• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Constrained adaptive neural network control of an MIMO aeroelastic system with input nonlinearities

    2017-11-20 12:07:49GouYiyongLiHongboDongXinminLiuZongcheng
    CHINESE JOURNAL OF AERONAUTICS 2017年2期

    Gou Yiyong,Li Hongbo,Dong Xinmin,Liu Zongcheng

    Aeronautics and Astronautics Engineering College,Air Force Engineering University,Xi’an 710038,China

    Constrained adaptive neural network control of an MIMO aeroelastic system with input nonlinearities

    Gou Yiyong,Li Hongbo,Dong Xinmin*,Liu Zongcheng

    Aeronautics and Astronautics Engineering College,Air Force Engineering University,Xi’an 710038,China

    Aeroelastic system;Constrained control;Flutter suppression;Input nonlinearities;RBFNNs

    A constrained adaptive neural network control scheme is proposed for a multi-input and multi-output(MIMO)aeroelastic system in the presence of wind gust,system uncertainties,and input nonlinearities consisting of input saturation and dead-zone.In regard to the input nonlinearities,the right inverse function block of the dead-zone is added before the input nonlinearities,which simplifies the input nonlinearities into an equivalent input saturation.To deal with the equivalent input saturation,an auxiliary error system is designed to compensate for the impact of the input saturation.Meanwhile,uncertainties in pitch stiffness,plunge stiffness,and pitch damping are all considered,and radial basis function neural networks(RBFNNs)are applied to approximate the system uncertainties.In combination with the designed auxiliary error system and the backstepping control technique,a constrained adaptive neural network controller is designed,and it is proven that all the signals in the closed-loop system are semi-globally uniformly bounded via the Lyapunov stability analysis method.Finally,extensive digital simulation results demonstrate the effectiveness of the proposed control scheme towards flutter suppression in spite of the integrated effects of wind gust,system uncertainties,and input nonlinearities.

    1.Introduction

    In the past,aeroelasticity has attracted increasing concern in aircraft design.Aeroelastic systems exhibit a variety of unstable phenomena as a result of the mutual interaction of structural,inertia and aerodynamic forces.1Divergence,flutter,and limit-cycle oscillation are typical unstable phenomena which can degrade an aircraft’s flight performance,and even cause flight mission failure.1,2Thus,a reliable and effective control strategy becomes one of the key issues in aeroelastic system control design.In previous studies,researchers have analyzed the nonlinear responses of aeroelastic systems,and various control schemes have been extensively studied.Based on the l method,Lind and Brenner3have analyzed the unstable responses of aeroelastic systems and studied robust stability margins.To study different aeroelastic phenomena,the NASA Langley Research Center has developed a benchmark active control technology(BACT)wind-tunnel model.4For this BACT wind-tunnel model,several control laws for fluttersuppression have been developed.4–6Considering nonlinear structural stiffness,a model equipped with a single trailingedge(TE)control surface has been developed at Texas A&M University.7Based on this model,a wide variety of control schemes have been designed.8–11Inspired by the limited effectiveness of a single TE control surface,a wing section equipped with a leading-edge(LE)control surface and a TE control surface has been designed,and a large number of control schemes has been proposed.12–16For this wing section with uncertainties,adaptive control has been widely used to suppress flutter.13–15Neural network control and adaptive control have been developed in this filed and compared in control performance.13With respect to external disturbance and uncertainties,Wang et al.14designed an output feedback adaptive controller coupled with an SDU decomposition which avoids the singularity problem arising from estimation of the input matrix.Accounting on the input saturation problem,Lee and Singh15used an auxiliary dynamic system to compensate for the input saturation and proposed a novel control scheme.In addition,a sliding mode control method was also applied to flutter suppression,and Lee and Singh16have designed a higher-order sliding mode controller which accomplished the finite-time flutter suppression of the aeroelastic system.

    It is well known that input nonlinearities exist in a real control system,and an aeroelastic control system is no exception.Both input dead-zone and saturation are considered for the uncertain aeroelastic system in this paper.Input saturation and dead-zone may induce deterioration of the aeroelastic control system performance,and even make the aeroelastic control system fail.Consequently,input saturation and deadzone have attracted much attention.Input dead-zone could induce a zero input against a range of set values.17An adaptive dead-zone inverse approach was proposed to tackle a system with input dead-zone.18An adaptive fuzzy output feedback control law,which treats dead-zone inputs as system uncertainties,has been developed.19For the input saturation problem,Chen et al.20designed an auxiliary system,whose input was the error between the saturation input and the desired control input,to compensate for the impact of the input saturation.Li et al.21proposed an adaptive fuzzy output feedback control for output constrained nonlinear systems.In general,some researchers have also studied in integrating input deadzone with saturation.For uncertain multi-input and multioutput(MIMO)nonlinear systems with input nonlinearities,a robust adaptive neural network control was developed.17Yang and Chen22regarded input dead-zone and saturation nonlinearities as a new input saturation problem through a dead-zone inverse approach,and proposed an adaptive neural prescribed performance control law for near-space vehicles.

