• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Magnetic dynamics of two-dimensional itinerant ferromagnet Fe3GeTe2?

    2021-09-28 02:18:28LijunNi倪麗君ZhendongChen陳振東WeiLi李威XianyangLu陸顯揚(yáng)YuYan嚴(yán)羽LonglongZhang張龍龍ChunjieYan晏春杰YangChen陳陽(yáng)YaoyuGu顧耀玉YaoLi黎遙RongZhang張榮YaZhai翟亞RonghuaLiu劉榮華YiYang楊燚andYongbingXu徐永兵
    Chinese Physics B 2021年9期
    關(guān)鍵詞:李威陳陽(yáng)

    Lijun Ni(倪麗君),Zhendong Chen(陳振東),5,Wei Li(李威),Xianyang Lu(陸顯揚(yáng)),Yu Yan(嚴(yán)羽),Longlong Zhang(張龍龍),Chunjie Yan(晏春杰),Yang Chen(陳陽(yáng)),Yaoyu Gu(顧耀玉),Yao Li(黎遙),Rong Zhang(張榮),Ya Zhai(翟亞),Ronghua Liu(劉榮華),?,Yi Yang(楊燚),?,and Yongbing Xu(徐永兵),4,§

    1Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials,School of Electronic Science and Engineering,Nanjing University,Nanjing 210093,China

    2Jiangsu Provincial Key Laboratory for Nanotechnology,School of Physics,Nanjing University,Nanjing 210093,China

    3Department of Physics,Southeast University,Nanjing 211189,China

    4York-Nanjing Joint Centre for Spintronics and NanoEngineering,Department of Electronic Engineering,University of York,York YO10 5DD,United Kingdom

    5Jiangsu Key Laboratory of Opto-Electronic Technology,Center for Quantum Transport and Thermal Energy Science,School of Physics and Technology,Nanjing Normal University,Nanjing 210023,China

    Keywords:two-dimensional ferromagnet,ferromagnetic resonance,magnetic anisotropy,magnetic damping

    During the last two decades,two-dimensional(2D)materials such as graphene and transition-metal dichalcogenides,exhibiting many attractive properties,have been extensively studied.[1–4]The 2D intrinsic ferromagnetic vdW crystals were predicted to have promising spintronic applications[5–8]with high data storage density,faster response,and lowpower dissipation.[9,10]It is also of great interest as the building block for engineering spintronic vdW heterostructures.[11]Recent experiments have demonstrated that it is possible to obtain 2D ferromagnetic order in CrI3-and CrSiTe3-type compounds.[12–17]However,bulk CrI3,CrGeTe3,and CrSiTe3exhibit the FM orders below 68 K,61 K,and 33 K,respectively,which are much lower than room temperature(RT).Among the predicted and experimentally observed vdW ferromagnetic materials,as an itinerant ferromagnet,[18]the single crystalline FGT stands out with a relatively high TCin its bulk state,ranging from 150 K–220 K depending on Fe deficiencies.[19–24]Up to now,various experimental investigations such as anomalous Hall effect,[25]DC magnetization,[20,23]chemical substitution,[26,27]and magnetic microstructure[28]have been carried out on FGT.However,there still lacks the magnetic dynamics study of this 2D vdW itinerant ferromagnet until now.

    Three-dimensional(3D)microwave cavity-based electron-spin-resonance spectrometer as a high sensitivity technique has been widely used for the magnetic analysis of ferri-and para-magnetic components within environmental samples and characterization of dynamic properties of magnetic materials.[29,30]According to the resonance field(Hr)and linewidth(ΔHpp)of ferromagnetic resonance(FMR),[31–33]one can obtain magnetic anisotropy K1and the magnetic damping of magnetic materials.Since magnetic relaxation processes govern the efficiency and determine the performance of magnetic devices,including hard drives,magnetic random access memories,magnetic logic devices,and magnetic field sensors,therefore obtained damping experimentally,as well as dynamic magnetic properties of magnetic materials and heterostructures,is crucial for their application in potential spintronic devices.Generally,it is crucial to obtain the FMR spectra,as this is the first step for further investigating the dynamic properties of 2D vdW ferromagnets.Hence,it is necessary to obtain the FMR spectra and understand the essential magnetization dynamics of bulk FGT for future functional spintronic devices containing FGT metallic ferromagnet near room temperature.

    In this paper,we first established the static magnetic properties of the single crystal FGT bulk.The static magnetization properties were obtained by studying temperature-and magnetic field-dependent magnetic susceptibility using a superconducting quantum interference device(SQUID)magnetometer.And we determined magnetic anisotropy constant K1from the SQUID measurements.More importantly,we have conducted the dynamic studies with electron-spinresonance(ESR)spectrometer at cryogenic temperature,and observed the FMR spectra in the intrinsic 2D ferromagnet FGT.Temperature-dependent magnetic anisotropy constant K1and the effective magnetic dampingαeffhave been calculated from the isothermal angular dependent resonance field Hrand linewidth.The K1exhibited an expected decreasing behavior near TC.However,the effective magnetic damping αeffas large as 0.58 was obtained,showing little temperature dependence.Our results provide significant insight into the magnetization dynamics of 2D vdW itinerant ferromagnet FGT,going beyond the previously reported static observation.

