• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Dynamic modeling and aperiodically intermittent strategy for adaptive finite-time synchronization control of the multi-weighted complex transportation networks with multiple delays?

    2021-09-28 02:17:36NingLi李寧HaiyiSun孫海義XinJing靖新andZhongtangChen陳仲堂
    Chinese Physics B 2021年9期
    關(guān)鍵詞:李寧

    Ning Li(李寧),Haiyi Sun(孫海義),Xin Jing(靖新),and Zhongtang Chen(陳仲堂)

    1College of Sciences,Northeastern University,Shenyang,China

    2College of Science,Shenyang JianZhu University,Shenyang,China

    Keywords:complex transportation networks,adaptive finite-time synchronization,multiple delays and multiweighted,aperiodically intermittent control

    1.Introduction

    Cyber physical systems(CPS),as the unity of computing process and physical process,are the next generation of intelligent system integrating computing,communication and control.CPS realizes the interaction with the physical process through the man–machine interaction interface,and uses the networked space to manipulate a physical entity in a remote,reliable,real-time,safe and cooperative way.[1]Compared with the Internet of things,CPS puts more emphasis on control.CPS has been concerned by many research institutions and scholars since it was first proposed in 2005.[2]In recent years,CPS has become a hot research direction and a lot of achievements have been made in priority industrial field for enterprises.[3]CPS has been widely used in intelligent transportation,aerospace,smart power grid,disaster early warning,military exercise,logistics and supply chain optimization and so on.The research and application of CPS are of great strategic significance for accelerating the integration of industrialization and informatization.[4–6]

    Complex dynamical network is an important method to describe and study the complex systems.According to different research aspects,many complex systems can be abstracted into a complex network of interacting individuals from the practical background.Over the past 20 years,the complex dynamical networks have been the focus of attention,and have gained more and more attention in various fields.Many scientific and technical systems can be modeled as the complex dynamical networks.[7–10]

    The emergence of CPS brings about new opportunities for the researchers in the field of network,which gives rise to cooperative control of multiple robots,attitude control of multiple satellites,formation control of unmanned aerial vehicle,smart grid control,intelligent transportation system,and so on.[11,12]The outstanding characteristic of CPS is an intelligent network composed of many devices with communication,computing and decision control functions.It can make the whole system in the best state through interaction.The operation of CPS is actually a collection of information transmission,synchronization,optimization,control and other dynamic processes in the complex dynamic networks.[13]

    There are rich dynamic behaviors in the analysis of complex network.Synchronization is one of the most important dynamic behaviors of the complex network.[14]Common phenomena in life,such as the resonance phenomenon,the cricket chorus,the flock of birds,and the rhythmic applause broke forth the audience in the theatre are widely known as synchronous phenomenon.Many practical problems are closely related to synchronization,such as the synchronous phenomena on the communications networks,the transportation networks,the human connection networks and WWW.[15–19]The synchronous study of complex networks is around the relationship and the network structure among the network behaviors.The research on synchronization control of complex networks is helpful to understand the influence of network structure on synchronization of complex systems,which can supplement the synchronization analysis of complex networks.[20–22]In the study of synchronous control of complex networks,many control methods have been introduced,such as adaptive control,[22,23]pinning control,[24,25]intermittent control,[26,27]finite-time control,[27–31]and sampled-data control.[32]

    The collaborative scheduling control of the transportation network can be taken as an example of the CPS system.[11,33]In the control of multiple means of transportation,different means of transportation are required to arrive at the same place at the same time as possible.In the complex transportation networks,when the air transportation,rail transportation,road transportation and water transportation are synchronized over a period of time,the time of goods staying in the logistics center can be reduced,the empty load rate of the transportation tools can be reduced,the average time of inventory can be shortened,and sometimes even the time of inventory in the logistics warehouse center can be eliminated.Therefore,it is necessary to conduct in-depth research on the synchronization of complex transportation networks,which will provide important theoretical support for the construction planning of macro-regional logistics and the auxiliary decision-making of transport line distribution and dispatch in the future.

    On the other hand,in the complex transportation networks,delay is inevitable due to the limited speed of transmission and traffic congestion.After considerable development,many complex network models that can reflect the actual characteristics have been established.In actual transportation network,sometimes the physical distance among nodes is far.The speed of vehicles,carrying capacity of transportation routes,transit and storage effect of logistics are limited.References[34,35]introduce the idea of network splitting,and establish a multi-delay complex network model.This network can be well applied to complex transportation networks with multiple delays.However,the weights of different nodes in each subnetwork are not reflected.Wang et al.[36]have made some attempts at splitting the weights.Wang put forward a complex network model based on weight by using the idea of network splitting and introducing the concept of weight.The model is analyzed synchronously and the pinning controller is designed.But the delays of different nodes in each subnetwork are not considered.In Ref.[37],the model of complex networks with multi-delay and multi-weight is preliminarily established.A simple linear feedback controller is designed using the technique of linear matrix inequalities.There is some conservatism in the controller design.Therefore,how to build a complex network model that can comprehensively reflect the delay and weight should be further studied.

