• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Influence of thickness on current-induced magnetization switching in L10-FePt single layer?

    2021-10-28 07:02:06ShiQiZheng鄭詩琪KangKangMeng孟康康ZhenGuoFu付振國JiKunChen陳吉堃JunMiao苗君XiaoGuangXu徐曉光andYongJiang姜勇
    Chinese Physics B 2021年10期
    關鍵詞:振國

    Shi-Qi Zheng(鄭詩琪) Kang-Kang Meng(孟康康) Zhen-Guo Fu(付振國) Ji-Kun Chen(陳吉堃)Jun Miao(苗君) Xiao-Guang Xu(徐曉光) and Yong Jiang(姜勇)

    1School of Materials Science and Engineering,University of Science and Technology Beijing,Beijing 100083,China

    2Institute of Applied Physics and Computational Mathematics,Beijing 100083,China

    Keywords: spin–orbit coupling,magnetic anisotropy,spin transport effects

    1. Introduction

    In order to read or write the information in advanced technologies such as magnetic random access memories(MRAMs), it is necessary to achieve a fast magnetization reversal. In a conventional MRAM, the magnetization is switched by the magnetic fields created by currents in nearby conductors, which are known as Oersted fields. However,nowadays, many research laboratories are dedicated to investigating current-driven magnetic dynamics since it is more effective to switch magnetization by spin-torques rather than magnetic field. In ferromagnetic materials or heterostructures,the electronic carriers can transfer their angular momentum to the lattice through spin current, leading to spin-torques, and the transfer rate is equal to the rate of change of angular momentum in the lattice. In the past few years, the current induced magnetization switching in magnetic materials and heterostructures with strong spin–orbit coupling(SOC)presented a new way to read and write information by the spin–orbit torque (SOTs). It can provide efficient technique to switch magnetization in many classes of materials, including ferromagnets (FM),[1–4]antiferromagnets,[5,6]ferrimagnets,[7]magnetic insulators,[8]and magnetic multilayers.[9]In these material systems,even an initially unpolarized current can produce an exert torque,if it becomes spin polarized via spin Hall effect(SHE)or Rashba–Edelstein effect.[10–16]When an electric current passes through a material that contains spin–orbit scatterers,there can be a spin accumulation at the surface.The spin–orbit scatters originate from intrinsic or interfacial SOC,which is known as the SHE or the Rashba–Edelstein effect respectively.[17–25]

    Currently, the researches of SOT focus mainly on FM/HM bilayer (or multilayer) structures.[26,27]However, it largely restricts the selection of materials for the practical application. To cope with these issues,studies about SOT in single FM layers have attracted more and more attention.[28,29]For practical applications, the bulk perpendicular magnetic anisotropy (PMA)L10-FePt has been widely used as a permanent magnet in many kinds of instruments where its exceptional corrosion resistance, ductility, machinability and good high-temperature performance justify the high cost.[30–32]On the other hand,an efficient magnetization switching is highly desirable for the further advancing of modern information technologies. Recently,we have investigated the self-induced SOT in theL10-FePt single layer with the same thickness(3 nm) but with different disordering. We have found that nearly full magnetization switching happens only in more disordered films,and the magnetization switching ratio becomes smaller with increasingL10ordering.[33]However,Tanget al.have also found self-induced SOT in theL10-FePt single layer,but they have ascribed it to the composition gradient along the normal direction of the film.[34]Therefore,the mechanisms for magnetization switching are far from fully studied.

    In this work, we further investigate the SOT of theL10-FePt single layer with different thickness and growth temperatures. We find that the magnetization switching ratio inL10-FePt film with high chemical ordering becomes smaller with thickness increasing from 8 nm to 16 nm. It is noted that compared with 3-nm-thickL10-FePt film, 8-nm-thickL10-FePt film can switch much magnetization with the increase of chemical ordering. When the FePt film is thick enough,the SOT in FePt is closely related to theL10-ordered structure,which indicates a bulk nature.Therefore,the disordering plays an important role in the magnetization switching only for the ultra-thin FePt films, while the structural gradient may play an important role for thicker films. However, both of the two mechanisms cannot fully explain the process of magnetization switching and the spin current generation.Although many factors influence SOT, here in this work we emphasize only the bulk nature of strong SOC inL10-FePt through density functional theory calculations, which should generate large spin current due to SHE.

    2. Materials and methods

    TheL10-ordered FePt films with different thickness were epitaxially grown on MgO (001) substrates by high vacuum magnetron sputtering,in which the Fe and Pt atoms were sputtered simultaneously by co-sputtering from Fe and Pt elemental targets at an elevated temperature. After deposition, the samples were annealed by 2 hin situat the same temperature to promote the formation of theL10phase of FePt alloy, and then the films are cooled down to room temperaturein situ. In order to prepare FePt films with different chemical ordering,the growth temperatureTgis adjusted in a range from 350°C to 450°C for different samples in our study.