    Motivated by the above discussion,a constrained adaptive neural network control scheme is proposed for an MIMO aeroelastic system with wind gust,system uncertainties,and input nonlinearities.Different from the previous references,it is especially noted that uncertainties in pitch stiffness,plunge stiffness,and pitch damping are all considered.Inspired by Ref.22,the right inverse function block of the dead-zone is added before the input nonlinearities,by which the input nonlinearities can be regarded as a new input saturation.22To handle the new input saturation,an auxiliary error system is designed to compensate for the impact of the input saturation.Radial basis function neural networks(RBFNNs)are also applied to approximate the system uncertainties.A novel constrained adaptive control law is developed by using the backstepping control technique.The simulation results of the MIMO aeroelastic control system are presented to verify that the proposed control scheme can accomplish flutter suppression despite the effects of wind gust,system uncertainties,and input nonlinearities.

    2.Nonlinear aeroelastic model and preliminary

    2.1.Nonlinear aeroelastic model

    A two-degree-of-freedom(2-DOF)wing section equipped with LE and TE control surfaces is presented in Fig.1.15The second-order differential equations signifying the dynamic of this aeroelastic system are given by13,14

    In Eq.(1),MandLrepresent the aerodynamic moment and lift in a quasi-steady form expressed by13

    Fig.1 Aeroelastic system with LE and TE control surfaces.15

    whereCma,CmbandCmcare the moment derivatives due to a,b and c,respectively;andCmacan be approximately regarded to be zero.13The moment and lift arose by wind gust can be given by14

    wherets?Ut=b,and xgetsT denotes the disturbance velocity.

    wherevimaxandvimindenote the known saturation values of the control inputvi(i?1;2).

    Fig.2 Structural diagram of input nonlinearity

    Fig.3 Saturation function

    Fig.4 Dead-zone function

    whereluiandldiare the breakpoints of the dead-zone;kui>0 andkdi>0 are the right and left slope parameters,respectively.

    In this paper,the control objective is to design a constrained adaptive neural network controller for the MIMO aeroelastic system in Eq.(6)to ensure the output y can track the desired output signal ydby appropriately choosing design parameters.

    Lemma 320.No eigenvalue of matrixAexceeds any of its norm in its absolute value,that is,

    2.2.Analysis of input nonlinearity

    Base on the analysis of the characteristics of the new construction of input nonlinearity in Ref.26,uican be described as

    Fig.5 Right inverse function

    Fig.6 Structural diagram of input nonlinearity

    The above equation means that the input saturation and dead-zone coupled with the right inverse function block of the dead-zone can be regarded as an equivalent input saturation.

    2.3.RBF neural networks

    3.Design of a constrained adaptive control scheme based on RBFNNs

    3.1.Design of a constrained adaptive control scheme

    In this section,the backstepping method is used to construct a constrained adaptive neural network controller for the nonlinear system in Eq.(6).Define the error variables as

    During the constrained adaptive neural network controller design,the backstepping control technique is employed and the detailed design process is described as follows.

    Step 1.Considering the system in Eq.(6)and differentiating z1,we obtain

    To proceed with the design of the constrained adaptive neural network control scheme,we define

    Then,we obtain

    Consider the Lyapunov function candidate

    Step 2.Differentiating z2yields

    Consider the Lyapunov function candidate

    As shown in Section 2.3,the RBFNNs will be employed to approximate the system uncertainties DFexT,and the optimal approximation can be written as

    Substituting Eq.(29)into Eq.(28)yields

    Considering Assumptions 1 and 2,we obtain

    In view of Young’s inequality,20and invoking Lemma 1,Eq.(31)can be rewritten as

    From Eq.(13),the control inputs u can be regarded as an input saturation problem.To compensate for the impact of the input saturation,the auxiliary error system is presented as follows20

    Define20

    Invoking Lemma 2 and taking the input saturation into consideration,choose the control law as follows

    3.2.Stability analysis

    In this section,the main results will be stated,and the semiglobal boundedness of all the signals in the closed-loop system will be proven by two cases.

    Choose the Lyapunov function as follows

    Following from Eqs.(25)and(32)and invoking Lemma 3,the time derivative ofVis

    Invoking Eq.(36),we obtain

    Substituting Eq.(40)into Eq.(39)yields

    Substituting Eq.(42)into Eq.(41),we obtain

    The structure diagram of the whole control system can be seen in Fig.7.

    4.Example results and discussion

    Fig.7 Structural diagram of whole control system.