    The occurrence of delay often affects the performance of the system,resulting in the vibration and even instability of the complex transportation network.There have been many research results on synchronization in delays complex networks.[38,39]Especially,how to solve the finite-time synchronization problem of the complex transportation networks with multiple delays and multi-weighted is still challenging.

    Based on the results of the above discussion and the idea of CPS,we proposed the model of multi-weighted complex transportation networks with multiple delays.On the basis of the theory of Lyapunov stability,the technique of adaptive control,aperiodically intermittent strategy and finite-time control,the adaptive aperiodically intermittent finite-time synchronization controllers have been designed.The external coupled configuration matrices do not require to be irreducibility and symmetry.Finally,the correctness and effectiveness of the proposed controllers are verified by the numerical simulations.

    The remainder of this paper is organized as follows.In Section 2,based on the ideas of CPS and network splitting,the multi-weighted complex transportation network model with multiple coupling delays is established,and some necessary assumptions and lemmas are given.In Section 3,the adaptive aperiodically intermittent finite-time synchronization of the multi-weighted complex transportation networks with multiple delays is researched via the theory of Lyapunov stability,the technique of adaptive control and finite-time.The adaptive aperiodically intermittent finite-time synchronization controllers are designed.The numerical simulation results are given to illustrate the theorems in Section 4.Finally,the conclusion is drawn in Section 5.

    2.Model description and preliminaries

    Transportation systems can be well described by complex network models.Each region involved in transport can be used as a node in the complex transport network system.And each mode of transportation(such as air,rail,road,water,and pipeline)connecting any two regions can be abstracted to represent each side of a complex network.[37]In order to make the model better reflect the structural properties of the actual system,it is considered that the same network can be split many times,that is,the subnetwork obtained by the first split is regarded as a complete network,and then the subnetwork is split to a more detailed split result.We fully consider delay and weight in modeling and further improve the model in this paper.First of all,different types of transportation models have different transport velocity.As the transportation velocity of the highway network,railway network,navigation network and aviation network are different,under the premise of simultaneous departure,the velocity of aviation network is the fastest,and the railway network,highway network and navigation network have a time lag of arrival time for the aviation network,respectively.Therefore,the idea of network splitting can describe the multi-delay complex transportation network system.Second,for the same traffic mode,each subnetwork is divided again according to the weight attribute of the path and station in the road network.And the weight division is to divide nodes and edges according to their weights in the network.The practical significance of its division is to divide the stations and lines in the traffic network according to their busy degree in the network.Therefore,based on the idea of network splitting and CPS,the N coupling nonlinear and diffusion of the multi-weighted complex transportation networks with multiple delays model,with each node as an n-dimensional nonlinear system is described as follows:

    Remark 1The model(1)is very useful for understanding the multi-weighted complex transportation networkmodel with multiple coupling delays.In the real world,many practical systems can be abstracted by the model(1),such as biological networks,and communication networks.The model(1)is a synthesis and generalization of many other models.For example,when M0=M1=···=Mm=1,the model(1)is degenerated to the complex network model with multiple delays in Refs.[34,35].Whenτ1=τ2=···=τm=0,the model(1)is degenerated to the multi-weighted complex networks in Ref.[36].Moreover,the following results do not have to satisfy the conditions in the past of outer coupling configuration matrices to be symmetric or irreducible.

    When the states x1(t)→···→xN(t)→s(t),as t→T?,the multi-weighted complex transportation networks model with multiple delays(1)realizes finite-time synchronization.Where s(t)∈Rnis the solution of an isolated node,i.e.,

    where s(t;t0;s0)is a solution of the system(2)with s0∈Rn,then the multi-weighted complex transportation networks model with multiple delays(1)is said to realize finite-time synchronization,andΛ×Λ×···×Λis called the region of finite-time synchrony of the multi-weighted complex transportation networks model with multiple delays(1).

    In order to reach the following conclusions,we give the following necessary assumptions and lemmas.

    Assumption 1There exists positive constant Li(i=1,2,...,N).f:Rn×R→Rnis a nonlinear vector-valued continuous function,which satisfies the Lipschiz condition

    Lemma 1[27]Suppose that function V(t)is continuous and non-negative when t∈[?τ,+∞)and satisfies the following conditions:

    where l=0,1,2,...,α,β>0,0<γ<1.If there exists a constantψ∈(0,1),whereψis defined as follows:

    then the following inequality holds:

    where the constant T is the settling time.

    Remark 2Lemma 1 plays an important role in the intermittent finite-time synchronization analysis and control of complex networks via periodically intermittent control.In the Lemma 1,tl+1?tlis the length of the lth aperiodical control period.tl+1?sland sl?tlrepresent the non-control time and control time in the l-th control period respectively.

    Lemma 2[40]For any n dimensional column vectors x,y,positive definite n×n dimensional matrix Q,the following matrix inequality holds:

    If not specified,inequality Q>0(Q<0,Q≥0,Q≤0)means Q is a positive(or negative,or semi-positive,or semi-negative)definite matrix.