    3. Results and discussion

    The different thickness ofL10-FePt films withTg=450°C are confirmed by x-ray reflectivity (XRR) as shown in Fig. 1(a). And the roughness values of films are all less than 0.31 nm from the results of XRR. Figure 1(b) shows the structure characterization of these four samples through xray diffraction (XRD)measurements. As shown in Fig.1(b),with the thicknesses increasing,the fct(001)and the fct(002)peak in the spectrum of FePt film become more obvious. The chemical orderingScan be calculated from the intensities of(001) peak and (002) peak.[33,35]The values for these four samples with different thicknesses are all higher than 0.75,indicating the high chemical ordering. Figure 1(c) shows the magnetic hysteresis loops for 16-nm-thickL10-FePt film atTg= 450°C, measured by VSM, which shows an evident bulk PMA.The saturated magnetizationMSand the coercivity fieldsHCof theL10-FePt films with different thicknesses atTg=450°C are shown in Fig.1(d). TheMSkeeps around 1000 emu/cc–1050 emu/cc with varying thickness, and theHCdecreases with the thickness increasing,which may stem from the weaker pinning effect due to lower defect density for thicker FePt.[34]

    Fig. 1. (a) Curves of x-ray reflectivity of L10-FePt films grown at 450 °C with different thicknesses. (b) XRD patterns of L10-FePt films grown at 450 °C with different thicknesses. (c)In-plane and out-of-plane magnetic hysteresis loop of 16-nm-thick L10-FePt film grown at 450 °C.(d)MS and HC versus thickness of the L10-FePt films grown at 450 °C.

    After depositions, the films are prepared into Hall bar devices for electrical measurement by using electron beam lithography and Ar ion milling. The scan electron microscopy(SEM) image of the Hall bar of 20 μm×120 μm along with the definition of the coordinate system used in our study is shown in Fig.2(a).The current-induced magnetization switching behaviors inL10-FePt films with different thicknesses are measured by using a non-zero in-plane field along theXdirection. The current-induced switching loops are compared with the loops of magnetic field dependence of anomalous Hall resistance at room temperature, and the results are shown in Figs. 2(b)–2(d). Compared with the Hall resistance, only a partial magnetization can be found to be switched in theL10-FePt films.

    We summarize the variation trend of magnetization switching ratio with thickness as shown in Fig.2(e).It is found that smaller part of magnetization can be switched with thickness increasing,except for the ultra-thinL10-FePt film(3 nm).In our previous study, the SOT in ultra-thinL10-FePt films was investigated,[33]in which we found that nearly full magnetization switching happens only in more disordered films,and the magnetization switching ratio becomes smaller with the increase ofL10ordering.[33]Here,with thickness increasing, the structural gradient as discussed by Tanget al. can play a more important role,where the current-induced magnetization switching efficiency and the quantified effective magnetic fields increase with the augment of film thickness and chemical ordering in FePt.[34]Therefore, the switching ratio is higher in 8-nm-thick film than in 3-nm-thick film. However,with further increasing thickness,the switching ratio decreases as shown in Fig.2(e),which is opposite to the results in Ref. [34]. It indicates that more factors should be taken into consideration for SOT of singleL10-FePt film. Here,the possible mechanisms result from the difference in different interfacial strain and grain sizes of FePt films with varying thickness. The reduced grain size in relatively thin film can lead to lower energy barrier for domain nucleation,thereby enhancing the switching ratio.

    Fig.3. (a)X-ray diffraction of 8-nm-thick L10-FePt films grown at 380 °C and 450 °C,(b)variation of magnetization switching ratio with growth temperature for 8-nm-thick FePt film.

    Here, we compare the mechanisms of disordering in our previous work[33]with the structural gradient in Ref. [34].Therefore, we focus on the SOT in 8-nm-thick FePt films with different growth temperatures. We compare the XRD pattern of 8-nm-thick FePt films atTg=380°C with that atTg=450°C as shown in Fig. 3(a) to calculate the chemical orderingS. The values of chemical orderingSforTg=380°C andTg=450°C are 0.45 and 0.83 respectively. The variation trend of magnetization switching ratio for the 3-nm-thick FePt film[33]is opposite to that for the 8-nm-thick sample. On the other hand,the overall changes of the values of magnetization switching ratio with different values ofTgin 8-nm-thickL10FePt are not so great as that in 3-nm-thick film. It is believed that more magnetization can be switched in the 8-nm-thickL10FePt film with the increase of chemical ordering. Therefore,when the FePt film is thick enough,the structural gradient can play an important role and the SOT increases with the augment of film thickness and chemical ordering in FePt. On the contrary, the disordering plays an important role in the magnetization switching only for the ultra-thin FePt films.

