while have slight influence onqx,y,[20]ions’temperature and energy are reasonably positively correlated with the end-cap voltage.

    Moreover, it is assumed that ion crystal configuration is determined by all ions’ motion amplitude and average position.Thus,the configuration can microscopically represent the average of square of the secular motion amplitude and average position. In this study,we chose the maximum radial width of ion crystal as the cardinal parameter of the ion crystal configuration. Thereafter,the axial temperature was microscopically evaluated by a new indexu:

    whereRscrepresents the maximum radial width of sympathetically cooling ion crystal(Cd+)in our simulation.

    The dimension of indexuis square of meter. It contains important information that affect ions energy, including electric parameters and oscillation amplitude.It reflects the energy and spatial configuration change under different voltages. Under a specific ion crystal trapped in linear Paul trap,it helps to estimate relative temperature value conveniently and quickly.Further,it allows us to measureRscand determine correspondinguthrough the simulation output. The exact calculation results are depicted as follows:

    Fig. 6. Index to evaluate temperature of sympathetic cooling ions. (a)Temperature from simulation and the index at different RF voltages with Uend =10 V. (b) Temperature from simulation and the index at different end-cap voltages with Vrf=520 V.The number of ions is the same as that in Fig.4.Discontinuous point data around 620 V are a phenomenon of random fluctuations of macroscopic physical quantities. Under the thermal equilibrium state,the macroscopic physical quantities of ions such as temperature,velocity,and energy,should own certain degree of random fluctuations.This type of random fluctuation becomes more significant when the voltage parameter changes slightly.

    The temperature change trend reflected by the indexuis consistent with the simulation results, especially when the temperature reaches at a minimum withVrf=520 V.

    Though the temperature evolution process,as discovered and illustrated by MD simulation and pseudo-potential model,we confirmed the RF optimum voltage(around 520 V)through a sympathetically-cooled113Cd+ion microwave clock(shown in Fig.7).[26]

    Detailed experimental setup and temperature measurement method can be found in Ref. [27]. The temperature evolution processes are experimentally measured by evaluating the Doppler broadening owing to ion motion of the 5p2P3/2F=2,mF=2→5s2S3/2F=1,mF=1 transition. At the published studies, we estimated the loss of ions based on the intensity of the fluorescence radiation of the ions. The fitted fluorescence decay curve is an exponential decay curve,and the time constant is approximately 84 h. Thus, it is reasonable to assume that the number of ions remains unchanged within 1 hour,and the experimental error caused by the loss of ions can be ignored.[27]

    Fig.7. Influence of electric parameters on ions’axial temperature. (a)Corresponding temperature at different RF voltages with Uend=10 V.(b)Corresponding temperature at different end-cap voltages with Vrf=520 V.The temperature data of 40Ca+ and 113Cd+ ion crystals under sympathetic cooling situation are adopted from Ref.[26].

    Though the changing trend obtained from simulation and experiment is consistent, some details are slightly different.We believe that the main reasons for the inconsistency of the simulation results,experimental results,and theoretical calculation results are as follows:

    (i) In the experiment, the potential of the ion trap is not a perfect quadruple potential, which will cause additional RF heating.

    (ii)The number of ions in the experiment is significantly higher than the simulation calculation. It is believed that even under the same electrical parameters,the ion cloud size formed by different numbers of ions changes notably.Increasing number of ions leads to expansion of the ion cloud,which implies an intensified RF heating. Thus, the temperature measured through the experiment is much higher than that of the simulation.

    (iii)Theoretical calculation of the relative temperature of the ion requires the identification of the specific size of the ion cloud. Although the ion cloud image captured by the EMCCD and obtained by the simulation result are notably clear, there are still errors in determining the size of the ion cloud.