    Lemma 3[41]Letξ1,ξ2,...,ξnare positive numbers and 0≤μ1<μ2,then

    3.Aperiodically intermittent strategy for adaptive finite-time synchronization control of the multi-weighted complex transportation networks with multiple delays

    For the convenience of proof,we defnie the error vector as follows:

    Then the error system corresponding to model(1)is can be described by

    When the error dynamical system(8)achieves finite-time stabilization,the multi-weighted complex transportation networks with multiple delays(1)realize finite-time synchronization.

    In order to enable the multi-weighted complex transportation networks with multiple delays(1)finite-time synchronization,we design the following aperiodically intermittent adaptive finite-time controllers:

    and updating laws

    Using the theory of stability theory,the technique of adaptive control,aperiodically intermittent control and finite-time control theory,the synchronization controller of the multiweighted complex transportation networks with multiple delays(1)under the aperiodically intermittent adaptive finitetime synchronization controllers(9)and(10)can be got as following.

    Theorem 1If the Assumption 1 holds,there exist positive constantsψ∈(0,1)and positive definite matrixΦdefined as follows,such that the following inequality holds:

    By Lemma 2,the subsequent inequation holds:

    Combining with the Assumption 1,and substituting inequality(14)into Eq.(13),we can get

    Because0≤σ≤1,based on Lemma 3,it is easy to obtain the following inequality:

    and we have

    Similarly,when sl

    So we can derive the following result:

    i.e.,

    Next,we give the value of finite-time T?.Apparently,T?satisfies the following equation:

    Take the derivative of both sides of the Eq.(23)with respect to t,and properly arrange it to obtain

    Substituting Eq.(24)back into Eq.(23),we can get

    Then we apply condition(25)to discuss the value of finitetime T?.

    The proof is completed.

    Remark 3If tl+1?tl=T and tl+1?sl=δ(l=0,1,2,...),where T andδare positive constants,the aperiodically adaptive intermittent finite-time control strategy becomes the adaptive periodic intermittent finite-time control strategy.Therefore,the control strategy we designed is more general and more flexible to use.And we also give the condition for finite-time synchronization and the specific time T?of finitetime synchronization.

    Remark 4In the complex networks(1),when M0=M1=···=Mm=1,the multi-weighted complex transportation networks with multiple delays(1)is degenerated to the following form:

    Equation(26)is the complex networks with multiple delays of Ref.[34]We take the same aperiodically intermittent adaptive finite-time controllers(9)and updating laws(10)to get the following corollary.

    Corollary 1If the Assumption 1 holds,there exist positive constantsψ∈(0,1)and positive definite matrixΩdefined as follows,such that the following inequality holds:

    Remark 5In the complex networks(1),whenτ1=τ2=···=τm=0,the multi-weighted complex transportation networks with multiple delays(1)is degenerated to the following form:

    Equation(28)is the complex networks with multi-weighted of Ref.[36].Accordingly,we design the aperiodically intermittent adaptive finite-time controllers as follows:

    Then we select the following Lyapunov–Krasovskii function:

    Corollary 2If the Assumption 1 holds,there exist positive constantsψ∈(0,1)and positive definite matrixΔdefined as follows,such that the following inequality holds:

    4.Numerical simulation

    To verify the validity of the proposed theorem in the section III,we give the numerical example.

    Example 1In this example,we choose 10 cities as the nodes of the complex transportation networks.Air transportation,railway transportation and highway transportation are three modes of transportation in complex transportation network.According to the level of the city and the busy degree of a certain vehicle,the weight is divided into three orders of magnitude.We abstract it as the complex transportation networks with 3-weighted and 2 coupling delays,which can be described as follows:

    Chen system as the single node of dynamical equationf(·)is described as follows:

    When the parameters a=35,b=?7,c=28d=?3,the Chen system has a chaotic attractor.Similar to Ref.[25],there exists L=5.5619 that makes Assumption 1 hold.

    In this simulation,the initial values of states xi(0)(i=1,2,...,5)are given at random.s(0)=(1,1,1)T,ki(0)=1 andθi=5(i=1,2,...,10),σ=1/4,θ=6.The aperiodically intermittent control period is randomly assigned to the interval.[1,2]The control time is randomly assigned to[0.5,1.5].ThenΨ=1/4.

    It can be obtained by verification that all the conditions of Theorem 1 are satisfied.Applying Theorem 1,the multiweighted complex transportation networks with multiple delays(33)can be synchronized by applying the following aperiodically intermittent adaptive finite-time controllers(9)and the update laws(10)with a finite time T?=2.88.

    Fig.1.Synchronization errors ei1(t)of network(33)under the aperiodically intermittent adaptive finite-time controllers(9)–(10).

    Fig.2.Synchronization errors ei2(t)of network(33)under the aperiodically intermittent adaptive finite-time controllers(9)–(10).