    High-quality FGT single crystals were synthsized by the chemical vapor transport method.First,the pure powders Fe(99.998%),Ge(99.999%),and Te(99.999%)were weighed out in a stoichiometric ratio of 3:1:5.The elements were blended and placed,along with solid iodine I2as a transport agent,into an evacuated quartz tube,which was evacuated of air before sealing.Then,the sealed tube was placed in a furnace with a temperature gradient between 700°C and 650°C for one week.The starting mixed constituents were placed at the hot end,and the single crystals precipitated on the cold end of the tube.Finally,the FGT single crystals were analyzed with x-ray diffraction(XRD).Temperature-and fieldmagnetization measurements were carried out using a SQUID magnetometer.The out-of-plane angular dependence of FMR was measured using an electron-spin-resonance spectrometer due to its high sensitivity at a microwave frequency of 9.48 GHz.Before the measurements began,an external field had been set along the easy magnetic axis(i.e.,c-axis)of FGT.And then,the measurements were implemented to vary the angle as the samples were rotated.

    FGT is a layered hexagonal structure(the P63/mmc space group).[23]In Fig.1(a),the crystal structure of FGT contains Fe3Ge slabs separated by a so-called vdW gap between adjacent Te layers.The Fe atoms in the unit cell occupy two inequivalent Wyckoff sites Fe1 and Fe2.Figure 1(b)presents a 2θXRD scan;only(00l)peaks are detected,indicating that our FGT samples exhibit the high single-crystalline quality,and the crystal surface is normal to the c-axis with the plateshaped surface parallel to the ab-plane.Figure 1(c)shows the temperature dependence of magnetization M(T)measured under H=100 Oe applied in parallel to the c-axis.An obvious paramagnetic(PM)to FM transition is observed.Besides,the ZFC and FC curves show significant splitting at low temperatures.TC≈204 K is roughly determined from the minima of the dM/dT curve with an external field of 2 T parallel to the c-axis,as indicated by the orange arrow in the inset of Fig.1(c).Figure 1(d)shows the field dependence of hysteresis loops at various temperatures for H‖c-axis.We observe that saturation magnetization Msgradually decreases with the temperature increasing.Moreover,Msof FGT at 185 K approximately drops significantly by two orders of magnitude as compared with that at 2 K,as plotted in Fig.1(f).To confirm the magnetic anisotropy of FGT,we further perform isothermal magnetization loops at 2 K for H‖ab-plane and H‖c-axis[Fig.1(e)].The magnetization saturation with H‖c-axis and H‖ab-plane at 2 K is reached for H≈4.9 kOe and 35 kOe,respectively.The saturation field for H‖c-axis is much smaller than that for H‖ab-plane,indicating that the magnetic behavior is highly anisotropic with its easy magnetic axis along the crystal’s c-axis.This conclusion is in good agreement with previous results.[25,28]

    In addition to H‖c-axis,we also measure the field dependence of hysteresis loops at various temperatures for H‖abplane,as shown in Fig.2(a).Figure 2(b)represents magnetization measured at T=185 K with the external field H‖c-axis and H‖ab-plane.Thus,we can determine K1using the following formula:

    where Hsis the saturation magnetic field with the external magnetic field H‖ab-plane during the measurement.Meand Mhare the magnetization obtained with the external fields H‖c-axis and H‖ab-plane,respectively.The obtained K1is in the range of(3.8–0.4)×106erg/cc in the 2–205 K range,as shown in Fig.2(c).And,the K1decreases monotonically with increasing temperature.

    Fig.1.(a)Crystal structure of FGT from side.(b)XRD spectrum of a bulk FGT crystal.(c)Temperature dependence of magnetization for bulk FGT with zero-field-cooling(ZFC)and field-cooling(FC)modes measured with the external magnetic field H=100 Oe along the c-axis.Insert shows the derivative magnetization dM/dT vs.T in the applied field along the c-axis.Arrow denotes the minima of the dM/dT curve,determining the TC of FGT.(d)Field dependence of magnetization for FGT measured at 2–300 K with the external magnetic field H along the c-axis.(e)Magnetization is measured at T=2 K with the external field H‖c-axis and H‖ab-plane,respectively.(f)Saturation magnetization as a function of temperature(2–300 K).

    Fig.2.(a)Field-dependent magnetization of FGT with the external magnetic field H‖ab-plane measured in the range of 2–205 K.(b)Magnetization measured at T=185 K with the external field H‖c-axis and H‖ab-plane,respectively.The shaded area,surrounded by the magnetization curves when H‖c-axis and H‖ab-plane.(c)Temperature-dependent uniaxial magnetic anisotropy constant K1,calculated by fitting the angular-dependent Hr(violet squares)at 195–205 K and using the M–H loops(orange stars)at 2–205 K,respectively.

    Fig.3.(a)The sketch of the coordinate system used to measure and analyze FMR.All FMR experiments are measured at a microwave frequency of 9.48 GHz.(b)FMR spectra of FGT with various temperatures(T=150,170,185,190,195,200,205,210 and 300 K)under the external magnetic field H‖c-axis(θH=0°;θM=0°).And the red arrow indicates the Hr of FMR spectrum.(c)–(d)Temperature dependences of Hr(c)andΔHpp(d),obtained from the FMR spectra in(b).The broken lines in(c)and(d)are the guide for the eyes.