    For the purpose of examining the effectiveness of the proposed constrained adaptive neural network control scheme at different freestream velocities,simulations at three different freestream velocitiesUc,1:5Ucand 2Ucare undertaken.The results are presented in Fig.11,which shows that the closedloop system is stable despite different freestream velocities,and for a higher freestream velocity,the responses are quicker.To examine that the LCOs can be suppressed,the aeroelastic system at a freestream velocity of 12 m/s is held in an open loop for 10 s and then the loop is closed.In Fig.12,we can observe that the pitch LCO is suppressed in about 5 s and the plunge LCO is suppressed in about 1 s;in terms of control surface,the TE control surface deflection converges to zero in less than 6 s,and the LE control surface deflection converges to zero in about 2 s.

    Table 1 Model parameters.13–15

    Fig.8 Real part of eigenvalues in open-loop system.

    Fig.9 Aeroelastic system phase diagrams at different freestream velocities.

    Fig.10 Aeroelastic system LCO frequency spectra at different freestream velocities.

    To verify the applicability and robustness of the aeroelastic control system,based on four types of wind gust,four sets of simulations are done as follows.

    The mathematical model of sinusoidal gust is given by14

    Fig.11 Constrained control at different freestream velocities.

    Fig.12 Constrained control,controller active at t=10 s.

    Fig.13 Constrained control for sinusoidal gust,U?12 m=s.

    For the triangular gust,one has14

    For the exponential gust,the mathematical model can be described as15

    Figure 14 Constrained control for random gust,

    Fig.15 Constrained control for triangular gust,

    Fig.16 Constrained control for exponential gust,

    Fig.17 Constrained controlagainstsystem uncertainties,

    Fig.18 Constrained control with LE control surface failure,

    Fig.19 Constrained control with TE control surface failure,

    5.Conclusions

    (1)An effective constrained adaptive neural network control scheme has been developed for an MIMO aeroelastic system with wind gust,system uncertainties,and input nonlinearities.

    (2)In order to handle the system uncertainties,RBFNNs have been employed to approximate the system uncertainties effectively,and simulation results demonstrate the effectiveness of the proposed control scheme against the system uncertainties.

    (3)To deal with the input nonlinearities,the right inverse function block of the dead-zone is added before the input nonlinearities,and the input nonlinearities can be treated as a single input saturation nonlinearity.Moreover,an auxiliary error system is designed to compensate for the impact of the input saturation.

    (4)By using the Lyapunov stability theory and the backstepping control technique,all signals of the closedloop system based on the proposed constrained adaptive neural network control scheme are semi-globally uniformly bounded.

    (5)Digital simulation results illustrate the effectiveness of the proposed control scheme which can accomplish flutter suppression quickly at different freestream velocities.Moreover,in terms of wind gust,the simulation results verify the applicability and robustness of the proposed control scheme.In addition,considering the failure of a control surface,we find that the proposed control method can be applied to the aeroelastic system with only the TE control surface.

    Acknowledgements

    This research was supported by the National Natural Science Foundation of China(Nos.61473307 and 61304120),and the AeronauticalScience Foundation of China (No.20155896026).

    1.Mukhopadhyay V.Historical perspective on analysis and control of aeroelastic responses.J Guidance,Control,Dyn2003;26(5):673–84.

    2.Li DC,Xiang JW,Guo SJ.Adaptive control of a nonlinear aeroelastic system.Aerospace Sci Technol2011;15(5):343–52.

    3.Lind R,Brenner M.Robust aeroservoelastic stability analysis.London:Springer-Verlag;1999.p.117–52.

    4.Waszak MR.Robust multivariable flutter suppression for benchmark active control technology wind-tunnel model.J Guidance,Control,Dyn2001;24(1):147–53.

    5.Mukhopadhyay V.Transonic flutter suppression control law design and wind-tunnel test results.J Guidance,Control,Dyn2000;23(5):930–7.

    6.Kelkar AG,Joshi SM.Passivity-based robust control with application to benchmark controls technology wing.J Guidance,Control,Dyn2000;23(5):938–47.

    7.Ko J,Kurdila AJ,Strganac TW.Nonlinear control of a prototypical wing section with torsional nonlinearity 1997.J Guidance,Control,Dyn1997;20(6):1181–9.

    8.Ko J,Strganac TW,Kurdila AJ.Adaptive feedback linearization for the control of a typical wing section with structural nonlinearity.Nonlinear Dyn1999;18(3):289–301.

    9.Xing W,Singh SN.Adaptive output feedback control of a nonlinear aeroelastic structure.J Guidance,Control,Dyn2000;23(6):1109–16.

    10.Lee KW,Singh SN.Global robust control of an aeroelastic system using output feedback.J Guidance,Control,Dyn2007;30(1):271–5.

    11.Beha A,Marzocca P,Rao VM,Gnann A.Nonlinear adaptive control of an aeroelastic two-dimensional lifting surface.J Guidance,Control,Dyn2006;29(2):382–90.

    12.Platanitis G,Strganac TW.Control of a nonlinear wing section using leading-and trailing-edge surfaces.J Guidance,Control,Dyn2004;27(1):52–8.