    Fig.3.Synchronization errors ei3(t)of network(33)under the aperiodically intermittent adaptive finite-time controllers(9)–(10).

    Figures 1–3 show the synchronization errors of ei1(t),ei2(t),ei3(t)with aperiodically intermittent adaptive finitetime controllers(9)–(10).It is obvious that the synchronous errors of network(33)with adaptive feedback controller(9)under the updating laws(10)converge to zero after a short period of time.Because this paper uses intermittent control,the error system is not immediately asymptotically stable.During the period of time that is not controlled,the system response curve may oscillate slightly and gradually stabilize,as shown in Figs.1–3,from 1 second to 1.5 seconds,the error increases and then converges to zero.When the air transportation,railway transportation and road transportation reach the synchronization after a period of time,it can reduce the time of goods staying in the logistics center,reduce the empty rate of transport vehicles,and shorten the average inventory time.

    All other parameters are the same as Eq.(33).We plot the synchronization quality Q(t)in the Fig.4.

    Fig.4.The qualities Q(t)with the disturbance signal under the aperiodically intermittent adaptive finite-time controllers.

    Fig.5.Synchronization errors ei1(t)of network(33)with the disturbance signal under the aperiodically intermittent adaptive finite-time controllers(9)–(10).

    Fig.6.Synchronization errors ei2(t)of network(33)with the disturbance signal under the aperiodically intermittent adaptive finite-time controllers(9)–(10).

    Fig.7.Synchronization errors ei3(t)of network(33)with the disturbance signal under the aperiodically intermittent adaptive finite-time controllers(9)–(10).

    Obviously,the synchronization quality Q(t)can not achieve synchronization without controller.The state of the error system diverges rapidly without controller,while the aperiodically intermittent adaptive finite-time controllers(9)–(10)can still guarantee the synchronization of the controlled network(33).It is shown that the aperiodically intermittent adaptive finite-time controllers have strong robustness against uncertainties.

    5.Conclusion

    In this paper,we have researched the adaptive finite-time synchronization of the multi-weighted complex transportation networks with multiple delays via aperiodically intermittent strategy based on the CPS.Using the technique of adaptive control,finite-time control,aperiodically intermittent control and the theory of Lyapunov stability,we design the adaptive aperiodically intermittent finite-time synchronization controllers.The controllers we designed are very useful for understanding the finite-time synchronization in the multi-weighted complex transportation networks with multiple delays.When the coupling strength or structure changes,the aperiodically intermittent adaptive finite-time controller designed still has strong robustness.Moreover,there is no requirement for the outer coupling configuration matrices to be irreducible or symmetric.Finally,the effectiveness of the adaptive aperiodically intermittent finite-time synchronization controllers is verified by numerical example.It shows that the controllers designed in this paper have correctness and effectiveness.

