• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Nanobubble Dynamics in Aqueous Surfactant Solutions Studied by Liquid-Phase Transmission Electron Microscopy

    2021-09-24 06:47:26YunaBaeSungsuKangByungHyoKimKitaekLimSunghoJeonSangdeokShimWonChulLeeJungwonPark
    Engineering 2021年5期

    Yuna Bae ,Sungsu Kang ,Byung Hyo Kim,d,Kitaek Lim,Sungho Jeon ,Sangdeok Shim *,Won Chul Lee ,*,Jungwon Park ,*

    a School of Chemical and Biological Engineering,and Institute of Chemical Processes,Seoul National University,Seoul 08826,Republic of Korea

    b Center for Nanoparticle Research,Institute of Basic Science(IBS),Seoul 08826,Republic of Korea

    c Department of Mechanical Engineering,BK21 FOUR ERICA-ACE Center,Hanyang University,Ansan 15588,Republic of Korea

    d Department of Organic Materials and Fiber Engineering,Soongsil University,Seoul 06978,Republic of Korea

    e Department of Chemistry,Sunchon National University,Suncheon 57922,Republic of Korea

    Keywords:

    ABSTRACT Nanobubbles have attracted considerable attention in various industrial applications due to their exceptionally long lifetime and their potential as carriers at the nanoscale.The stability and physiochemical properties of nanobubbles are highly sensitive to the presence of surfactants that can lower their surface tension or improve their electrostatic stabilization.Herein,we report real-time observations of the dynamic behaviors of nanobubbles in the presence of soluble surfactants.Using liquid-phase transmission electron microscopy(TEM)with multi-chamber graphene liquid cells,bulk nanobubbles and surface nanobubbles were observed in the same imaging condition.Our direct observations of nanobubbles indicate that stable gas transport frequently occurs without interfaces merging,while a narrow distance is maintained between the interfaces of interacting surfactant-laden nanobubbles.Our results also elucidate that the interface curvature of nanobubbles is an important factor that determines their interfacial stability.

    1.Introduction

    Nanobubbles have a wide range of industrial applications,such as surface cleaning[1],water treatment[2–4],and biomedical research[5,6],due to their remarkable long-term stability on solid substrates and in liquid media[7–9].In classical thermodynamics,it is believed that the bubbles quickly shrink within microseconds as their size approximates the nanoscale,because the interior Laplace pressure is too high to prevent the outward diffusion of the gas inside the bubble[10,11].Nonetheless,diverse experimental approaches,such as atomic force microscopy(AFM)and cryoelectron microscopy(cryo-EM),have been utilized to confirm the existence and origins of the long-term stability of nanobubbles[12–15].The results of these studies suggest that nanobubble stability is significantly enhanced on surfaces due to the pinning effect of the three-phase contact line[16–18].

    It is expected that the size and stability of nanobubbles can be actively controlled by manipulating their interfacial chemistry.Similar to the case of fluid interfaces constructed at the micrometer scale and beyond[19–21],the choice of surfactant additive influences the different chemical structures of the interfacial boundaries and surface charge states,which alter the lifetime of nanobubbles and inter-nanobubble interactions[22].Computational simulations have demonstrated that the addition of amphiphilic or insoluble surfactants lowers the stability of nanobubbles by disturbing the pinning process and reducing surface tension[23].In contrast,anionic surfactants generate surface charges on nanobubbles that promote electrostatic stabilization,while suppressing nanobubble merging[24].

    Liquid-phase transmission electron microscopy(TEM)achieves nanoscale spatial resolution for in situ visualizations of the chemical and physical processes occurring in a liquid environment[25–28].Thus,it has been recently applied for real-time and real-space observations of changes in gas–liquid interfaces and of the behavior of nanobubbles in pure water and protein solutions[29–33].The formation of nanobubbles produced by electron-beaminduced radiolysis and inter-bubble gas transport has been investigated[34].Furthermore,microscopic results have indicated the existence of a critical radius of stable nanobubbles in pure water[35].Here,we study the dynamic phenomena of surfactant-laden nanobubbles in an aqueous solution by employing multichamber graphene liquid cell TEM,wherein the chemical conditions for encapsulated solution samples are reliably maintained during multiple in situ observations.