    13.Gujjula S,Singh SN,Yim W.Adaptive and neural control of a wing section using leading-and trailing-edge surfaces.Aerospace Sci Technol2005;9(2):161–71.

    14.Wang Z,Behal A,Marzocca P.Model-free control design for multi-input multi-output aeroelastic system subject to external disturbance.J Guidance,Control,Dyn2011;34(2):446–58.

    15.Lee KW,Singh SN.Adaptive control of multi-Input aeroelastic system with constrained inputs.J Guidance,Control,Dyn2015;38(12):2337–50.

    16.Lee KW,Singh SN.Robust higher-order sliding-mode finite-time control of aeroelastic systems.J Guidance,Control,Dyn2014;37(5):1664–70.

    17.Chen M,Ge SS,Eehow BV.Robust adaptive neural network control for a class of uncertain MIMO nonlinear systems with input nonlinearities.IEEE Trans Neural Netw2010;21(5):796–812.

    18.Zhou J,Wen C,Zhang Y.Adaptive output control of nonlinear systems with uncertain dead-zone nonlinearity.IEEE Trans Autom Control2006;51(3):504–10.

    19.Tong S,Li Y.Adaptive fuzzy output feedback control of MIMO nonlinear systems with unknown dead-zone inputs.IEEE Trans Fuzzy Sys2013;21(1):134–46.

    20.Chen M,Ge SS,Ren BB.Adaptive tracking control of uncertain MIMO nonlinear systems with input constraints.Automatica2011;47(3):452–65.

    21.Li Y,Tong S,Li T.Adaptive fuzzy output feedback control for output constrained nonlinear systems in the presence of input saturation.Fuzzy Sets Syst2014;248(1):138–55.

    22.Yang QY,Chen M.Adaptive neural prescribed performance tracking control for near space vehicles with input nonlinearity.Neurocomputing2016;174:780–9.

    23.Liu ZC,Dong XM,Xue JP,Chen Y.Adaptive neural control for a class of time-delay systems in the presence of backlash or deadzone nonlinearity.IET Control Theory Appl2014;8(11):1009–22.

    24.Zhang TP,Ge SS.Adaptive dynamic surface control of nonlinear systems with unknown dead-zone in pure feedback form.Automatica2008;44(7):1895–903.

    25.Polycarpou MM,Ioannou PA.A robust adaptive nonlinear control design.Automatica1996;32(3):423–7.

    26.Ma DCRL,Heath WP.Controller structure for plants with combined saturation and deadzone/backlash.2012 IEEE international conference on control application;2012 Oct 18–20;Dubrovnik.Piscataway(NJ):IEEE Press;2012.p.1394–9.

    27.Chen M,Yu J.Adaptive dynamic surface control of NSVs with input saturation using a disturbance observer.Chin J Aeronautics2015;28(3):853–64.

    20 April 2016;revised 2 September 2016;accepted 28 November 2016

    Available online 16 February 2017

    *Corresponding author.

    E-mail addresses:gouyiyong@139.com(Y.Gou),dongxinmin@139.com(X.Dong).

    Peer review under responsibility of Editorial Committee of CJA.