    猜你喜歡
    李寧
    Experimental study of the influence of annular nozzle on acoustic characteristics of detonation sound wave generated by pulse detonation engine
    回望祖山圖
    What Is Guochao?
    Emerging of Ag particles on ZnO nanowire arrays for blue-ray hologram storage
    In situ measurement on nonuniform velocity distribution in external detonation exhaust flow by analysis of spectrum features using TDLAS
    李寧:“我還在路上”
    Progress in quantum well and quantum cascade infrared photodetectors in SITP?
    創(chuàng)始人回歸后李寧加速復(fù)蘇
    跌宕起伏“李寧”
    健康大使李寧如何養(yǎng)生保健
    健康必讀(2016年11期)2016-12-12 17:30:44
    精品一区二区三区av网在线观看| 99国产极品粉嫩在线观看| 女人高潮潮喷娇喘18禁视频| 国产欧美日韩精品亚洲av| 国产精品.久久久| 久久人妻熟女aⅴ| 欧美乱妇无乱码| 国内久久婷婷六月综合欲色啪| 成人永久免费在线观看视频| videos熟女内射| 宅男免费午夜| 香蕉国产在线看| 黄色丝袜av网址大全| 亚洲自偷自拍图片 自拍| 日韩制服丝袜自拍偷拍| 午夜福利免费观看在线| 性少妇av在线| 看片在线看免费视频| 久热爱精品视频在线9| 免费少妇av软件| 99国产综合亚洲精品| 黄色片一级片一级黄色片| 精品国产乱子伦一区二区三区| 亚洲专区国产一区二区| 18禁国产床啪视频网站| 在线观看免费日韩欧美大片| 黄色怎么调成土黄色| 精品国产超薄肉色丝袜足j| 日韩欧美一区二区三区在线观看 | 亚洲免费av在线视频| 丁香六月欧美| 亚洲国产欧美日韩在线播放| 国产精品.久久久| 欧美日韩福利视频一区二区| 精品国产乱子伦一区二区三区| 丰满饥渴人妻一区二区三| 在线观看免费视频网站a站| 黄频高清免费视频| 国产麻豆69| 中文字幕av电影在线播放| 国产一区二区三区视频了| 宅男免费午夜| 国产欧美日韩综合在线一区二区| 亚洲午夜理论影院| 嫩草影视91久久| 久久久水蜜桃国产精品网| 如日韩欧美国产精品一区二区三区| 亚洲av成人一区二区三| 一级黄色大片毛片| 十八禁网站免费在线| 亚洲一码二码三码区别大吗| 久99久视频精品免费| 搡老乐熟女国产| 国产1区2区3区精品| www日本在线高清视频| 老熟妇仑乱视频hdxx| 亚洲久久久国产精品| 亚洲人成电影观看| 亚洲国产中文字幕在线视频| 色婷婷久久久亚洲欧美| 欧美+亚洲+日韩+国产| 岛国毛片在线播放| 精品久久久久久电影网| 欧美性长视频在线观看| 少妇被粗大的猛进出69影院| 成人黄色视频免费在线看| 人人澡人人妻人| 精品国产亚洲在线| 亚洲av日韩精品久久久久久密| 国产国语露脸激情在线看| 在线观看免费高清a一片| 女人被躁到高潮嗷嗷叫费观| 99国产综合亚洲精品| 国产精品亚洲av一区麻豆| 亚洲欧美一区二区三区久久| 国产一区在线观看成人免费| 亚洲国产欧美一区二区综合| 我的亚洲天堂| 国产日韩欧美亚洲二区| 欧美精品人与动牲交sv欧美| 免费在线观看日本一区| 国产欧美日韩一区二区三区在线| 久久中文字幕一级| 国产精品欧美亚洲77777| 在线观看66精品国产| 在线永久观看黄色视频| 电影成人av| 日本撒尿小便嘘嘘汇集6| 国产97色在线日韩免费| 国产精品久久电影中文字幕 | 精品福利观看| 欧美成人午夜精品| 国产午夜精品久久久久久| 亚洲一卡2卡3卡4卡5卡精品中文| 久久精品国产综合久久久| 日本五十路高清| 极品教师在线免费播放| 久久久国产一区二区| 9热在线视频观看99| 国产高清激情床上av| 最近最新免费中文字幕在线| xxxhd国产人妻xxx| 成人国产一区最新在线观看| 亚洲国产精品一区二区三区在线| 亚洲精品国产一区二区精华液| 国产乱人伦免费视频| 国产精品久久久人人做人人爽| 久久久久国内视频| 亚洲 欧美一区二区三区| 午夜视频精品福利| 免费观看人在逋| 亚洲avbb在线观看| 国产无遮挡羞羞视频在线观看| 捣出白浆h1v1| 99久久综合精品五月天人人| 亚洲熟女毛片儿| www.999成人在线观看| 69精品国产乱码久久久| 