    In order to further study the strength of SOT efficiency,the harmonic Hall voltages of 8-nm-thickL10FePt films with different values ofTgare measured with applying AC current of 5 mA in an in-plane magnetic field, and the first and the second voltage signals are detected by using two lock-in amplifiers at the same time. The results of 8-nm-thickL10-FePt films withTg=380°C andTg=400°C against in-plane magnetic fieldHxare shown in Fig. 4, in which the signals are measured withMz>0 andMz<0. The second voltage signals against in-plane magnetic fieldsHyfor 8-nm-thickL10-FePt films are too weak to be detected. The damping-like effective fieldHDand field-like effective fieldHFcan be calculated from the following equation:[36–38]

    whereξis the ratio of planar Hall effect resistance to anomalous Hall effect resistance,and the planar Hall effect resistance can be gained by the method from Refs. [38,39]. The values ofξfor 8-nm-thickL10-FePt film withTg=380°C and withTg=400°C are 0.067 and 0.065, respectively. The±signs refer to the magnetization pointing±z. TheHL(T)can be calculated from the following equation:

    After the calculations,HDandHFfor 8-nm-thickL10-FePt films withTg= 380°C are 0.43 Oe and 0.06 Oe respectively.HDandHFfor 8-nm-thickL10FePt films withTg=400°C are 0.67 Oe and 0.09 Oe respectively. As the growth temperature increases,bothHDandHFfor 8-nm-thickL10-FePt film increase. However,their effective fields of this magnitude are too small to fully explain the magnetization switching ofL10-FePt. The results from the method of deriving the effective spin torque fields in the previous studies cannot fully explain the spin current generation and selfinduced SOT inL10-FePt single layer.[33,34]Therefore, many factors can influence the SOT inL10-FePt single layer, and the two mechanisms cannot fully explain the real magnetization switching or spin current generation.[33,34]Here,we emphasize the bulk nature of strong SOC inL10-FePt through density functional theory calculations,which should generate large spin current due to SHE even the process of magnetization switching will also be influenced by complicated factors such as disorder,interfacial strain and structural gradient.

    Fig.4. Plots of first Vω and second V2ω harmonic Hall voltages against small in-plane external field Hx in FePt films with Tg =380 °C[(a), (b)]and 400 °C[(c)–(d)]. The black and red signals are measured with out-of-plane magnetization component Mz>0 and Mz<0,respectively.

    Our density functional theory calculations are performed by employing the Viennaab initiosimulation package (VASP)[40]through using the projected augmented wave(PAW) method.[41]The generalized gradient approximation(GGA) of Perdew–Burke–Ernzerhof (PBE) parametrization for the exchange-correlation functional[42,43]is adopted. The cutoff energy of 450 eV is used for plane wave expansions of electron wave functions. During structure optimizations, all atoms are fully relaxed until the Hellmann–Feynman forces on them along each direction are less than 0.01 eV/°A. The iron 3d64s2and platinum 5d96s1electrons are treated as valence electrons. The 30×30×30 Monkhorst–Pack[44]k-point meshes are employed for integration over the Brillouin zones of primitive cell. We focus on FePt in the chemically orderedL10phase(space groupP4/mmm). The calculated lattice constants of FePt area=b=3.86 °A andc=3.77 °A,respectively,which are in good agreement with the experimental values of 3.94 °A and 3.76 °A.In our calculations,the assumption is made that the ground state of FePt is ferromagnetic phase, and the magnetization is contributed from Fe atom. The calculated magnetization is 3.268μB/Fe, which is consistent with the experimental result. The electronic band structures of ferromagnetic FePt along the high-symmetry direction of the Brillouin zone are calculated. Figure 5(a)shows the obtained band structures with the SOC neglected, while figure 5(b)represents the band structures including SOC based on the parameter in VASP.The Fermi energyEFis set to be zero,and indicated by a gray line. As shown in Fig.5,the Fermi surface of FePt is mainly formed by Fe 3d states. Comparing Fig.5(a)with Fig.5(b),it is not difficult to find that under the effect of SOC,the degeneracy of the energy band near the high symmetry pointsZ,M,R,andXare all remarkably reduced,and the energy band splits obviously.For example,atMpoint,the spin orbit splitting is about 0.17 eV. It can be seen from Fig. 5(b)that multiple energy bands cross the Fermi surface, and the Fermi surface of 3D Brillouin zone is very complex.However,owing to the SOC,3dz2,3dxz,and 3dyzorbitals make the most significant contributions near the Fermi surface. AtRpoint,the 3dz2orbit forms a hole pocket; AtXpoint, the 3dyzorbit forms an electron pocket; and the energy bands of 3dxzand 3dz2cross the Fermi surface atRpoint andMpoint, respectively. Therefore,it is clear that the SOC effect is very strong in FePt.