    黑人巨大精品欧美一区二区mp4| 国产精品久久久久久精品古装| 国产精品一区二区精品视频观看| 亚洲专区国产一区二区| 美女国产高潮福利片在线看| 美女国产高潮福利片在线看| 亚洲成人免费电影在线观看| 日日夜夜操网爽| 大陆偷拍与自拍| 精品国产乱码久久久久久男人| 日本av免费视频播放| 日本撒尿小便嘘嘘汇集6| 精品一区在线观看国产| 丰满人妻熟妇乱又伦精品不卡| 淫妇啪啪啪对白视频 | 一级a爱视频在线免费观看| 性色av一级| 国产在线一区二区三区精| 欧美97在线视频| 考比视频在线观看| 十八禁网站网址无遮挡| 国产精品av久久久久免费| 国产亚洲精品久久久久5区| 久久免费观看电影| 久久免费观看电影| 免费人妻精品一区二区三区视频| 免费人妻精品一区二区三区视频| 一区二区三区精品91| 日本wwww免费看| 青青草视频在线视频观看| 老司机影院成人| 热re99久久精品国产66热6| 999久久久国产精品视频| 国产日韩欧美亚洲二区| 日韩电影二区| 欧美午夜高清在线| 欧美日本中文国产一区发布| 国产精品自产拍在线观看55亚洲 | 12—13女人毛片做爰片一| 欧美精品高潮呻吟av久久| 成人免费观看视频高清| 老司机午夜十八禁免费视频| 9191精品国产免费久久| 日本欧美视频一区| a级毛片在线看网站| 法律面前人人平等表现在哪些方面 | 老熟妇仑乱视频hdxx| 99精品欧美一区二区三区四区| 亚洲五月婷婷丁香| 一区二区三区四区激情视频| 悠悠久久av| 国产在线视频一区二区| 国产欧美日韩一区二区精品| av在线播放精品| 老司机靠b影院| 人妻一区二区av| 亚洲五月婷婷丁香| 青青草视频在线视频观看| 啦啦啦啦在线视频资源| 男人添女人高潮全过程视频| 少妇精品久久久久久久| 欧美少妇被猛烈插入视频| 欧美成狂野欧美在线观看| 国产色视频综合| 亚洲人成电影免费在线| 大片电影免费在线观看免费| av国产精品久久久久影院| 成人黄色视频免费在线看| 欧美黑人精品巨大| 久久久精品免费免费高清| 宅男免费午夜| 午夜免费观看性视频| 人人妻人人爽人人添夜夜欢视频| 老汉色av国产亚洲站长工具| 叶爱在线成人免费视频播放| 嫁个100分男人电影在线观看| 操美女的视频在线观看| 久久ye,这里只有精品| 脱女人内裤的视频| av不卡在线播放| 国产精品久久久久久精品古装| 亚洲欧美色中文字幕在线| 国产高清国产精品国产三级| 黄色毛片三级朝国网站| 黄色视频在线播放观看不卡| 婷婷成人精品国产| 人人妻,人人澡人人爽秒播| 精品一品国产午夜福利视频| 久久国产精品大桥未久av| 人成视频在线观看免费观看| 国产黄频视频在线观看| 一本色道久久久久久精品综合| 精品久久久精品久久久| 美女中出高潮动态图| 国产精品 国内视频| av天堂久久9| 另类精品久久| 国产精品av久久久久免费| 中文字幕色久视频| 国产亚洲一区二区精品| 色94色欧美一区二区| 99久久精品国产亚洲精品| 亚洲自偷自拍图片 自拍| 精品一区二区三卡| 一区二区三区精品91| 精品少妇久久久久久888优播| 欧美 日韩 精品 国产| 日韩熟女老妇一区二区性免费视频| 日韩有码中文字幕| 啪啪无遮挡十八禁网站| 亚洲精品成人av观看孕妇| 亚洲成人手机| 亚洲午夜精品一区,二区,三区| 无限看片的www在线观看| 亚洲精品国产区一区二| 久久亚洲精品不卡| 午夜福利在线免费观看网站| 国产精品偷伦视频观看了| 国产男女内射视频| 欧美 亚洲 国产 日韩一| 巨乳人妻的诱惑在线观看| 日韩熟女老妇一区二区性免费视频| 欧美精品一区二区大全| 欧美黄色淫秽网站| 国产精品一区二区在线不卡| 91九色精品人成在线观看| 男人舔女人的私密视频| 岛国毛片在线播放| 亚洲熟女精品中文字幕| 国产亚洲精品一区二区www | 国产无遮挡羞羞视频在线观看| 成年人免费黄色播放视频| 精品一区二区三区四区五区乱码| 亚洲va日本ⅴa欧美va伊人久久 | 成人三级做爰电影| 午夜两性在线视频| 美女脱内裤让男人舔精品视频| 大码成人一级视频| 国产成人欧美| 免费高清在线观看日韩| 午夜久久久在线观看| 亚洲三区欧美一区| 91av网站免费观看| 高清在线国产一区| 黑人巨大精品欧美一区二区蜜桃| av超薄肉色丝袜交足视频| 黄片播放在线免费| 涩涩av久久男人的天堂| 成年人黄色毛片网站| 精品高清国产在线一区| 蜜桃在线观看..