窝窝影院91人妻| 国产深夜福利视频在线观看| 老鸭窝网址在线观看| 久久久久精品国产欧美久久久| 亚洲欧美激情在线| 90打野战视频偷拍视频| 老司机午夜福利在线观看视频| 激情在线观看视频在线高清 | 黑人欧美特级aaaaaa片| 国产在线一区二区三区精| 极品教师在线免费播放| 国产人伦9x9x在线观看| 不卡一级毛片| 久久中文字幕人妻熟女| 亚洲欧洲精品一区二区精品久久久| 丰满饥渴人妻一区二区三| 国产一区二区激情短视频| 日本wwww免费看| 一本大道久久a久久精品| av在线播放免费不卡| 又大又爽又粗| 午夜免费鲁丝| 国产在线观看jvid| 国产色视频综合| 在线观看免费高清a一片| 亚洲国产欧美日韩在线播放| 国产高清激情床上av| 国产精品久久久久久人妻精品电影| av一本久久久久| 久久久久久免费高清国产稀缺| 19禁男女啪啪无遮挡网站| 免费不卡黄色视频| 9热在线视频观看99| 欧美午夜高清在线| 精品国产一区二区三区久久久樱花| x7x7x7水蜜桃| 侵犯人妻中文字幕一二三四区| 亚洲av成人av| 可以免费在线观看a视频的电影网站| 免费在线观看视频国产中文字幕亚洲| 国产主播在线观看一区二区| 精品国产一区二区久久| 变态另类成人亚洲欧美熟女 | 一区福利在线观看| 亚洲一卡2卡3卡4卡5卡精品中文| 国产精品久久久久成人av| 人妻 亚洲 视频| 国产精华一区二区三区| 丝袜美足系列| 另类亚洲欧美激情| 很黄的视频免费| 美女福利国产在线| 国产高清视频在线播放一区| 女性生殖器流出的白浆| 成人18禁在线播放| 好男人电影高清在线观看| 狠狠狠狠99中文字幕| 国产人伦9x9x在线观看| 免费黄频网站在线观看国产| a在线观看视频网站| 丁香六月欧美| 久久精品国产清高在天天线| 操美女的视频在线观看| 亚洲成人免费电影在线观看| 国内毛片毛片毛片毛片毛片| 精品一区二区三区av网在线观看| 亚洲国产毛片av蜜桃av| 成人手机av| 91在线观看av| 精品乱码久久久久久99久播| 亚洲欧美激情综合另类| 不卡一级毛片| 国产伦人伦偷精品视频| 日本撒尿小便嘘嘘汇集6| 女人爽到高潮嗷嗷叫在线视频| 午夜福利乱码中文字幕| 国产成人av教育| 女性被躁到高潮视频| 午夜福利,免费看| 十分钟在线观看高清视频www| 麻豆乱淫一区二区| 黄频高清免费视频| 一级毛片高清免费大全| 国产不卡一卡二| 两性夫妻黄色片| 午夜91福利影院| 1024香蕉在线观看| 人妻久久中文字幕网| 妹子高潮喷水视频| 精品福利永久在线观看| 亚洲av成人一区二区三| 亚洲男人天堂网一区| 操美女的视频在线观看| 少妇粗大呻吟视频| 免费看十八禁软件| 热99国产精品久久久久久7| a级片在线免费高清观看视频| 亚洲一卡2卡3卡4卡5卡精品中文| 精品少妇一区二区三区视频日本电影| 黄色视频,在线免费观看| 国产高清videossex| 亚洲 国产 在线| av网站免费在线观看视频| 久久青草综合色| 国产xxxxx性猛交| 如日韩欧美国产精品一区二区三区| 日韩免费高清中文字幕av| 在线观看免费视频网站a站| 国产欧美日韩综合在线一区二区| 一区二区三区激情视频| 69av精品久久久久久| 久久青草综合色| av欧美777| 操出白浆在线播放| 一区二区三区激情视频| 亚洲五月天丁香| 看黄色毛片网站| 人妻 亚洲 视频| 免费在线观看亚洲国产| 精品国产亚洲在线| 午夜福利在线观看吧| 韩国av一区二区三区四区| 91麻豆精品激情在线观看国产 | 成在线人永久免费视频| 精品国产乱子伦一区二区三区| 精品久久久久久,| 后天国语完整版免费观看| 亚洲自偷自拍图片 自拍| 捣出白浆h1v1| 国产精品一区二区免费欧美| 伊人久久大香线蕉亚洲五| 亚洲av欧美aⅴ国产| 国产成人精品久久二区二区免费| 亚洲av美国av| 法律面前人人平等表现在哪些方面| 欧美+亚洲+日韩+国产| 18禁裸乳无遮挡免费网站照片 | 国产一区二区三区综合在线观看| 精品欧美一区二区三区在线| 国产精品影院久久| 国产精品av久久久久免费| 久久草成人影院| 黄色毛片三级朝国网站| 岛国在线观看网站| 国产一区有黄有色的免费视频| 极品教师在线免费播放| 99久久精品国产亚洲精品| 亚洲av片天天在线观看| 亚洲精品国产区一区二| 天堂√8在线中文| av福利片在线| 亚洲成人手机| 午夜福利视频在线观看免费| 亚洲av欧美aⅴ国产| 亚洲在线自拍视频| 极品少妇高潮喷水抽搐| 最近最新免费中文字幕在线| 50天的宝宝边吃奶边哭怎么回事| 免费在线观看影片大全网站| 久久国产精品大桥未久av| 久久精品国产99精品国产亚洲性色 | 女性被躁到高潮视频| avwww免费| 十八禁人妻一区二区| 精品国内亚洲2022精品成人 | 亚洲熟妇熟女久久| 操出白浆在线播放| 黑人操中国人逼视频| 