    The sympathetic cooling system simulated in this study is aimed at the sympathetic cooling of metal ions,and distinguished with sympathetic cooling system of highly charged ions, atoms, and molecular ions. For metal ions of different masses, although their spatial configuration is different, their motion modes are still superposition of micro-motion and secular motion. Then the influencing factors of ions’ energy in the linear trap should be consistent. The indexuprovides us a convenient method to estimate the ions’temperature changing trend in experiment, which avoids scanning probe laser frequency to measure the Doppler broadening of a transition.

    4. Conclusion

    In this paper,we simulated a sympathetically-cooled ion system. The MD simulation results offered detailed information of any given ion at a certain time, based on which axial temperature of the ion crystal under different voltages was calculated.

    Using the pseudo-potential approximation model, key factors, composed of secular motion amplitude, average position andqx,y, affecting ions’ temperature and energy were elaborated. RF and end-cap voltages were found to have influence on these factors and can change the ions’axial temperature accordingly.

    Based on the key factors,indexu,a square of the product ofqandRsc, is able to help us determine ions’ temperature relatively and quickly. The temperature change, indicated by the index,is consistent with the simulation result,and both are verified by experimental data.

    Though our work is limited by the number of simulated ions and applicable scope of the pseudo-potential approximation model,the result is still helpful for ion temperature measurement, sympathetic ion cooling efficiency improvement,and ion spatial configuration control.