    Fig.5. Band structures of L10-FePt based on density functional theory calculations.

    4. Conclusions

    In summary, we have investigated the thickness dependent SOT inL10-FePt single layers. Comparing with 3-nmthickL10-FePt film, much magnetization can be switched in 8-nm-thickL10-FePt films with the increase of chemical ordering. When the FePt film is thick enough, the SOT in FePt is closely related to theL10-ordered structure,which displays a bulk nature. However, the switching ratio decreases with thickness further increasing,indicating that more factors should be taken into consideration for SOT of singleL10-FePt film. Although the disordering plays an important role in the magnetization switching only for the ultra-thin FePt films and the structural gradient may play an important role for thicker films,the two mechanisms cannot fully explain the process of magnetization switching or the spin current generation. Finally,we highlight the bulk nature of strong SOC inL10-FePt through density functional theory calculations. Therefore, a large spin current can be generated fromL10-FePt film due to SHE.

    Acknowledgment

    We would like to thank Dr.Qi Liu in Southern University of Science and Technology for XRD and XRR characterizations.

    猜你喜歡
    振國
    Magnetic ground state of plutonium dioxide: DFT+U calculations
    Magnetic phase diagram of single-layer CrBr3?
    NOx storage and reduction assisted by non-thermal plasma over Co/Pt/Ba/γ-Al2O3 catalyst using CH4 as reductant
    愛在拉薩
    我和繼父13年
    我和繼父13年
    文苑·感悟(2019年12期)2019-12-23 07:24:46
    我和繼父13 年
    文苑(2019年23期)2019-12-05 06:50:22
    Enhanced spin-dependent thermopower in a double-quantum-dot sandwiched between two-dimensional electron gases?
    我和繼父的13年
    中外文摘(2019年16期)2019-08-29 06:01:30
    我和繼父的13年
    37°女人(2019年6期)2019-06-10 08:48:11