色在线成人网| 母亲3免费完整高清在线观看| 欧美精品av麻豆av| 18禁观看日本| 51午夜福利影视在线观看| 欧美一级毛片孕妇| 欧美不卡视频在线免费观看 | 中文字幕制服av| 久久中文字幕一级| 黑人猛操日本美女一级片| 在线观看www视频免费| 亚洲av日韩精品久久久久久密| 久久精品国产99精品国产亚洲性色 | 日本欧美视频一区| cao死你这个sao货| 黄色怎么调成土黄色| 91成人精品电影| 国产成人精品无人区| 久久ye,这里只有精品| 久久久久久免费高清国产稀缺| 五月开心婷婷网| 久久久国产成人精品二区 | 免费日韩欧美在线观看| 亚洲欧美色中文字幕在线| 最近最新免费中文字幕在线| 中文字幕高清在线视频| 久久久国产精品麻豆| 国产精品永久免费网站| 日本黄色视频三级网站网址 | 99国产精品99久久久久| 自线自在国产av| 欧美日韩亚洲综合一区二区三区_| 国产精品久久电影中文字幕 | 天堂动漫精品| 国产97色在线日韩免费| 黑人巨大精品欧美一区二区mp4| 啦啦啦 在线观看视频| 久久久国产成人精品二区 | 天天躁夜夜躁狠狠躁躁| 精品免费久久久久久久清纯 | 欧美黑人欧美精品刺激| 国产成人免费观看mmmm| 亚洲熟女毛片儿| 大陆偷拍与自拍| 国产人伦9x9x在线观看| av中文乱码字幕在线| 亚洲一区二区三区欧美精品| 亚洲av成人一区二区三| 国产av一区二区精品久久| 一级作爱视频免费观看| 欧美 亚洲 国产 日韩一| 国产一卡二卡三卡精品| 欧美成狂野欧美在线观看| 在线国产一区二区在线| 久久国产精品男人的天堂亚洲| 一区二区三区精品91| 亚洲成人手机| 国产精品久久久人人做人人爽| 黄色片一级片一级黄色片| 老司机在亚洲福利影院| 女人久久www免费人成看片| 欧美丝袜亚洲另类 | 婷婷成人精品国产| 香蕉丝袜av| 国产精品一区二区免费欧美| av天堂在线播放| 桃红色精品国产亚洲av| 亚洲av日韩精品久久久久久密| 一二三四在线观看免费中文在| 国产精品九九99| 我的亚洲天堂| 99国产精品免费福利视频| 久久影院123| 少妇被粗大的猛进出69影院| 最新美女视频免费是黄的| 少妇被粗大的猛进出69影院| 最新美女视频免费是黄的| 宅男免费午夜| 人人妻人人添人人爽欧美一区卜| 亚洲精品美女久久久久99蜜臀| 91老司机精品| 日本黄色日本黄色录像| 成人精品一区二区免费| 一个人免费在线观看的高清视频| 国产亚洲精品一区二区www | 亚洲色图综合在线观看| 国产一区二区激情短视频| 免费一级毛片在线播放高清视频 | 一进一出好大好爽视频| 国产aⅴ精品一区二区三区波| 80岁老熟妇乱子伦牲交| 欧美精品av麻豆av| 91精品三级在线观看| 免费观看精品视频网站| 国产一区二区激情短视频| 少妇猛男粗大的猛烈进出视频| videosex国产| 欧美乱色亚洲激情| 最近最新中文字幕大全免费视频| 亚洲精品一卡2卡三卡4卡5卡| 午夜福利在线观看吧| 国产亚洲av高清不卡| 男人的好看免费观看在线视频 | 亚洲成av片中文字幕在线观看| 精品一区二区三区av网在线观看| 五月开心婷婷网| 色综合婷婷激情| 国产成人精品在线电影| 超碰成人久久| 亚洲国产欧美一区二区综合| 久久久精品区二区三区| 亚洲一卡2卡3卡4卡5卡精品中文| 日韩欧美国产一区二区入口| 国产区一区二久久| 久久国产精品男人的天堂亚洲| 熟女少妇亚洲综合色aaa.| 80岁老熟妇乱子伦牲交| 我的亚洲天堂| 一个人免费在线观看的高清视频| 超碰成人久久| 亚洲一区二区三区欧美精品| 久久婷婷成人综合色麻豆| 欧美日韩福利视频一区二区| 99国产极品粉嫩在线观看| 亚洲一区高清亚洲精品| 在线观看一区二区三区激情| 亚洲国产中文字幕在线视频| 亚洲av美国av| 男男h啪啪无遮挡| 亚洲av电影在线进入| 一本综合久久免费| 99国产精品一区二区蜜桃av | 国产成人av教育| av天堂在线播放| 成年女人毛片免费观看观看9 | 操美女的视频在线观看| 美女午夜性视频免费| 大片电影免费在线观看免费| 国产精品免费一区二区三区在线 | 80岁老熟妇乱子伦牲交| 国产成人av激情在线播放| 大香蕉久久网| 一级毛片女人18水好多| 一个人免费在线观看的高清视频| 在线十欧美十亚洲十日本专区| 久久99一区二区三区| 在线观看66精品国产| 香蕉国产在线看| 大型黄色视频在线免费观看| 最新在线观看一区二区三区| 男女床上黄色一级片免费看| 久久影院123| 在线永久观看黄色视频| 亚洲avbb在线观看| 国产精品久久久av美女十八| 亚洲人成电影免费在线| 在线观看www视频免费| 亚洲av欧美aⅴ国产| 无限看片的www在线观看| 在线天堂中文资源库| 久久人妻av系列| 两个人免费观看高清视频| 国产成人欧美在线观看 | 成人三级做爰电影| 