    猜你喜歡
    華星弄潮文心
    弄潮青春
    黃河之聲(2021年3期)2021-05-15 01:17:56
    我要讀書啦(下)
    我要讀書啦(上)
    寫話,一點都不難
    “鳥”和“烏”
    改革開放40年 荊楚弄潮40人
    支點(2018年12期)2018-12-26 02:16:32
    在新的歷史起點上 沖浪弄潮 再創(chuàng)輝煌
    冬天來啦
    文心雜記
    請不斷修煉你的“文心”
    中國篆刻(2017年5期)2017-07-18 11:09:30
    亚洲国产精品999在线| 精品国产乱码久久久久久男人| 亚洲精品久久国产高清桃花| 成年女人毛片免费观看观看9| 高潮久久久久久久久久久不卡| 电影成人av| 久久久久九九精品影院| 中出人妻视频一区二区| 美国免费a级毛片| 亚洲全国av大片| 中文字幕人妻丝袜一区二区| 久久久久国内视频| 成人亚洲精品av一区二区| 久久精品国产综合久久久| ponron亚洲| 99国产精品免费福利视频| 免费看十八禁软件| √禁漫天堂资源中文www| 757午夜福利合集在线观看| 国产av在哪里看| 国产一区二区在线av高清观看| 老鸭窝网址在线观看| 制服丝袜大香蕉在线| 男人操女人黄网站| 成人18禁高潮啪啪吃奶动态图| 曰老女人黄片| 国产一区在线观看成人免费| 欧美激情高清一区二区三区| 亚洲欧美激情综合另类| 99国产精品99久久久久| 天天躁夜夜躁狠狠躁躁| 啦啦啦 在线观看视频| 久久性视频一级片| 国内久久婷婷六月综合欲色啪| 99国产精品一区二区三区| 亚洲精品一区av在线观看| 久久久久久久午夜电影| 免费在线观看黄色视频的| 一级毛片女人18水好多| 色哟哟哟哟哟哟| 日韩欧美三级三区| 久久亚洲精品不卡| av在线天堂中文字幕| 久久久精品国产亚洲av高清涩受| 一区二区三区国产精品乱码| 久久人人97超碰香蕉20202| 啦啦啦 在线观看视频| 久9热在线精品视频| 人人澡人人妻人| 中文亚洲av片在线观看爽| 免费av毛片视频| 亚洲国产欧美一区二区综合| √禁漫天堂资源中文www| 777久久人妻少妇嫩草av网站| 久久精品aⅴ一区二区三区四区| 69av精品久久久久久| 自拍欧美九色日韩亚洲蝌蚪91| 在线观看舔阴道视频| 亚洲人成网站在线播放欧美日韩| 亚洲中文字幕日韩| 黄色片一级片一级黄色片| 香蕉国产在线看| 日本vs欧美在线观看视频| 校园春色视频在线观看| 在线av久久热| 十分钟在线观看高清视频www| 亚洲欧美激情综合另类| 正在播放国产对白刺激| 搡老熟女国产l中国老女人| 一级黄色大片毛片| 此物有八面人人有两片| 亚洲片人在线观看| 啦啦啦 在线观看视频| 一个人免费在线观看的高清视频| 国产精品av久久久久免费| 十八禁人妻一区二区| svipshipincom国产片| 一级黄色大片毛片| 宅男免费午夜| 好男人在线观看高清免费视频 | 一本综合久久免费| 搡老岳熟女国产| 高清黄色对白视频在线免费看| 老司机福利观看| 亚洲色图av天堂| 精品一品国产午夜福利视频| 麻豆av在线久日| 亚洲天堂国产精品一区在线| 亚洲三区欧美一区| 亚洲av成人av| 三级毛片av免费| 精品国产国语对白av| 久久国产乱子伦精品免费另类| 久久久精品欧美日韩精品| 亚洲五月婷婷丁香| 国产成人一区二区三区免费视频网站| 免费在线观看亚洲国产| 亚洲男人的天堂狠狠| 国产成人免费无遮挡视频| 日韩国内少妇激情av| 国产精品亚洲一级av第二区| 少妇粗大呻吟视频| 他把我摸到了高潮在线观看| 一本久久中文字幕| 人妻丰满熟妇av一区二区三区| 少妇粗大呻吟视频| 