    To explore the magnetization dynamics of FGT,we further perform the FMR measurement of single-crystal FGT.Figure 3(a)represents a sketch of the FMR coordinate system,whereφMandφHare the azimuthal angles,andθMandθHare the polar angles of the magnetization M and the DC external field H,respectively.Figure 3(b)shows the field dependence of FMR spectra for various temperatures(T=150,170,185,190,195,200,205,210 and 300 K)with H‖c-axis(i.e.,in the perpendicular configuration,θH=0°;θM=0°).The purple curve in Fig.3(b)is the background signal because FGT enters into a paramagnetic state at 300 K and it is also the same as the signal of the empty cavity without a sample.Near TCfrom 185 K to 210 K,the typical FMR spectra are observed in the ferromagnetic phase of FGT.The observed FMR signals below 210 K illustrate a fundamental fact that the precession of magnetization of FGT single crystal can be driven by an external microwave signal,like most of the ferromagnetic materials.[30,31,33–36]Moreover,this observation is consistent with the TC≈204 K determined from the measurement of temperature-dependent magnetization.In addition,from Fig.3(b),we also find that Hrgradually shifts to zero external magnetic field with decreasing temperature,indicating that the natural resonance frequency of FGT due to its magnetic anisotropy is higher than the external excitation frequency 9.48 GHz for T<180 K.It is well known that Hrvalue corresponds to the intersection of the FMR spectrum with the base line.The extracted Hrfrom Fig.3(b)for the temperature of 185–205 K is displayed in Fig.3(c),which more intuitively presents a fall of Hrwith decreasing temperature.The FMR spectrum is broadened with increasing temperature while maintaining its derivative Lorentzian-like curve shape in the 185–205 K range.ΔHppis the width between the positive and negative peaks of the FMR spectrum.In Fig.3(d),the minimum value ofΔHppis larger than 1000 Oe,suggesting that this FGT system may have an unexpected high magnetic damping constant.In contrast with some other 2D ferromagnets,e.g.,Cr1/3NbS3and CrGeTe3,FGT has a weak FMR signal and very broad linewidth.[9,37]The FMR linewidth can generally be considered from three origins:(i)Gilbert damping,(ii)two magnon scattering,and(iii)sample magnetic inhomogeneities.The large Gilbert damping was reported previously in the Ni80Fe20film doped with heavy rare earth atoms.[38]In the doped Ni80Fe20film,the large linewidth(>1000 Oe at 22 GHz)corresponds to the damping value of 0.1–0.2.According to the modified Kambersk′y’s spin–orbital torque correlation theory,[39]for a ferromagnetic metal,two competing contributions give rise to intrinsic Gilbert damping:intraband electron–hole transitions and interband electron–hole transitions.The former contributes a conductivity-like term(decreasing with the electron scattering rateΓ),while the latter gives a resistivity-like term(increasing withΓ).For our FGT sample,the resistivity-like term may dominate the Gilbert damping.And,the existence of Fe vacancies also effectively enhances the scattering rate,thereby promoting interband electron–hole transitions.Meanwhile,due to more electron scatterings at the higher temperature,theΔHppincreases with temperature.Furthermore,theΔHpprising as the temperature increases is consistent with the behavior that the coherent FMR dynamics(where the wave vector k=0)continuously evolve into an incoherent process due to the strong thermal excitation of magnon,[40]resulting in the magnon scattering and the inconsistency of magnetic moments continually increasing and broadeningΔHpp.The temperature broadening linewidth or enhancing magnetic damping phenomena are generally observed in numerous magnetic materials.[41,42]Besides,the magnetization inhomogeneity is also expected to significantly influence the observed broad FMR linewidth due to the large magnetic anisotropy and nucleation of magnetic multidomain.

    To quantificationally estimate the magnetic damping of FGT,we further carry out measurements of the out-of-plane angular dependence(i.e.,φM=φH=π/2)of FMR at the fixed microwave frequency of 9.48 GHz.Figure 4(a)shows the representative FMR spectra for differentθHat 190 K.The value of Hris enhanced as the external magnetic field H varies from the out-of-plane(H‖c-axis)to the in-plane(H‖ab-plane)direction.Figure 4(b)shows the out-of-plane angular dependence of Hrfor the temperature from 185 K to 200 K,and open circles represent the experimental data.Moreover,the curve of Hrvs.θHexhibits only one peak.These measurement results further confirm that FGT has uniaxial magnetic anisotropy,and the easy axis is along the c-axis as mentioned above.Figure 4(c)displays the experimentalΔHppas a function ofθHfor different temperatures,indicated by blue globules.

    Fig.4.(a)The typical FMR spectra of FGT measured at T=190 K with different anglesθH=0°,45°,and 90°.(b)Angular dependence of resonance field Hr of FGT for various temperatures T=185 K,190 K,195 K,and 200 K.Open circles represent the experimental data and red lines show the fitting curve of Hr.(c)Angular dependence of peak-to-peak linewidthΔHpp with T=185 K,190 K,195 K,and 200 K.Blue globules indicate the experimental data and orange lines are the calculatedΔHpp.