| 久久久久国内视频| 黑人操中国人逼视频| 精品国产一区二区三区四区第35| 视频在线观看一区二区三区| 日本av手机在线免费观看| av在线app专区| av超薄肉色丝袜交足视频| 脱女人内裤的视频| 人妻 亚洲 视频| 波多野结衣一区麻豆| 亚洲欧美一区二区三区久久| 午夜福利乱码中文字幕| 一区二区av电影网| 久久久久网色| 成人免费观看视频高清| 欧美大码av| 欧美+亚洲+日韩+国产| 香蕉丝袜av| 色综合欧美亚洲国产小说| 不卡av一区二区三区| 人妻 亚洲 视频| 精品熟女少妇八av免费久了| 精品少妇一区二区三区视频日本电影| 国产有黄有色有爽视频| 天堂8中文在线网| 国产日韩欧美亚洲二区| 免费观看a级毛片全部| 搡老熟女国产l中国老女人| av欧美777| 亚洲一卡2卡3卡4卡5卡精品中文| 热99国产精品久久久久久7| 久久中文看片网| 日本vs欧美在线观看视频| 不卡av一区二区三区| av天堂在线播放| 两性午夜刺激爽爽歪歪视频在线观看 | 色老头精品视频在线观看| 久久精品国产a三级三级三级| 亚洲精品一二三| 久久久久久久久久久久大奶| 日本a在线网址| 老汉色∧v一级毛片| 超碰97精品在线观看| 国产免费av片在线观看野外av| 亚洲欧美一区二区三区黑人| 一本色道久久久久久精品综合| 国产成人a∨麻豆精品| 建设人人有责人人尽责人人享有的| 国产成人系列免费观看| 精品熟女少妇八av免费久了| 久久国产精品影院| 性色av乱码一区二区三区2| 成人18禁高潮啪啪吃奶动态图| 亚洲少妇的诱惑av| 久久久国产成人免费| 在线 av 中文字幕| 黑丝袜美女国产一区| 黑人猛操日本美女一级片| 黄色视频在线播放观看不卡| 午夜福利在线免费观看网站| 亚洲精品久久午夜乱码| 午夜福利一区二区在线看| 一进一出抽搐动态| 亚洲欧美激情在线| 久久久久久久久久久久大奶| 亚洲自偷自拍图片 自拍| 亚洲男人天堂网一区| 少妇的丰满在线观看| 啦啦啦啦在线视频资源| 色精品久久人妻99蜜桃| 国产精品久久久久成人av| 国产欧美日韩一区二区三 | 两性午夜刺激爽爽歪歪视频在线观看 | 十分钟在线观看高清视频www| 亚洲专区国产一区二区| 中文字幕人妻丝袜制服| 91精品国产国语对白视频| 欧美变态另类bdsm刘玥| 日韩中文字幕视频在线看片| 国产精品影院久久| 欧美日韩一级在线毛片| 日韩中文字幕欧美一区二区| 伊人亚洲综合成人网| 在线观看免费高清a一片| av欧美777| 精品一区二区三区四区五区乱码| 丝袜在线中文字幕| 嫁个100分男人电影在线观看| 高清欧美精品videossex| 十八禁网站网址无遮挡| 91大片在线观看| 日本91视频免费播放| 国产熟女午夜一区二区三区| 亚洲五月色婷婷综合| 国产一区二区三区在线臀色熟女 | 男女午夜视频在线观看| 欧美老熟妇乱子伦牲交| 超色免费av| 啦啦啦中文免费视频观看日本| 亚洲精品中文字幕在线视频| 国产一区二区三区综合在线观看| 欧美日韩一级在线毛片| 男男h啪啪无遮挡| 日韩制服丝袜自拍偷拍| 欧美变态另类bdsm刘玥| 狠狠狠狠99中文字幕| 欧美日韩福利视频一区二区| 久久 成人 亚洲| www.自偷自拍.com| 精品人妻熟女毛片av久久网站| 精品欧美一区二区三区在线| 午夜免费成人在线视频| 精品熟女少妇八av免费久了| 美女视频免费永久观看网站| 超色免费av| 五月天丁香电影| 久久精品人人爽人人爽视色| xxxhd国产人妻xxx| 亚洲久久久国产精品| 国产男女内射视频| 日韩 欧美 亚洲 中文字幕| 日韩制服骚丝袜av| 亚洲精品国产av蜜桃| 亚洲精品久久久久久婷婷小说| 国产精品熟女久久久久浪| 成人免费观看视频高清| 国精品久久久久久国模美| kizo精华| 欧美另类一区| 精品人妻在线不人妻| 亚洲精品乱久久久久久| 日本五十路高清| 国产一区二区三区av在线| av免费在线观看网站| 叶爱在线成人免费视频播放| 99久久99久久久精品蜜桃| 99精品欧美一区二区三区四区| 午夜成年电影在线免费观看| av欧美777| 成人国语在线视频| 亚洲av成人不卡在线观看播放网 | 男人舔女人的私密视频| 最黄视频免费看| 美女国产高潮福利片在线看| 亚洲一码二码三码区别大吗| 不卡av一区二区三区| 人人妻人人澡人人爽人人夜夜| 50天的宝宝边吃奶边哭怎么回事| 欧美在线黄色| 成年人黄色毛片网站| 国产精品偷伦视频观看了| 美女脱内裤让男人舔精品视频| 精品久久蜜臀av无| 