久久中文字幕人妻熟女| 成人亚洲精品av一区二区| 少妇 在线观看| 亚洲欧美日韩无卡精品| 欧美成人性av电影在线观看| 精品午夜福利视频在线观看一区| 又紧又爽又黄一区二区| 亚洲精品美女久久av网站| 午夜老司机福利片| 国产精品乱码一区二三区的特点 | 久久人人爽av亚洲精品天堂| 精品电影一区二区在线| videosex国产| 少妇的丰满在线观看| 美女国产高潮福利片在线看| 亚洲成人国产一区在线观看| 操出白浆在线播放| 好看av亚洲va欧美ⅴa在| 亚洲第一av免费看| 午夜福利在线观看吧| 国产精品一区二区免费欧美| 天天躁夜夜躁狠狠躁躁| 国产高清有码在线观看视频 | 亚洲国产精品成人综合色| 国产人伦9x9x在线观看| 女人被躁到高潮嗷嗷叫费观| 99国产综合亚洲精品| 一卡2卡三卡四卡精品乱码亚洲| 女同久久另类99精品国产91| 久久久水蜜桃国产精品网| 日韩一卡2卡3卡4卡2021年| 老司机深夜福利视频在线观看| 国产av一区二区精品久久| 成年人黄色毛片网站| 亚洲中文日韩欧美视频| av在线播放免费不卡| 午夜福利视频1000在线观看 | 亚洲七黄色美女视频| 色尼玛亚洲综合影院| 久久久久久免费高清国产稀缺| 国产精品九九99| 久久久精品国产亚洲av高清涩受| 亚洲午夜精品一区,二区,三区| 国产91精品成人一区二区三区| 69精品国产乱码久久久| 国产成+人综合+亚洲专区| 搡老岳熟女国产| 日韩大码丰满熟妇| 看片在线看免费视频| 搡老岳熟女国产| 十八禁人妻一区二区| 高潮久久久久久久久久久不卡| 久久精品91蜜桃| 亚洲国产毛片av蜜桃av| 国产黄a三级三级三级人| 国产一区二区三区在线臀色熟女| 色播亚洲综合网| 精品欧美国产一区二区三| 99在线视频只有这里精品首页| 欧美中文日本在线观看视频| 午夜两性在线视频| 黑丝袜美女国产一区| 亚洲男人的天堂狠狠| 久久婷婷成人综合色麻豆| 久久中文字幕一级| 国产精品一区二区在线不卡| 大型黄色视频在线免费观看| 亚洲一码二码三码区别大吗| 最近最新中文字幕大全电影3 | 美女免费视频网站| 在线观看免费日韩欧美大片| 色播在线永久视频| 久久精品国产亚洲av香蕉五月| 久久香蕉激情| 757午夜福利合集在线观看| 深夜精品福利| 亚洲成a人片在线一区二区| 欧美不卡视频在线免费观看 | 精品国产美女av久久久久小说| 69精品国产乱码久久久| 亚洲一区中文字幕在线| 久久精品影院6| 久久草成人影院| 九色亚洲精品在线播放| av有码第一页| 久久伊人香网站| 成人av一区二区三区在线看| 亚洲av第一区精品v没综合| 欧美大码av| 波多野结衣高清无吗| 亚洲五月天丁香| 中文字幕av电影在线播放| 亚洲国产看品久久| 麻豆国产av国片精品| 亚洲专区字幕在线| 亚洲,欧美精品.| 很黄的视频免费| 变态另类成人亚洲欧美熟女 | 欧美丝袜亚洲另类 | 国产一区二区在线av高清观看| 色精品久久人妻99蜜桃| 中文字幕色久视频| 在线观看舔阴道视频| 亚洲国产精品sss在线观看| 视频在线观看一区二区三区| 国产99久久九九免费精品| 婷婷精品国产亚洲av在线| 精品国产乱码久久久久久男人| 亚洲精品国产一区二区精华液| 亚洲一区中文字幕在线| 午夜免费成人在线视频| 国产精品二区激情视频| 午夜免费激情av| 多毛熟女@视频| 日韩中文字幕欧美一区二区| 色综合站精品国产| 国产成人一区二区三区免费视频网站| 不卡av一区二区三区| 亚洲精品久久成人aⅴ小说| а√天堂www在线а√下载| 性少妇av在线| 看免费av毛片| 国产亚洲精品第一综合不卡| 欧美激情高清一区二区三区| 老司机午夜福利在线观看视频| 9热在线视频观看99| 