    Based on a single magnetic domain model for the FGT sample under FMR conditions,we analyze the data ofθHvariation of HrandΔHppquantitatively.First,we focus on the data θHvs.Hr.We describe the resonant peaks by the Smit–Beljers equation[43,44]

    whereω=2πf with a microwave frequency f=9.48 GHz.γis the gyromagnetic ratio.F is the free energy density given by the following expression for the FGT sample:[30,45]

    where K1is the perpendicular magnetic anisotropy constant.The first,second,and third terms represent the Zeemanenergy density describing the coupling between the magnetization vector M and the external magnetic field H,the shape anisotropy energy,and the uniaxial magnetocrystalline anisotropy energy,respectively.In our case,because the lateral dimensions in the ab-plane are much larger than the thickness of the FGT crystal along the c-axis,the shape of the measured platelet-like FGT crystal is described by the demagnetization factors(Nx=Ny=0,Nz=1)of an extended flat plate.Because ofφM=φH=π/2,we obtain the following equation by deducing from Eq.(3):[45]

    Here,4πMeffis the effective demagnetizing field,defined by

    where Hk=2K1/Msis the perpendicular magnetic anisotropy field.The experimental data of the angular dependence of Hrare fitted by using Eq.(4)with bothγand 4πMeffused as fitting parameters.The azimuthal angle of magnetizationθMis determined concurrently by solving the equation

    The solid red lines in Fig.4(b)show the fitting results of resonant field Hras a function of the external field orientation θH.The temperature dependence of K1in the range of 195–205 K is summarized in Fig.2(c).The K1is in the range of(1.6–0.8)×105erg/cc from 195 K to 205 K.Meanwhile,the K1obtained from magnetization SQUID-measurements mentioned above has values of(8.9–4.4)×105erg/cc from 195 K to 205 K.We observe that there is the same order of magnitude of K1near TCof FGT calculated using two different methods.Furthermore,the slight deviation of K1value may be due to the different methods(i.e.,the dynamically and the statically determined K1)and domain structures at the angleθHclose to in-plane for the FMR-method.We note that it is more thorough and reliable to obtain the anisotropic constant K1from the M–H loops measurements.

    Second,we turn to the linewidth of FMRΔHppanalysis in Fig.4(c).For out-of-plane measurements,ΔHppcan be expressed as[29,43]

    Figure 5 shows no apparent dependence ofαeffon temperature in the range of 185–205 K.The overallαeffvalues are large with an average damping value of about 0.58.The αeffof FGT is much larger than that of other 2D ferromagnets such as Cr1/3NbS3,CrGeTe3and magnetic metal films CoFeB[41]and Fe.[47]There have three possible sources accounting for the large dampingαeffvalue.One source is that the FGT as 2D vdW itinerant ferromagnet itself owns a huge intrinsic Gilbert damping.The second source may be related to the strong magnon scattering process as an additional magnetic relaxation channel near TCand causes the enhancement of linewidth and damping.The third source is the magnetization inhomogeneity of the FGT sample.

    Fig.5.Effective damping constantαeff as a function of temperature.The orange dash line represents the average value of 0.58.

    Note that our current FMR results with the relatively limited temperature range due to a low excitation frequency~9.48 GHz(or a low magnetic field range)prevent us from extracting the magnetic damping coefficient accurately and identifying the behind mechanism.The FMR spectra experiments with a large magnetic field range or high excitation frequency and first-principles calculations about damping or the theoretical models need to be performed to explore further the behind mechanism of such larger magnetic damping constant in this 2D vdW itinerant ferromagnet.

    In summary,we characterized the static magnetization of the bulk FGT single crystal with a TCaround 204 K and obtained the temperature-dependent uniaxial magnetic anisotropy constant K1.Furthermore,the FMR spectra were also obtained by ESR from 185 K to TCwith a fixed frequency of 9.48 GHz.The minimum linewidthΔHppis larger than 1000 Oe when H‖c-axis.We also estimated the damping constant quantificationally from the out-of-plane angular dependence of FMR spectra,and found that the effective magnetic dampingαeffis about 0.58 near TC.Our results not only provide insights into the magnetic dynamical properties of 2D vdW itinerant ferromagnet FGT,but also can significantly facilitate its future applications in spintronic devices.