精品国产美女av久久久久小说| 亚洲情色 制服丝袜| 女人久久www免费人成看片| 国产成+人综合+亚洲专区| 在线观看免费视频日本深夜| 亚洲精品久久成人aⅴ小说| 黄色片一级片一级黄色片| 欧美日韩精品网址| 黄频高清免费视频| 国产激情欧美一区二区| 国产主播在线观看一区二区| 国产成人免费观看mmmm| 老熟妇仑乱视频hdxx| 成年人黄色毛片网站| 精品少妇一区二区三区视频日本电影| 18禁美女被吸乳视频| 无限看片的www在线观看| 精品国产一区二区三区久久久樱花| 黄色毛片三级朝国网站| 热99久久久久精品小说推荐| 国产亚洲欧美98| 亚洲欧美精品综合一区二区三区| 精品久久久久久久毛片微露脸| 亚洲成人手机| 美女高潮喷水抽搐中文字幕| 高清av免费在线| 成人国产一区最新在线观看| 亚洲人成电影观看| 老熟妇乱子伦视频在线观看| 少妇裸体淫交视频免费看高清 | 亚洲精品自拍成人| 欧美精品亚洲一区二区| cao死你这个sao货| 水蜜桃什么品种好| 在线观看日韩欧美| 在线视频色国产色| 亚洲情色 制服丝袜| 露出奶头的视频| 老司机亚洲免费影院| 视频在线观看一区二区三区| 久久人人97超碰香蕉20202| 国产成人欧美在线观看 | 丝袜美足系列| av超薄肉色丝袜交足视频| 少妇粗大呻吟视频| 老司机福利观看| 亚洲视频免费观看视频| 真人做人爱边吃奶动态| 国产精品久久久久久人妻精品电影| 国产精品久久久久久精品古装| 国产成人免费观看mmmm| 国产91精品成人一区二区三区| 男男h啪啪无遮挡| 免费人成视频x8x8入口观看| 12—13女人毛片做爰片一| 日本撒尿小便嘘嘘汇集6| 黄色女人牲交| 热re99久久国产66热| av网站免费在线观看视频| 女人被躁到高潮嗷嗷叫费观| 人妻久久中文字幕网| 亚洲精品美女久久久久99蜜臀| 亚洲专区字幕在线| 久久性视频一级片| 久久国产乱子伦精品免费另类| 成人18禁高潮啪啪吃奶动态图| 国产男女超爽视频在线观看| 国产精品一区二区精品视频观看| 99香蕉大伊视频| 波多野结衣av一区二区av| 国产人伦9x9x在线观看| 99精国产麻豆久久婷婷| 一级黄色大片毛片| 免费在线观看亚洲国产| 亚洲视频免费观看视频| 天天躁日日躁夜夜躁夜夜| 99riav亚洲国产免费| av天堂在线播放| 国产人伦9x9x在线观看| 俄罗斯特黄特色一大片| 国产视频一区二区在线看| 日本vs欧美在线观看视频| 国产欧美日韩一区二区三| 少妇猛男粗大的猛烈进出视频| 亚洲av欧美aⅴ国产| 999久久久国产精品视频| www.精华液| 久久久国产精品麻豆| 一二三四在线观看免费中文在| 精品国产一区二区久久| 国产精品国产av在线观看| 亚洲国产欧美网| 最新的欧美精品一区二区| 国产日韩欧美亚洲二区| 久久人人爽av亚洲精品天堂| 叶爱在线成人免费视频播放| 亚洲精品在线美女| 久久久久国产一级毛片高清牌| 高清视频免费观看一区二区| 不卡av一区二区三区| 成年人黄色毛片网站| 一级a爱片免费观看的视频| 脱女人内裤的视频| 最近最新中文字幕大全免费视频| 久久久久久人人人人人| svipshipincom国产片| 免费在线观看完整版高清| 人妻丰满熟妇av一区二区三区 | 首页视频小说图片口味搜索| 一区福利在线观看| 美女福利国产在线| 丝袜人妻中文字幕| 天天躁狠狠躁夜夜躁狠狠躁| 免费在线观看日本一区| 啪啪无遮挡十八禁网站| 99久久人妻综合| 制服人妻中文乱码| 国产精品av久久久久免费| 久久久久久免费高清国产稀缺| 亚洲第一欧美日韩一区二区三区| 91精品三级在线观看| 一边摸一边抽搐一进一出视频| 人人妻人人澡人人看| 一进一出好大好爽视频| 一本综合久久免费| 欧美色视频一区免费| 亚洲片人在线观看| 一区二区三区国产精品乱码| 一级,二级,三级黄色视频| av线在线观看网站| 成人影院久久| 男女之事视频高清在线观看| 老熟妇仑乱视频hdxx| 国内久久婷婷六月综合欲色啪| 99国产综合亚洲精品| 婷婷成人精品国产| 日韩欧美在线二视频 | 午夜激情av网站| aaaaa片日本免费| 18禁国产床啪视频网站| 亚洲一区二区三区不卡视频| 波多野结衣一区麻豆| av在线播放免费不卡| 亚洲av片天天在线观看| 高清毛片免费观看视频网站 | 老汉色∧v一级毛片| 午夜久久久在线观看| 深夜精品福利| 欧美乱码精品一区二区三区| a级毛片在线看网站| videos熟女内射| 欧美最黄视频在线播放免费 | 精品无人区乱码1区二区| 久久天堂一区二区三区四区| 不卡av一区二区三区| 三级毛片av免费| 欧美黄色片欧美黄色片| 激情在线观看视频在线高清 | 国产欧美日韩一区二区三| 亚洲自偷自拍图片 自拍| 久久九九热精品免费| 国产亚洲精品第一综合不卡| 一级片'在线观看视频| 99re6热这里在线精品视频| 美女福利国产在线|