搡老岳熟女国产| 一级片免费观看大全| 亚洲在线自拍视频| 99国产极品粉嫩在线观看| 成人免费观看视频高清| a级毛片在线看网站| 国产精品一区二区在线不卡| 制服人妻中文乱码| 国产精品久久久久久亚洲av鲁大| 啪啪无遮挡十八禁网站| 精品久久久久久成人av| 欧美绝顶高潮抽搐喷水| 久久精品国产清高在天天线| 性欧美人与动物交配| 亚洲熟女毛片儿| 午夜亚洲福利在线播放| 国产1区2区3区精品| 色综合亚洲欧美另类图片| aaaaa片日本免费| 亚洲电影在线观看av| 丝袜美腿诱惑在线| 夜夜躁狠狠躁天天躁| 国产又色又爽无遮挡免费看| 久久这里只有精品19| 国产视频一区二区在线看| 免费观看人在逋| 高潮久久久久久久久久久不卡| 国产精品香港三级国产av潘金莲| 99久久精品国产亚洲精品| 夜夜看夜夜爽夜夜摸| 精品免费久久久久久久清纯| 亚洲中文日韩欧美视频| 免费高清视频大片| 伦理电影免费视频| 欧美在线黄色| 国产成人一区二区三区免费视频网站| 一区二区三区激情视频| 亚洲一码二码三码区别大吗| 欧美乱码精品一区二区三区| 国产一区二区在线av高清观看| www.熟女人妻精品国产| 亚洲欧美日韩无卡精品| 国产精品秋霞免费鲁丝片| 日本黄色视频三级网站网址| 日韩av在线大香蕉| 国产免费男女视频| 欧美激情极品国产一区二区三区| 成人18禁在线播放| 精品国产一区二区三区四区第35| 国内精品久久久久久久电影| 国产高清视频在线播放一区| 桃红色精品国产亚洲av| 黄色成人免费大全| 99国产精品一区二区蜜桃av| 韩国av一区二区三区四区| АⅤ资源中文在线天堂| 亚洲天堂国产精品一区在线| 国产主播在线观看一区二区| 国产单亲对白刺激| 国产精品久久久久久亚洲av鲁大| 99香蕉大伊视频| 国产亚洲av高清不卡| 满18在线观看网站| 精品久久久精品久久久| 午夜福利免费观看在线| 脱女人内裤的视频| 国产精品二区激情视频| 午夜久久久久精精品| 一级a爱片免费观看的视频| 国产成人一区二区三区免费视频网站| 午夜视频精品福利| 如日韩欧美国产精品一区二区三区| 黄色成人免费大全| 国产精品久久久久久人妻精品电影| 国产熟女xx| 国产黄a三级三级三级人| 九色国产91popny在线| 国产高清激情床上av| 狂野欧美激情性xxxx| 自线自在国产av| 亚洲成av人片免费观看| 日本黄色视频三级网站网址| 日韩高清综合在线| 麻豆成人av在线观看| 成人午夜高清在线视频| 免费看光身美女| 最近视频中文字幕2019在线8| 99久久精品一区二区三区| 丰满人妻一区二区三区视频av| 精品午夜福利视频在线观看一区| 深夜a级毛片| 国内精品久久久久久久电影| 男人舔奶头视频| 国产真实乱freesex| 永久网站在线| 嫁个100分男人电影在线观看| 99久久九九国产精品国产免费| 搡老妇女老女人老熟妇| 老司机深夜福利视频在线观看| 听说在线观看完整版免费高清| 亚洲av中文字字幕乱码综合| 麻豆国产97在线/欧美| 黄色欧美视频在线观看| 亚洲国产欧洲综合997久久,| 淫妇啪啪啪对白视频| 国产精品,欧美在线| 久久精品国产鲁丝片午夜精品 | 久久国产精品人妻蜜桃| 香蕉av资源在线| 色尼玛亚洲综合影院| 久久精品夜夜夜夜夜久久蜜豆| 女人被狂操c到高潮| 99国产极品粉嫩在线观看| 无人区码免费观看不卡| 12—13女人毛片做爰片一| 美女cb高潮喷水在线观看| 亚洲人成网站在线播放欧美日韩| 亚洲va在线va天堂va国产| av福利片在线观看| 中亚洲国语对白在线视频| 成人国产综合亚洲| 久久久久久久精品吃奶| 看免费成人av毛片| 欧美成人性av电影在线观看| 国产精品一区二区三区四区免费观看 | 