    猜你喜歡
    李威陳陽(yáng)
    Phase-matching quantum key distribution with light source monitoring
    晨讀
    夜讀(一)
    陳陽(yáng)美術(shù)作品欣賞
    陳陽(yáng):讓青春在筑夢(mèng)路上綻放榮光
    The influence of artificial intelligence on accounting industry
    絕對(duì)有償
    女漢子的春天
    喜劇世界(2016年11期)2016-11-26 07:08:30
    樓上的孩子怕吵架
    科長(zhǎng)的微博
    雜文選刊(2013年11期)2013-05-14 13:38:10
    亚洲婷婷狠狠爱综合网| 欧美人与性动交α欧美软件 | 五月开心婷婷网| 国产精品 国内视频| 亚洲欧洲国产日韩| 搡老乐熟女国产| 国产片特级美女逼逼视频| 久久精品国产a三级三级三级| 午夜免费男女啪啪视频观看| 亚洲精品久久久久久婷婷小说| 黑人高潮一二区| av国产精品久久久久影院| 99热全是精品| 一区二区日韩欧美中文字幕 | 黑人欧美特级aaaaaa片| 在线观看www视频免费| 午夜视频国产福利| av一本久久久久| 欧美 亚洲 国产 日韩一| 三上悠亚av全集在线观看| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 男的添女的下面高潮视频| 女人精品久久久久毛片| 精品国产国语对白av| 18禁动态无遮挡网站| 亚洲性久久影院| 亚洲精品日韩在线中文字幕| 在线观看国产h片| 水蜜桃什么品种好| 热99久久久久精品小说推荐| 日韩av不卡免费在线播放| 亚洲内射少妇av| 春色校园在线视频观看| 久久久a久久爽久久v久久| 寂寞人妻少妇视频99o| 亚洲av.av天堂| 嫩草影院入口| 丝袜喷水一区| 午夜福利网站1000一区二区三区| 国产精品免费大片| 少妇 在线观看| av视频免费观看在线观看| 成人毛片60女人毛片免费| 一本—道久久a久久精品蜜桃钙片| 嫩草影院入口| 在线观看一区二区三区激情| 交换朋友夫妻互换小说| www.熟女人妻精品国产 | 看非洲黑人一级黄片| 91在线精品国自产拍蜜月| 国产69精品久久久久777片| 热99久久久久精品小说推荐| 一区二区三区精品91| 亚洲欧洲精品一区二区精品久久久 | 男女边摸边吃奶| 国产精品免费大片| 国产亚洲一区二区精品| 久久久久国产网址| 菩萨蛮人人尽说江南好唐韦庄| 久久国产亚洲av麻豆专区| 18禁动态无遮挡网站| www.av在线官网国产| 69精品国产乱码久久久| 热re99久久国产66热| 三上悠亚av全集在线观看| 亚洲中文av在线| 日韩伦理黄色片| 少妇猛男粗大的猛烈进出视频| 女的被弄到高潮叫床怎么办| 国产高清不卡午夜福利| 欧美精品国产亚洲| 国产精品一二三区在线看| 欧美激情 高清一区二区三区| 这个男人来自地球电影免费观看 | 高清av免费在线| 国产老妇伦熟女老妇高清| 午夜影院在线不卡| 日产精品乱码卡一卡2卡三| 青春草亚洲视频在线观看| 国产乱来视频区| a级片在线免费高清观看视频| 亚洲精品久久久久久婷婷小说| 制服人妻中文乱码| 另类精品久久| 91精品三级在线观看| 哪个播放器可以免费观看大片| 亚洲精品久久午夜乱码| 日日啪夜夜爽| 亚洲第一区二区三区不卡| 大码成人一级视频| 日韩 亚洲 欧美在线| 赤兔流量卡办理| 亚洲精品,欧美精品| 黄色怎么调成土黄色| 欧美亚洲日本最大视频资源| 国产高清不卡午夜福利| 一级毛片电影观看| 中文字幕免费在线视频6| 亚洲中文av在线| 色婷婷av一区二区三区视频| 女性被躁到高潮视频| 精品国产一区二区三区四区第35| 国产精品国产三级专区第一集| 国产日韩一区二区三区精品不卡| 久久久久久人妻| 成人亚洲精品一区在线观看| 日本猛色少妇xxxxx猛交久久| 亚洲欧美日韩另类电影网站| 亚洲成色77777| 日本vs欧美在线观看视频| 亚洲四区av| 久久婷婷青草| 亚洲天堂av无毛| 亚洲婷婷狠狠爱综合网| 80岁老熟妇乱子伦牲交| 91国产中文字幕| 啦啦啦视频在线资源免费观看| 欧美成人午夜免费资源| 亚洲一码二码三码区别大吗| 久久人人爽av亚洲精品天堂| 日日啪夜夜爽| 边亲边吃奶的免费视频| 综合色丁香网| 涩涩av久久男人的天堂| 亚洲av中文av极速乱| 亚洲情色 制服丝袜| 美女视频免费永久观看网站| 国产精品久久久久久久电影| 9色porny在线观看| 