久久精品亚洲熟妇少妇任你| 亚洲 国产 在线| www.999成人在线观看| 中文欧美无线码| 亚洲欧美日韩高清在线视频 | 老熟妇乱子伦视频在线观看 | 18在线观看网站| 老司机亚洲免费影院| 99re6热这里在线精品视频| 国产一区二区在线观看av| 日日摸夜夜添夜夜添小说| 999久久久国产精品视频| 十八禁网站网址无遮挡| bbb黄色大片| 不卡av一区二区三区| 久久中文看片网| 久久精品久久久久久噜噜老黄| 我要看黄色一级片免费的| 午夜福利一区二区在线看| 制服诱惑二区| 久久精品亚洲熟妇少妇任你| 亚洲精品国产av蜜桃| 老熟妇乱子伦视频在线观看 | 中文字幕人妻丝袜一区二区| 亚洲av欧美aⅴ国产| 精品少妇黑人巨大在线播放| 18禁黄网站禁片午夜丰满| 国产亚洲精品一区二区www | av福利片在线| 真人做人爱边吃奶动态| 嫩草影视91久久| 在线看a的网站| 黄片播放在线免费| 久久久国产欧美日韩av| 亚洲av欧美aⅴ国产| 久久综合国产亚洲精品| 三上悠亚av全集在线观看| 免费高清在线观看视频在线观看| 欧美精品啪啪一区二区三区 | 免费在线观看黄色视频的| 午夜免费鲁丝| 日韩中文字幕欧美一区二区| 精品福利观看| 欧美av亚洲av综合av国产av| a级毛片在线看网站| 丁香六月欧美| 在线观看免费视频网站a站| 精品欧美一区二区三区在线| videos熟女内射| 在线观看免费日韩欧美大片| 亚洲国产欧美网| av在线老鸭窝| 99国产综合亚洲精品| 日韩一卡2卡3卡4卡2021年| 两性午夜刺激爽爽歪歪视频在线观看 | 精品久久久精品久久久| 黄频高清免费视频| 免费日韩欧美在线观看| 美女大奶头黄色视频| 热re99久久国产66热| 久热这里只有精品99| 男人操女人黄网站| 一本久久精品| 日韩 欧美 亚洲 中文字幕| 午夜福利在线观看吧| 人人澡人人妻人| 97在线人人人人妻| 最新的欧美精品一区二区| 91精品国产国语对白视频| 人人妻人人爽人人添夜夜欢视频| 看免费av毛片| 90打野战视频偷拍视频| 无限看片的www在线观看| 中文字幕人妻丝袜制服| 曰老女人黄片| 亚洲av日韩在线播放| 国产1区2区3区精品| 日本欧美视频一区| 波多野结衣一区麻豆| 亚洲精品国产av成人精品| 午夜影院在线不卡| 国产熟女午夜一区二区三区| 老司机亚洲免费影院| 欧美日本中文国产一区发布| 欧美一级毛片孕妇| 日韩中文字幕欧美一区二区| 久久人妻熟女aⅴ| 真人做人爱边吃奶动态| 俄罗斯特黄特色一大片| 久久精品亚洲熟妇少妇任你| 久久免费观看电影| 热re99久久精品国产66热6| 永久免费av网站大全| 窝窝影院91人妻| 久久国产精品男人的天堂亚洲| 一区二区三区精品91| 亚洲av片天天在线观看| 久久精品国产亚洲av香蕉五月 | 丁香六月天网| 制服诱惑二区| 精品福利观看| 俄罗斯特黄特色一大片| 色婷婷久久久亚洲欧美| 国产黄色免费在线视频| 婷婷色av中文字幕| 亚洲欧美成人综合另类久久久| 丝袜在线中文字幕| 一级,二级,三级黄色视频| 99久久综合免费| 蜜桃在线观看..| 成人国语在线视频| 一级a爱视频在线免费观看| 91成年电影在线观看| 丰满迷人的少妇在线观看| 日本欧美视频一区| 国产精品 欧美亚洲| 热99久久久久精品小说推荐| 脱女人内裤的视频| 俄罗斯特黄特色一大片| a 毛片基地| a在线观看视频网站| 蜜桃国产av成人99| 一区二区av电影网| 国产xxxxx性猛交| 免费久久久久久久精品成人欧美视频| 久久精品熟女亚洲av麻豆精品| 99热网站在线观看| 另类精品久久| 99国产综合亚洲精品| 高潮久久久久久久久久久不卡| 精品国产一区二区三区四区第35| 国产av又大| 九色亚洲精品在线播放| 电影成人av| 丰满饥渴人妻一区二区三| 男人操女人黄网站| 涩涩av久久男人的天堂| 国产精品欧美亚洲77777| 亚洲成人国产一区在线观看| 91精品国产国语对白视频| 叶爱在线成人免费视频播放| 97人妻天天添夜夜摸| 久久九九热精品免费| 亚洲 国产 在线| 亚洲精品乱久久久久久| 精品人妻1区二区| 亚洲国产av新网站| 久久久久国产精品人妻一区二区| 久久中文字幕一级| 亚洲人成电影观看| 一级黄色大片毛片| 最新的欧美精品一区二区| 黄色视频在线播放观看不卡| 国产亚洲精品久久久久5区| 亚洲色图综合在线观看| 国产免费av片在线观看野外av| 中文字幕色久视频| 