欧美成人性av电影在线观看| 欧美日韩瑟瑟在线播放| 免费搜索国产男女视频| 国语自产精品视频在线第100页| 欧美成人性av电影在线观看| 亚洲av五月六月丁香网| 色精品久久人妻99蜜桃| 在线观看免费视频日本深夜| 国产成人影院久久av| 国产高清不卡午夜福利| 欧美黑人巨大hd| 亚洲经典国产精华液单| www.www免费av| 女同久久另类99精品国产91| 春色校园在线视频观看| 色哟哟哟哟哟哟| 麻豆国产av国片精品| 国产免费一级a男人的天堂| 给我免费播放毛片高清在线观看| 亚洲一区二区三区色噜噜| 嫁个100分男人电影在线观看| 成人特级黄色片久久久久久久| 春色校园在线视频观看| 我的老师免费观看完整版| 亚洲国产色片| 又粗又爽又猛毛片免费看| 午夜激情欧美在线| 亚洲美女黄片视频| 特大巨黑吊av在线直播| 99久久精品热视频| 九色国产91popny在线| 五月玫瑰六月丁香| 国产精品野战在线观看| 乱人视频在线观看| 亚洲欧美日韩东京热| 欧美zozozo另类| 又黄又爽又免费观看的视频| 毛片一级片免费看久久久久 | 天美传媒精品一区二区| 成年版毛片免费区| 一本久久中文字幕| 成人毛片a级毛片在线播放| 18禁黄网站禁片午夜丰满| 大型黄色视频在线免费观看| 久久99热6这里只有精品| 国产一区二区三区av在线 | 美女 人体艺术 gogo| av在线观看视频网站免费| 女人被狂操c到高潮| 精品久久久久久久久亚洲 | 九色成人免费人妻av| 大又大粗又爽又黄少妇毛片口| 精品久久久久久久久av| 看黄色毛片网站| 亚洲性夜色夜夜综合| 久久久久久久久久成人| 夜夜爽天天搞| 动漫黄色视频在线观看| bbb黄色大片| 神马国产精品三级电影在线观看| 国产69精品久久久久777片| 亚洲精品成人久久久久久| 校园春色视频在线观看| 精品乱码久久久久久99久播| 99久久精品一区二区三区| 乱人视频在线观看| 色5月婷婷丁香| 欧美日韩乱码在线| 亚洲专区国产一区二区| 好男人在线观看高清免费视频| 22中文网久久字幕| 精品人妻熟女av久视频| 深夜a级毛片| 精品久久久久久成人av| 亚洲av免费在线观看| 成人综合一区亚洲| 欧美性猛交╳xxx乱大交人| 日韩国内少妇激情av| 国产精品久久久久久av不卡| 日本黄大片高清| 简卡轻食公司| 亚洲欧美日韩无卡精品| 久久久久精品国产欧美久久久| 美女黄网站色视频| 赤兔流量卡办理| 少妇裸体淫交视频免费看高清| 伦理电影大哥的女人| 99riav亚洲国产免费| 国产女主播在线喷水免费视频网站 | 久久精品国产99精品国产亚洲性色| 一级a爱片免费观看的视频| 欧美国产日韩亚洲一区| 少妇的逼好多水| 尾随美女入室| 日本 欧美在线| 国产一级毛片七仙女欲春2| 国产精品一区www在线观看 | 老师上课跳d突然被开到最大视频| 一区二区三区四区激情视频 | 精品久久久久久久人妻蜜臀av| 欧美性感艳星| 免费av不卡在线播放| 久久国内精品自在自线图片| 此物有八面人人有两片| 一卡2卡三卡四卡精品乱码亚洲| 日日撸夜夜添| 日日摸夜夜添夜夜添小说| 免费观看人在逋| 亚洲精品一卡2卡三卡4卡5卡| 日本一二三区视频观看| 91午夜精品亚洲一区二区三区 | 国产精品一及| 少妇的逼水好多| а√天堂www在线а√下载| 国产老妇女一区| 精品人妻熟女av久视频| 亚洲精品成人久久久久久| 日韩欧美国产在线观看| 精品久久国产蜜桃| 欧美激情国产日韩精品一区| 亚洲va在线va天堂va国产| 在线观看av片永久免费下载| 女人被狂操c到高潮| 色综合亚洲欧美另类图片| 99精品在免费线老司机午夜| 一级毛片久久久久久久久女| 成人国产综合亚洲| 麻豆国产av国片精品| 