    国产高清videossex| 又黄又粗又硬又大视频| 日韩 欧美 亚洲 中文字幕| 欧美日韩福利视频一区二区| 啦啦啦免费观看视频1| 黄色成人免费大全| 亚洲人成网站高清观看| 91av网站免费观看| 国产真人三级小视频在线观看| 激情在线观看视频在线高清| 国产美女午夜福利| 色吧在线观看| 老汉色∧v一级毛片| 成人国产综合亚洲| 日韩欧美国产在线观看| 欧美色视频一区免费| www.999成人在线观看| 成人av一区二区三区在线看| 亚洲第一电影网av| 欧美色视频一区免费| 免费电影在线观看免费观看| 国产精品亚洲美女久久久| 亚洲欧美日韩高清专用| 一级a爱片免费观看的视频| 9191精品国产免费久久| 国内精品久久久久久久电影| 久久99热这里只有精品18| 国产一区二区三区视频了| 国产1区2区3区精品| 亚洲色图 男人天堂 中文字幕| 亚洲真实伦在线观看| 国内久久婷婷六月综合欲色啪| 亚洲aⅴ乱码一区二区在线播放| 在线观看66精品国产| 午夜激情福利司机影院| 宅男免费午夜| 成人高潮视频无遮挡免费网站| 午夜免费激情av| АⅤ资源中文在线天堂| 天堂网av新在线| 禁无遮挡网站| 搡老岳熟女国产| 国产伦一二天堂av在线观看| 欧美日韩福利视频一区二区| 国产亚洲欧美在线一区二区| 中文字幕av在线有码专区| 午夜精品久久久久久毛片777| 欧美日韩中文字幕国产精品一区二区三区| 在线视频色国产色| 亚洲av片天天在线观看| 久久久久国产一级毛片高清牌| 嫩草影院精品99| 午夜福利高清视频| 国产精品亚洲一级av第二区| 欧美最黄视频在线播放免费| 久久精品影院6| 1024香蕉在线观看| 久久精品国产亚洲av香蕉五月| 18禁黄网站禁片免费观看直播| 亚洲国产看品久久| 久久中文看片网| 亚洲av免费在线观看| 美女高潮喷水抽搐中文字幕| 亚洲国产看品久久| 久久婷婷人人爽人人干人人爱| 他把我摸到了高潮在线观看| 97超视频在线观看视频| 亚洲熟妇熟女久久| 午夜亚洲福利在线播放| 亚洲中文av在线| 欧美另类亚洲清纯唯美| 桃红色精品国产亚洲av| 久久天躁狠狠躁夜夜2o2o| www.www免费av| 亚洲九九香蕉| 搡老岳熟女国产| 精品久久久久久,| www日本在线高清视频| 国产三级黄色录像| 女同久久另类99精品国产91| 日本一本二区三区精品| xxxwww97欧美| 男插女下体视频免费在线播放| 99久久精品热视频| 老熟妇乱子伦视频在线观看| 可以在线观看毛片的网站| 日韩欧美国产在线观看| 婷婷精品国产亚洲av在线| 精品电影一区二区在线| 嫩草影视91久久| 又粗又爽又猛毛片免费看| 老司机深夜福利视频在线观看| 两人在一起打扑克的视频| 18禁黄网站禁片午夜丰满| a在线观看视频网站| 久久亚洲真实| 中文字幕熟女人妻在线| 久久久久久国产a免费观看| 久久天堂一区二区三区四区| 午夜影院日韩av| 男人舔奶头视频| 人人妻,人人澡人人爽秒播| 国产精品亚洲一级av第二区| 精品久久久久久久末码| 此物有八面人人有两片| 搡老熟女国产l中国老女人| 男插女下体视频免费在线播放| 久久亚洲真实| 国产精品av久久久久免费| 亚洲国产欧美人成| 亚洲18禁久久av| 国内少妇人妻偷人精品xxx网站 | 国产亚洲av嫩草精品影院| 亚洲性夜色夜夜综合| 国内揄拍国产精品人妻在线| 欧美日本视频| 亚洲午夜理论影院| 成人国产综合亚洲| 亚洲中文字幕一区二区三区有码在线看 | 欧美午夜高清在线| 中出人妻视频一区二区| 欧美乱妇无乱码| 精品一区二区三区视频在线 | www.精华液| 这个男人来自地球电影免费观看| 91av网站免费观看| 噜噜噜噜噜久久久久久91| 男女床上黄色一级片免费看| 久久久久久人人人人人| 亚洲国产欧美网| 精品国内亚洲2022精品成人| 看黄色毛片网站| 日韩欧美在线乱码| 一本综合久久免费| 不卡av一区二区三区| 国产精品国产高清国产av| 精品久久久久久久人妻蜜臀av| 一本精品99久久精品77| 黄色丝袜av网址大全| 午夜久久久久精精品| 老司机午夜十八禁免费视频| 黄色片一级片一级黄色片| 这个男人来自地球电影免费观看| 亚洲欧美一区二区三区黑人| 日本免费a在线| 久久久久久久午夜电影| 午夜福利免费观看在线| 午夜福利免费观看在线| 美女午夜性视频免费| 又黄又粗又硬又大视频| 精品国产乱子伦一区二区三区| 高清在线国产一区| 精品99又大又爽又粗少妇毛片 | 99久久成人亚洲精品观看| 