丝瓜视频免费看黄片| 欧美精品一区二区免费开放| 丰满饥渴人妻一区二区三| 免费看十八禁软件| 少妇 在线观看| 日本黄色日本黄色录像| 免费高清在线观看日韩| 国产精品一区二区在线不卡| 欧美97在线视频| 免费不卡黄色视频| 成年av动漫网址| 别揉我奶头~嗯~啊~动态视频 | 97在线人人人人妻| av欧美777| 99久久精品国产亚洲精品| 国产一级毛片在线| 丝袜美腿诱惑在线| av国产精品久久久久影院| 免费在线观看完整版高清| 一级毛片女人18水好多| 免费女性裸体啪啪无遮挡网站| 亚洲欧美日韩另类电影网站| 久久精品久久久久久噜噜老黄| 午夜影院在线不卡| 人人澡人人妻人| 黄色视频,在线免费观看| 日韩 亚洲 欧美在线| 99香蕉大伊视频| 国产亚洲av片在线观看秒播厂| 夫妻午夜视频| 19禁男女啪啪无遮挡网站| 国产成人免费无遮挡视频| 18禁国产床啪视频网站| 国产高清国产精品国产三级| 两个人免费观看高清视频| 国产成人啪精品午夜网站| 国产野战对白在线观看| 精品国产乱码久久久久久小说| 在线观看www视频免费| av网站免费在线观看视频| 女性被躁到高潮视频| 大型av网站在线播放| 另类精品久久| 女警被强在线播放| 亚洲伊人色综图| 一本—道久久a久久精品蜜桃钙片| 精品亚洲成国产av| 一级片'在线观看视频| 精品亚洲乱码少妇综合久久| 日本wwww免费看| 伊人久久大香线蕉亚洲五| 成人黄色视频免费在线看| 动漫黄色视频在线观看| 黄片大片在线免费观看| 久久人人爽人人片av| cao死你这个sao货| 超碰成人久久| 黄频高清免费视频| 岛国在线观看网站| 麻豆国产av国片精品| 一个人免费看片子| 精品一区二区三区av网在线观看 | 性高湖久久久久久久久免费观看| 老司机影院成人| 香蕉国产在线看| 国产成人系列免费观看| 午夜免费鲁丝| 精品国产一区二区三区久久久樱花| 无限看片的www在线观看| 男女免费视频国产| 少妇 在线观看| 久久精品国产亚洲av高清一级| 国产欧美日韩综合在线一区二区| 老熟妇仑乱视频hdxx| 操出白浆在线播放| videos熟女内射| 欧美日韩亚洲国产一区二区在线观看 | 另类亚洲欧美激情| 精品第一国产精品| 久久av网站| 91老司机精品| 岛国毛片在线播放| 在线观看舔阴道视频| 性色av乱码一区二区三区2| 亚洲va日本ⅴa欧美va伊人久久 | 9色porny在线观看| 免费在线观看完整版高清| 窝窝影院91人妻| 亚洲av电影在线进入| 成年人午夜在线观看视频| 亚洲精品久久久久久婷婷小说| 悠悠久久av| 国产成人免费观看mmmm| 男女无遮挡免费网站观看| 欧美另类一区| 国产精品二区激情视频| 一级毛片女人18水好多| 亚洲av日韩精品久久久久久密| 搡老熟女国产l中国老女人| 国产免费福利视频在线观看| 岛国在线观看网站| 色精品久久人妻99蜜桃| 狠狠精品人妻久久久久久综合| 亚洲国产中文字幕在线视频| 女性生殖器流出的白浆| 欧美精品亚洲一区二区| 99热网站在线观看| 91精品三级在线观看| 亚洲国产精品成人久久小说| 久久精品久久久久久噜噜老黄| av视频免费观看在线观看| 精品国产国语对白av| 汤姆久久久久久久影院中文字幕| tube8黄色片| 啦啦啦中文免费视频观看日本| 一级片免费观看大全| 精品人妻一区二区三区麻豆| 久久人人爽av亚洲精品天堂| 亚洲国产精品一区二区三区在线| 亚洲专区中文字幕在线| av一本久久久久| 91av网站免费观看| 午夜视频精品福利| 国产片内射在线| 狠狠婷婷综合久久久久久88av| 国产高清视频在线播放一区 | 在线天堂中文资源库| 老司机在亚洲福利影院| 两人在一起打扑克的视频| 精品人妻熟女毛片av久久网站| 精品福利观看| 夜夜夜夜夜久久久久| 精品人妻熟女毛片av久久网站| 日韩 亚洲 欧美在线| 欧美黄色淫秽网站| 19禁男女啪啪无遮挡网站| 又紧又爽又黄一区二区| 可以免费在线观看a视频的电影网站| www.av在线官网国产| 国产视频一区二区在线看| 777米奇影视久久| 一个人免费在线观看的高清视频 | 一级,二级,三级黄色视频| 日本91视频免费播放| 亚洲精品av麻豆狂野| 亚洲精品自拍成人| 天天影视国产精品| 99国产精品99久久久久| 国产精品偷伦视频观看了| 一区福利在线观看| 国产亚洲精品一区二区www | 久久精品亚洲av国产电影网| 精品视频人人做人人爽| 搡老熟女国产l中国老女人|