久久久久久人人人人人| 纵有疾风起免费观看全集完整版| 黄片播放在线免费| 亚洲av在线观看美女高潮| 色网站视频免费| 一本—道久久a久久精品蜜桃钙片| 美国免费a级毛片| 乱码一卡2卡4卡精品| 亚洲第一区二区三区不卡| 在线观看三级黄色| 久久精品久久久久久久性| 人人妻人人爽人人添夜夜欢视频| 街头女战士在线观看网站| 国产综合精华液| 欧美成人精品欧美一级黄| 国产成人精品福利久久| 久久精品久久久久久噜噜老黄| 毛片一级片免费看久久久久| 午夜影院在线不卡| 国产永久视频网站| 国产av国产精品国产| 久久精品国产亚洲av天美| 香蕉丝袜av| 啦啦啦在线观看免费高清www| 老司机影院成人| av视频免费观看在线观看| 欧美亚洲 丝袜 人妻 在线| 啦啦啦中文免费视频观看日本| 欧美 日韩 精品 国产| 在线天堂中文资源库| 亚洲欧洲国产日韩| 曰老女人黄片| 成年人免费黄色播放视频| 久久精品国产自在天天线| 午夜福利视频精品| 久久久久久久亚洲中文字幕| 日韩av在线免费看完整版不卡| 久久午夜综合久久蜜桃| 久久精品国产鲁丝片午夜精品| 欧美日韩一区二区视频在线观看视频在线| 大码成人一级视频| 999精品在线视频| 精品第一国产精品| 欧美亚洲日本最大视频资源| av.在线天堂| 高清av免费在线| 亚洲五月色婷婷综合| 亚洲国产精品999| 一区在线观看完整版| 久久青草综合色| 久久人人97超碰香蕉20202| 亚洲av电影在线进入| 99热网站在线观看| 亚洲精品成人av观看孕妇| 精品少妇黑人巨大在线播放| 女人精品久久久久毛片| 国产精品一区www在线观看| 亚洲精品一二三| 香蕉国产在线看| 高清不卡的av网站| 成年女人在线观看亚洲视频| 国产熟女午夜一区二区三区| 国产在视频线精品| 伦精品一区二区三区| 99香蕉大伊视频| 99久久综合免费| 91成人精品电影| 人成视频在线观看免费观看| 久久人人爽人人爽人人片va| 另类精品久久| 久久国产精品大桥未久av| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲五月色婷婷综合| 欧美日本中文国产一区发布| 亚洲国产欧美在线一区| 晚上一个人看的免费电影| 亚洲人成77777在线视频| 少妇的丰满在线观看| 国产精品一区www在线观看| 人人妻人人爽人人添夜夜欢视频| 亚洲美女视频黄频| 麻豆精品久久久久久蜜桃| av有码第一页| 男女国产视频网站| 国产一级毛片在线| 欧美xxⅹ黑人| 国精品久久久久久国模美| 日日啪夜夜爽| 91国产中文字幕| 国产免费一区二区三区四区乱码| 国产不卡av网站在线观看| 精品国产一区二区久久| 天堂俺去俺来也www色官网| 国产成人精品福利久久| 欧美性感艳星| 亚洲国产看品久久| 国产国语露脸激情在线看| 成年人午夜在线观看视频| 亚洲在久久综合| 日韩三级伦理在线观看| 中文字幕亚洲精品专区| 亚洲精品久久久久久婷婷小说| 精品久久久精品久久久| 黄色一级大片看看| 青青草视频在线视频观看| 免费少妇av软件| 哪个播放器可以免费观看大片| 精品一区二区三区视频在线| 欧美最新免费一区二区三区| 在线观看美女被高潮喷水网站| 日韩视频在线欧美| 日本wwww免费看| 国产乱来视频区| 午夜福利在线观看免费完整高清在| 人人澡人人妻人| 又黄又爽又刺激的免费视频.| 波多野结衣一区麻豆| 久久久久精品性色| 免费观看在线日韩| 嫩草影院入口| 国产欧美亚洲国产| 观看美女的网站| 欧美97在线视频| 少妇被粗大猛烈的视频| 欧美成人午夜精品| 交换朋友夫妻互换小说| 国内精品宾馆在线| 夫妻性生交免费视频一级片| 免费观看性生交大片5| 夜夜爽夜夜爽视频| 日韩伦理黄色片| 99热全是精品| 男女啪啪激烈高潮av片| 欧美国产精品va在线观看不卡| 日韩,欧美,国产一区二区三区| 18禁裸乳无遮挡动漫免费视频| 婷婷成人精品国产| freevideosex欧美| av女优亚洲男人天堂| 国产成人精品福利久久| 最近中文字幕高清免费大全6| 久久婷婷青草| 色吧在线观看| 亚洲少妇的诱惑av| 国产极品粉嫩免费观看在线| 热re99久久精品国产66热6| 边亲边吃奶的免费视频| 国产精品嫩草影院av在线观看| 国产欧美亚洲国产| 久久久久久久精品精品| 亚洲精华国产精华液的使用体验| 国产精品免费大片| 亚洲国产看品久久| 国产男人的电影天堂91| 天天影视国产精品| 色吧在线观看| 涩涩av久久男人的天堂| 国产成人91sexporn| 国产无遮挡羞羞视频在线观看| 久久久久久久久久久久大奶| 国产精品熟女久久久久浪| 精品酒店卫生间| 亚洲欧洲精品一区二区精品久久久 | 成人影院久久| 赤兔流量卡办理| xxx大片免费视频| 秋霞在线观看毛片| 黄色配什么色好看| 亚洲成国产人片在线观看| 日韩欧美精品免费久久| 少妇的逼水好多| 国产精品秋霞免费鲁丝片| 色婷婷久久久亚洲欧美| 久久精品aⅴ一区二区三区四区 | 两个人免费观看高清视频| 亚洲激情五月婷婷啪啪| 久久精品久久精品一区二区三区| 日日啪夜夜爽| 国产成人精品无人区| 九色成人免费人妻av| www日本在线高清视频| 午夜免费观看性视频| 我的女老师完整版在线观看| 国产无遮挡羞羞视频在线观看| 大话2 男鬼变身卡| 777米奇影视久久| 麻豆乱淫一区二区| 国产欧美亚洲国产| 伦理电影免费视频| 啦啦啦视频在线资源免费观看| 另类亚洲欧美激情| av在线观看视频网站免费| 亚洲av电影在线观看一区二区三区| 一二三四在线观看免费中文在 | 久久久久精品久久久久真实原创| 亚洲四区av| 欧美日本中文国产一区发布| 大香蕉97超碰在线| 午夜老司机福利剧场| 午夜视频国产福利| 日本wwww免费看| 99热6这里只有精品| 熟女电影av网| 天美传媒精品一区二区| 国产精品蜜桃在线观看| 天堂中文最新版在线下载| 伦理电影免费视频| 亚洲av在线观看美女高潮| 欧美精品人与动牲交sv欧美| 黄色怎么调成土黄色| 亚洲第一av免费看| 国产精品偷伦视频观看了| 黑人高潮一二区| 韩国精品一区二区三区 | 97精品久久久久久久久久精品| 黄色一级大片看看| 精品一区二区三区四区五区乱码 | 免费看av在线观看网站| 你懂的网址亚洲精品在线观看| 久久久久久久精品精品| 精品亚洲成a人片在线观看| 午夜av观看不卡| 国产成人免费无遮挡视频| 国产色爽女视频免费观看| 欧美人与善性xxx| 人妻 亚洲 视频| 超色免费av| 亚洲欧美中文字幕日韩二区| 男女午夜视频在线观看 | 精品久久久精品久久久| 亚洲精品久久成人aⅴ小说| 最近最新中文字幕免费大全7| 久久久久久人人人人人| 如日韩欧美国产精品一区二区三区| 亚洲 欧美一区二区三区| 午夜影院在线不卡| 香蕉国产在线看| 欧美日韩国产mv在线观看视频| 欧美人与善性xxx| 精品久久蜜臀av无| 久久久久精品性色| 热99久久久久精品小说推荐| 免费播放大片免费观看视频在线观看| 麻豆精品久久久久久蜜桃| 久久99一区二区三区| 国产精品久久久久久av不卡| 80岁老熟妇乱子伦牲交| 一级,二级,三级黄色视频| 国内精品宾馆在线| 国产成人一区二区在线| 啦啦啦在线观看免费高清www| 韩国精品一区二区三区 | 欧美 日韩 精品 国产| 最新的欧美精品一区二区| 黑人欧美特级aaaaaa片| 极品少妇高潮喷水抽搐| 一级,二级,三级黄色视频| 最后的刺客免费高清国语| 宅男免费午夜| 国产精品欧美亚洲77777| 亚洲国产精品国产精品| 精品熟女少妇av免费看| 亚洲国产欧美在线一区| 国产深夜福利视频在线观看| 制服诱惑二区| 水蜜桃什么品种好| 亚洲人成77777在线视频| 9色porny在线观看| 国产爽快片一区二区三区| 国产精品国产三级专区第一集| 亚洲av免费高清在线观看| 女性生殖器流出的白浆| 成人影院久久| 精品一区二区三卡| 日本午夜av视频| 国产成人免费无遮挡视频| 少妇被粗大的猛进出69影院 | 美女主播在线视频| 国产日韩欧美视频二区| 久久久久久久久久久久大奶| 一区二区三区乱码不卡18| 人人妻人人爽人人添夜夜欢视频| 国产一区亚洲一区在线观看| 国产日韩欧美视频二区| 香蕉丝袜av| 免费大片18禁| 久久久欧美国产精品| 免费av中文字幕在线| 日韩 亚洲 欧美在线| 久久人妻熟女aⅴ| 精品久久蜜臀av无| 天天躁夜夜躁狠狠躁躁| 国产一区二区三区av在线| 在现免费观看毛片| 国产熟女欧美一区二区| 久久青草综合色| 欧美变态另类bdsm刘玥| 日韩中文字幕视频在线看片| 国产欧美日韩一区二区三区在线| 日本免费在线观看一区| 99久久精品国产国产毛片| 免费高清在线观看日韩| 大片电影免费在线观看免费| 少妇精品久久久久久久| av片东京热男人的天堂| 美女视频免费永久观看网站| 亚洲激情五月婷婷啪啪| 九色亚洲精品在线播放| 边亲边吃奶的免费视频| 国产片特级美女逼逼视频| 久久精品人人爽人人爽视色| 亚洲情色 制服丝袜| 国产淫语在线视频| 国产成人精品婷婷| 国产日韩欧美在线精品| 菩萨蛮人人尽说江南好唐韦庄| 久久久久久人妻| 免费在线观看黄色视频的| 黄色视频在线播放观看不卡| 制服丝袜香蕉在线| 日韩免费高清中文字幕av| 成年人免费黄色播放视频| 91在线精品国自产拍蜜月| 久久av网站| 久久精品久久精品一区二区三区| 