性色avwww在线观看| 丁香欧美五月| 国产不卡一卡二| 香蕉av资源在线| 99视频精品全部免费 在线 | 制服丝袜大香蕉在线| av天堂在线播放| 1000部很黄的大片| 国产爱豆传媒在线观看| 男女下面进入的视频免费午夜| 久久久水蜜桃国产精品网| 搡老妇女老女人老熟妇| 日日干狠狠操夜夜爽| 国产精品爽爽va在线观看网站| 18禁黄网站禁片免费观看直播| 757午夜福利合集在线观看| svipshipincom国产片| 色播亚洲综合网| 日本一本二区三区精品| 国产美女午夜福利| 一本一本综合久久| 国产欧美日韩一区二区精品| 99精品久久久久人妻精品| 日本一二三区视频观看| 久久久精品欧美日韩精品| 国产亚洲欧美在线一区二区| 亚洲国产欧美人成| 黄片小视频在线播放| 国产亚洲欧美在线一区二区| 国产伦人伦偷精品视频| 亚洲五月婷婷丁香| 精品一区二区三区四区五区乱码| 最新在线观看一区二区三区| www.精华液| 中文字幕av在线有码专区| 国产精品99久久久久久久久| 亚洲熟女毛片儿| 精品国产超薄肉色丝袜足j| 久久香蕉精品热| 白带黄色成豆腐渣| 老司机深夜福利视频在线观看| 最近最新中文字幕大全电影3| 欧美丝袜亚洲另类 | 夜夜躁狠狠躁天天躁| www.熟女人妻精品国产| 极品教师在线免费播放| 1024香蕉在线观看| 亚洲精品在线美女| 亚洲国产精品合色在线| 久久久久久久久中文| www.熟女人妻精品国产| 中文字幕高清在线视频| netflix在线观看网站| 真人做人爱边吃奶动态| 亚洲午夜理论影院| 久久久久国产精品人妻aⅴ院| 成人国产综合亚洲| 国产精品国产高清国产av| 亚洲成人免费电影在线观看| 亚洲 国产 在线| 九九久久精品国产亚洲av麻豆 | 国产三级黄色录像| 欧美在线一区亚洲| 麻豆成人午夜福利视频| 久久久久国产一级毛片高清牌| 99热精品在线国产| 又黄又粗又硬又大视频| 精品一区二区三区视频在线观看免费| 久久人人精品亚洲av| 99精品欧美一区二区三区四区| 日本免费a在线| 亚洲人成电影免费在线| 亚洲欧洲精品一区二区精品久久久| 久久天躁狠狠躁夜夜2o2o| 香蕉丝袜av| 91麻豆av在线| 欧美日韩国产亚洲二区| 午夜福利在线在线| 男女之事视频高清在线观看| 国产精品 欧美亚洲| 婷婷亚洲欧美| 一a级毛片在线观看| 午夜福利在线观看吧| 99久久成人亚洲精品观看| 欧美成人性av电影在线观看| 欧美乱妇无乱码| 日韩大尺度精品在线看网址| 悠悠久久av| 国产三级黄色录像| 欧美色欧美亚洲另类二区| 岛国在线观看网站| 国产免费av片在线观看野外av| 国产亚洲精品久久久com| 色尼玛亚洲综合影院| 亚洲色图av天堂| av天堂中文字幕网| 久久热在线av| 亚洲国产精品合色在线| 国产乱人视频| 日韩欧美三级三区| 欧美zozozo另类| 女人被狂操c到高潮| 夜夜躁狠狠躁天天躁| 白带黄色成豆腐渣| 美女大奶头视频| 一个人免费在线观看的高清视频| 中国美女看黄片| 成人18禁在线播放| 国产精品乱码一区二三区的特点| 亚洲欧美日韩无卡精品| 国产黄色小视频在线观看| 久久草成人影院| 欧美日韩瑟瑟在线播放| 少妇丰满av| 欧美黑人巨大hd| 国产aⅴ精品一区二区三区波| 亚洲中文字幕日韩| 国产精品电影一区二区三区| 午夜日韩欧美国产| www.自偷自拍.com| 丁香欧美五月| 男人舔女人的私密视频| АⅤ资源中文在线天堂| 欧美一级毛片孕妇| 午夜两性在线视频| 亚洲av电影在线进入| 夜夜夜夜夜久久久久| 网址你懂的国产日韩在线| 亚洲18禁久久av| 国产亚洲欧美98| 黄色成人免费大全| 国产成人系列免费观看| 男女之事视频高清在线观看| 色av中文字幕| 全区人妻精品视频| 99在线人妻在线中文字幕| 日日干狠狠操夜夜爽| 中文字幕最新亚洲高清| 国产乱人伦免费视频| 久久中文看片网| 欧美xxxx黑人xx丫x性爽| 成人三级做爰电影| 国产毛片a区久久久久| 国内揄拍国产精品人妻在线| 久久性视频一级片| 真人做人爱边吃奶动态| 一个人看视频在线观看www免费 | 欧美精品啪啪一区二区三区| 白带黄色成豆腐渣| 午夜精品一区二区三区免费看| 99热6这里只有精品| 高潮久久久久久久久久久不卡| 国产激情偷乱视频一区二区| 精品国产亚洲在线| 国产伦精品一区二区三区视频9 | 熟女少妇亚洲综合色aaa.