精品久久久久久,| 级片在线观看| 国产精品爽爽va在线观看网站| 日韩精品中文字幕看吧| 1024手机看黄色片| 午夜影院日韩av| 国产精品永久免费网站| 亚洲熟妇熟女久久| 不卡视频在线观看欧美| 亚洲av免费高清在线观看| 亚洲精品一区av在线观看| 亚洲国产精品久久男人天堂| 精品久久国产蜜桃| 国产毛片a区久久久久| 国内精品宾馆在线| 精品久久久久久,| 一本精品99久久精品77| a级毛片免费高清观看在线播放| 看免费成人av毛片| 好男人在线观看高清免费视频| 色在线成人网| 最近最新中文字幕大全电影3| 淫秽高清视频在线观看| 老熟妇乱子伦视频在线观看| 国产人妻一区二区三区在| 亚洲自拍偷在线| 中文在线观看免费www的网站| 久久久久久大精品| 亚洲色图av天堂| 简卡轻食公司| 在线观看一区二区三区| 啦啦啦观看免费观看视频高清| 18禁在线播放成人免费| 亚洲成人免费电影在线观看| 夜夜夜夜夜久久久久| 久久99热这里只有精品18| 麻豆一二三区av精品| 99国产精品一区二区蜜桃av| 一进一出抽搐gif免费好疼| 蜜桃亚洲精品一区二区三区| 美女高潮喷水抽搐中文字幕| 内射极品少妇av片p| 99riav亚洲国产免费| 亚洲真实伦在线观看| 亚洲图色成人| 亚洲最大成人av| 国产黄片美女视频| 乱系列少妇在线播放| 18禁黄网站禁片免费观看直播| 久久久精品大字幕| 欧美成人性av电影在线观看| 99久久久亚洲精品蜜臀av| 一级av片app| 天堂动漫精品| 国产精品99久久久久久久久| 男插女下体视频免费在线播放| 99国产极品粉嫩在线观看| 级片在线观看| 国内毛片毛片毛片毛片毛片| av.在线天堂| 桃色一区二区三区在线观看| 亚洲av美国av| 国产精品乱码一区二三区的特点| 麻豆成人午夜福利视频| avwww免费| 欧美潮喷喷水| 欧美成人a在线观看| 男人舔奶头视频| 又爽又黄a免费视频| 乱人视频在线观看| 久久精品91蜜桃| 久久精品国产99精品国产亚洲性色| 亚洲18禁久久av| 老司机深夜福利视频在线观看| 1024手机看黄色片| 午夜a级毛片| 国产激情偷乱视频一区二区| 最近最新免费中文字幕在线| 亚洲av中文av极速乱 | 久久久久久大精品| 99视频精品全部免费 在线| 桃色一区二区三区在线观看| 五月玫瑰六月丁香| 国产精品国产高清国产av| 18禁黄网站禁片午夜丰满| 日韩欧美一区二区三区在线观看| 久久久久免费精品人妻一区二区| 久久午夜亚洲精品久久| 久久精品国产自在天天线| 赤兔流量卡办理| 18禁裸乳无遮挡免费网站照片| 亚洲欧美日韩无卡精品| 国产精品电影一区二区三区| 亚洲精华国产精华精| 最好的美女福利视频网| 黄色欧美视频在线观看| 免费搜索国产男女视频| 精品人妻1区二区| 最近最新中文字幕大全电影3| 精品免费久久久久久久清纯| 日韩人妻高清精品专区| 中文在线观看免费www的网站| 国产伦人伦偷精品视频| 一区二区三区高清视频在线| 色尼玛亚洲综合影院| 欧美一区二区亚洲| 麻豆久久精品国产亚洲av| 欧洲精品卡2卡3卡4卡5卡区| 国产一区二区三区在线臀色熟女| 成年女人看的毛片在线观看| 精品日产1卡2卡| a级毛片免费高清观看在线播放| 草草在线视频免费看| 国产亚洲精品av在线| 99久久精品国产国产毛片| 日韩中字成人| 中文字幕av在线有码专区| 俺也久久电影网| 美女免费视频网站| 麻豆一二三区av精品| 俺也久久电影网| www日本黄色视频网| 午夜视频国产福利| 亚洲欧美清纯卡通| 精品人妻视频免费看| 可以在线观看毛片的网站| 日本a在线网址| 欧美三级亚洲精品| 久久久久性生活片| 免费不卡的大黄色大毛片视频在线观看 |