日韩,欧美,国产一区二区三区| 久久久久久久精品精品| 精品视频人人做人人爽| 久久久久久人妻| 亚洲美女黄色视频免费看| 美国免费a级毛片| 久久精品国产亚洲av涩爱| 亚洲精品乱久久久久久| 国产精品久久久久久久久免| 欧美精品国产亚洲| 97人妻天天添夜夜摸| 人成视频在线观看免费观看| 夜夜骑夜夜射夜夜干| 女人久久www免费人成看片| 精品久久国产蜜桃| 伊人久久国产一区二区| 街头女战士在线观看网站| 美女国产高潮福利片在线看| 日本黄色日本黄色录像| av又黄又爽大尺度在线免费看| 丝袜在线中文字幕| 91午夜精品亚洲一区二区三区| 亚洲婷婷狠狠爱综合网| 久久久久久久久久成人| 国产男女内射视频| videos熟女内射| 日产精品乱码卡一卡2卡三| 免费日韩欧美在线观看| 色94色欧美一区二区| 黑人欧美特级aaaaaa片| 成年动漫av网址| 亚洲伊人久久精品综合| 高清毛片免费看| 国产熟女午夜一区二区三区| 蜜桃国产av成人99| 99香蕉大伊视频| 亚洲图色成人| 成人手机av| 青春草国产在线视频| 久久99精品国语久久久| 少妇 在线观看| 欧美日韩成人在线一区二区| 久久久精品区二区三区| 亚洲精品aⅴ在线观看| 下体分泌物呈黄色| 亚洲精品aⅴ在线观看| 欧美性感艳星| 蜜桃在线观看..| 久久人人爽av亚洲精品天堂| 不卡视频在线观看欧美| 亚洲 欧美一区二区三区| 精品少妇黑人巨大在线播放| 色吧在线观看| 精品一区二区三卡| 欧美另类一区| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 国产免费福利视频在线观看| 成人无遮挡网站| 香蕉丝袜av| 一本久久精品| 99视频精品全部免费 在线| 黄色毛片三级朝国网站| 国产精品.久久久| 亚洲 欧美一区二区三区| 大香蕉久久网| 亚洲色图综合在线观看| 在线天堂中文资源库| 亚洲欧美日韩卡通动漫| 九草在线视频观看| 热re99久久国产66热| 国产成人精品在线电影| 亚洲成人手机| 一级毛片黄色毛片免费观看视频| 我要看黄色一级片免费的| 熟女电影av网| 亚洲av免费高清在线观看| 国产成人精品无人区| 熟女人妻精品中文字幕| 亚洲av国产av综合av卡| 久久人人爽人人片av| 国产精品偷伦视频观看了| 亚洲精品中文字幕在线视频| 五月伊人婷婷丁香| 九九爱精品视频在线观看| 精品一区二区免费观看| tube8黄色片| 有码 亚洲区| 亚洲,欧美精品.| 美女xxoo啪啪120秒动态图| 国产成人精品在线电影| 亚洲精品成人av观看孕妇| 色婷婷av一区二区三区视频| 中国美白少妇内射xxxbb| 午夜91福利影院| 亚洲av国产av综合av卡| 精品亚洲成a人片在线观看| 国产日韩一区二区三区精品不卡| 你懂的网址亚洲精品在线观看| 欧美3d第一页| 久久人人爽人人爽人人片va| 五月开心婷婷网| 久久精品夜色国产| 亚洲av.av天堂| 伦精品一区二区三区| 热99国产精品久久久久久7| 欧美日韩精品成人综合77777| 久久婷婷青草| 99久久综合免费| 国产极品天堂在线| tube8黄色片| 免费观看性生交大片5| 精品福利永久在线观看| 中文字幕免费在线视频6| 激情五月婷婷亚洲| 国产有黄有色有爽视频| 丝袜在线中文字幕| √禁漫天堂资源中文www| 看十八女毛片水多多多| 99热全是精品| 日韩中文字幕视频在线看片| 国产欧美亚洲国产| 最近的中文字幕免费完整| 菩萨蛮人人尽说江南好唐韦庄| 中国美白少妇内射xxxbb| 国内精品宾馆在线| 精品国产乱码久久久久久小说| 国产av一区二区精品久久| 最后的刺客免费高清国语| 亚洲色图 男人天堂 中文字幕 | 亚洲欧美成人综合另类久久久| 午夜视频国产福利| 一本久久精品| 中文字幕人妻熟女乱码| 少妇的逼水好多| 中文字幕精品免费在线观看视频 | 天天影视国产精品| 国产1区2区3区精品| 美女大奶头黄色视频| 伊人久久国产一区二区| 欧美日韩视频高清一区二区三区二| 永久免费av网站大全| 亚洲av在线观看美女高潮| 久久人人爽av亚洲精品天堂| 边亲边吃奶的免费视频| 久久人人97超碰香蕉20202| 男女国产视频网站| 狠狠婷婷综合久久久久久88av| 在线亚洲精品国产二区图片欧美| 亚洲欧洲精品一区二区精品久久久 | 咕卡用的链子| 免费观看a级毛片全部| 少妇的逼水好多| 99久久精品国产国产毛片| 最新中文字幕久久久久| 国产伦理片在线播放av一区| 亚洲av免费高清在线观看| 国产精品秋霞免费鲁丝片| 国产成人一区二区在线| 国产精品一区www在线观看| 我的女老师完整版在线观看| www.av在线官网国产|