| 国产成人一区二区三区免费视频网站| 一本一本综合久久| 欧美成人免费av一区二区三区| 国产1区2区3区精品| 熟女电影av网| 精品久久久久久,| 国产伦精品一区二区三区视频9 | 亚洲熟女毛片儿| 亚洲人成网站高清观看| 一区二区三区国产精品乱码| 国产乱人伦免费视频| 国产精品亚洲一级av第二区| 久久婷婷人人爽人人干人人爱| 国产成人精品无人区| 亚洲人成伊人成综合网2020| 最新美女视频免费是黄的| 亚洲一区二区三区不卡视频| 国产成+人综合+亚洲专区| 蜜桃久久精品国产亚洲av| 午夜精品一区二区三区免费看| 老司机深夜福利视频在线观看| 大型黄色视频在线免费观看| 久久精品aⅴ一区二区三区四区| 一进一出好大好爽视频| 香蕉丝袜av| 欧美日韩福利视频一区二区| 国产日本99.免费观看| 欧美黑人巨大hd| 亚洲av电影在线进入| 中亚洲国语对白在线视频| 老司机午夜福利在线观看视频| 日本黄色片子视频| 99久国产av精品| 亚洲国产欧美网| 免费在线观看影片大全网站| 久久国产乱子伦精品免费另类| 1024香蕉在线观看| 久久久精品欧美日韩精品| 我要搜黄色片| 狂野欧美白嫩少妇大欣赏| 国产aⅴ精品一区二区三区波| 波多野结衣巨乳人妻| 中文字幕最新亚洲高清| 成人一区二区视频在线观看| 特级一级黄色大片| 一级毛片精品| 99视频精品全部免费 在线 | 嫩草影视91久久| 一进一出抽搐gif免费好疼| 三级国产精品欧美在线观看 | 黄色 视频免费看| 午夜福利18| 视频区欧美日本亚洲| 欧美成人一区二区免费高清观看 | 性色av乱码一区二区三区2| 国内毛片毛片毛片毛片毛片| 一级作爱视频免费观看| 丰满人妻熟妇乱又伦精品不卡| 在线国产一区二区在线| 国产精品久久久久久久电影 | 国产爱豆传媒在线观看| 两个人的视频大全免费| 午夜a级毛片| 色在线成人网| 国产成年人精品一区二区| 久久久久久久午夜电影| 久久草成人影院| 国产一区二区三区视频了| 曰老女人黄片| 亚洲在线自拍视频| 人人妻,人人澡人人爽秒播| 国产成人精品无人区| 成人18禁在线播放| 国产高清视频在线播放一区| 免费看美女性在线毛片视频| 欧美日韩亚洲国产一区二区在线观看| 动漫黄色视频在线观看| 老鸭窝网址在线观看| 99久久精品一区二区三区| 亚洲激情在线av| 国产成人aa在线观看| 国产精品亚洲美女久久久| 国产91精品成人一区二区三区| 最新在线观看一区二区三区| 国语自产精品视频在线第100页| 露出奶头的视频| 国产97色在线日韩免费| 老熟妇仑乱视频hdxx| 麻豆av在线久日| 国产精品99久久久久久久久| 久久精品综合一区二区三区| www.精华液| 成人av一区二区三区在线看| 亚洲av第一区精品v没综合| 亚洲av中文字字幕乱码综合| 91麻豆精品激情在线观看国产| 首页视频小说图片口味搜索| 悠悠久久av| 两性夫妻黄色片| 搡老熟女国产l中国老女人| 国产av不卡久久| 99热这里只有是精品50| 中文字幕人成人乱码亚洲影| 男人和女人高潮做爰伦理| 亚洲欧美精品综合一区二区三区| 成在线人永久免费视频| 淫妇啪啪啪对白视频| 婷婷六月久久综合丁香| av片东京热男人的天堂| 麻豆久久精品国产亚洲av| 亚洲九九香蕉| 午夜精品一区二区三区免费看| 男女下面进入的视频免费午夜| 99热6这里只有精品| 动漫黄色视频在线观看| 男人的好看免费观看在线视频| 老熟妇乱子伦视频在线观看| a级毛片a级免费在线| 午夜精品一区二区三区免费看| 久久婷婷人人爽人人干人人爱| 老司机福利观看| 亚洲成人久久性| 男女视频在线观看网站免费| 亚洲自偷自拍图片 自拍| 亚洲无线在线观看| 久久热在线av| 一进一出好大好爽视频| 午夜福利成人在线免费观看| 午夜视频精品福利| 久久久精品欧美日韩精品| 国产欧美日韩精品一区二区| 午夜免费观看网址| 首页视频小说图片口味搜索| 无遮挡黄片免费观看| 51午夜福利影视在线观看| 啦啦啦观看免费观看视频高清| 欧美午夜高清在线| 亚洲av电影不卡..在线观看| 国产精品综合久久久久久久免费| 午夜精品在线福利| 日韩国内少妇激情av| 亚洲九九香蕉| 真人做人爱边吃奶动态| 久久精品影院6| 国产高清三级在线| 热99在线观看视频| 国产成人影院久久av| 日韩高清综合在线| 网址你懂的国产日韩在线| 免费看美女性在线毛片视频| 久久久久免费精品人妻一区二区| 99热只有精品国产| 伦理电影免费视频| 国产不卡一卡二| 欧美一级毛片孕妇| 天天躁狠狠躁夜夜躁狠狠躁| 久久这里只有精品19| 三级国产精品欧美在线观看 | 国产精品免费一区二区三区在线| 99热这里只有精品一区 | 国产精品精品国产色婷婷| 国产久久久一区二区三区| 中文字幕人成人乱码亚洲影| 色av中文字幕| 欧美av亚洲av综合av国产av| 国产69精品久久久久777片 | 美女 人体艺术 gogo| 不卡一级毛片| 久久性视频一级片| 久久国产精品影院| 欧美黑人巨大hd| 日本成人三级电影网站| 丝袜人妻中文字幕| 久久国产精品影院| 十八禁人妻一区二区| 国产欧美日韩精品一区二区| 变态另类丝袜制服| 最近最新中文字幕大全电影3| 欧美在线黄色| 欧美成人免费av一区二区三区| 18禁黄网站禁片免费观看直播| 狂野欧美白嫩少妇大欣赏| 成年女人看的毛片在线观看| 成人无遮挡网站| 特级一级黄色大片| 国产一区二区在线av高清观看| 久久人妻av系列| 在线免费观看的www视频| 精品久久久久久久久久免费视频| 国产精品,欧美在线| 99久久成人亚洲精品观看| 精品久久久久久,| 欧美另类亚洲清纯唯美| 免费看a级黄色片| 久久久国产成人精品二区| 美女免费视频网站| 久久精品国产99精品国产亚洲性色| 97碰自拍视频| x7x7x7水蜜桃| 亚洲 国产 在线| 男人和女人高潮做爰伦理| 亚洲成人久久性| 午夜激情欧美在线| av在线蜜桃| 99riav亚洲国产免费| 网址你懂的国产日韩在线| 日韩av在线大香蕉| www日本在线高清视频| 91av网站免费观看| 一级毛片女人18水好多| 在线免费观看的www视频| 国产aⅴ精品一区二区三区波| 男女床上黄色一级片免费看| 怎么达到女性高潮| 国产精品日韩av在线免费观看| 中文字幕高清在线视频| 成人特级av手机在线观看| 欧美乱码精品一区二区三区| 免费看美女性在线毛片视频| 波多野结衣巨乳人妻| 国产成人福利小说| 国产精品野战在线观看| 波多野结衣高清作品| 黑人欧美特级aaaaaa片| 精品乱码久久久久久99久播| 国产高清三级在线| 久久久水蜜桃国产精品网| 亚洲午夜理论影院| 国产伦人伦偷精品视频| 国内精品一区二区在线观看| a级毛片在线看网站| 精品一区二区三区视频在线观看免费| 真人一进一出gif抽搐免费| 在线a可以看的网站| 亚洲五月婷婷丁香| 国产爱豆传媒在线观看| 亚洲成a人片在线一区二区| 午夜福利高清视频| 国产成人一区二区三区免费视频网站| 午夜福利在线在线| 热99re8久久精品国产| 日韩欧美国产一区二区入口| 非洲黑人性xxxx精品又粗又长| 国产av在哪里看| 特大巨黑吊av在线直播| 国产高清激情床上av| 国产久久久一区二区三区| 99热只有精品国产| 国产成人精品久久二区二区免费| 视频区欧美日本亚洲| 久久精品亚洲精品国产色婷小说| 国产成人精品无人区| 熟女电影av网| 别揉我奶头~嗯~啊~动态视频| 悠悠久久av| 久久久久性生活片| 日本五十路高清| 国产视频内射| 国产伦精品一区二区三区视频9 | 在线观看日韩欧美| 亚洲真实伦在线观看| 女警被强在线播放| 悠悠久久av| 国产亚洲欧美98| 在线观看一区二区三区| 丰满人妻熟妇乱又伦精品不卡| 长腿黑丝高跟| 日本一本二区三区精品| 淫秽高清视频在线观看| 国产精品乱码一区二三区的特点| 男人的好看免费观看在线视频| 国产av麻豆久久久久久久| 黄片小视频在线播放| 亚洲av成人精品一区久久| АⅤ资源中文在线天堂| 欧美高清成人免费视频www| 久久久久久久精品吃奶| 国产一级毛片七仙女欲春2| 老司机午夜十八禁免费视频| 日韩 欧美 亚洲 中文字幕| 国产精品永久免费网站| 日韩三级视频一区二区三区| 色综合婷婷激情| 偷拍熟女少妇极品色| h日本视频在线播放| 嫩草影院入口| 一区二区三区高清视频在线| 国产成人aa在线观看| 亚洲成人中文字幕在线播放| 级片在线观看| 女生性感内裤真人,穿戴方法视频| 99热精品在线国产| 日韩欧美免费精品| 一个人看的www免费观看视频| 成年人黄色毛片网站| 日本五十路高清| 国产精品久久电影中文字幕| 国产精品av视频在线免费观看| 国产高清三级在线| 国产一区二区三区在线臀色熟女| 成年版毛片免费区| 欧美色视频一区免费| 欧美av亚洲av综合av国产av| 久久人妻av系列| 99国产综合亚洲精品|