    2.Materials and methods

    2.1.Fabrication of a multi-chamber graphene liquid cell

    A highly ordered array of graphene-covered nano-chambers was prepared by assembling a porous anodic aluminum oxide(AAO)membrane between two graphene sheets,as developed in our previous study[36].First,a set of graphene-transferred TEM grids was prepared for use as the top and bottom graphene windows[37].The AAO membrane(on a poly(methyl methacrylate)(PMMA)substrate),with a pore diameter of 80 nm,an inter-pore distance of 125 nm,and a thickness of 50 nm,was cut to fit the inner square size of the TEM grid.A drop of water was dispensed on a prepared graphene-transferred grid,and a square AAO membrane was placed on this grid in a direction wherein the exposed AAO surface faced the droplet.After drying the assembled grid in an oven for 5 min at 70°C,the AAO membrane attached to the graphene sheet via van der Waals interactions.The assembled grid was immersed in an acetone bath for 4 h to remove the PMMA substrate that supported the AAO membrane,thereby producing a nano-well-shaped array built on the bottom grid.A 0.5μL liquid sample was loaded onto the fabricated nano-well-shaped array,which was then covered with another graphene-transferred grid to construct the multi-chamber liquid cell.Each cylindrical nanochamber built on the liquid cell consisted of a nanopore and top/bottom graphene sheets encapsulating the liquid sample.In this study,a 3.75 mmol·L-1aqueous solution of hexadecyltrimethylammonium bromide(CTAB)was used as a liquid sample.A 2.5 mmol·L-1chloroauric acid solution was also added to the liquid sample because the reduction of this acid solution to form gold nanoparticles can be used as an indicator for successful liquid encapsulation during electron-beam irradiation.It should be noted that the in situ observations of surfactant-laden nanobubbles were conducted in regions away from the gold nanoparticles.The multichamber graphene liquid cell can improve the stability of the liquid system and ensure encapsulation of the liquid sample with a defined dimension and volume,resulting in reliable fluid mechanics during the observations.In addition,the stable and sufficient space of the nanochamber makes it possible to observe the dynamic phenomena of bulk nanobubbles under weak perturbation by graphene or a confined environment.

    2.2.TEM analysis

    We observed the nanobubbles in aqueous surfactant solutions by means of liquid-phase TEM with the fabricated multi-chamber graphene liquid cell(Appendix A Movies S1–5).Nanobubbles were imaged using a JEM-2100F(JEOL Ltd.,Japan)instrument operating at 200 kV and equipped with an UltraScan 1000XP CCP detector(Gatan,Inc.,USA).In situ TEM movies were recorded at 7.5 frames per second(fps).The dose rate of the electron beam was consistently maintained at 1800–2000 e·?-2·s-1.Under electron-beam radiation,nanobubbles smaller than 50 nm were generated by the electron-beam radiolysis process.

    3.Results and discussion

    3.1.Stability of nanobubbles:Effects of surfactants

    Fig.1.(a)Time-series of TEM images showing nanobubbles in a nanochamber.(b)Illustration of a nanobubble in an aqueous CTAB solution.(c,d)Size distribution of the nanobubbles at(c)0 s and(d)26 s,as shown in part(a).CTA+:hexadecyltrimethylammoniumcation;r:radius.

    Nanobubbles inside the nanochamber can be clearly identified in the in situ TEM images(Appendix A Movie S1).The circles with bright contrast and the surrounding area with dark contrast distinctly indicate the nanobubbles and liquid media,respectively,in Fig.1(a).Nanobubbles were generated in different sizes,ranging from~5 to~30 nm,as shown in the first TEM image in Fig.1(a).The nanobubbles can be categorized into two different types depending on their location in the nanochamber:Surface nanobubbles are located near the AAO wall and tend to adsorb onto the inner surface of the AAO pore,while bulk nanobubbles are located in the middle of the liquid media without surface adsorption.In general,the existence of nanobubbles follows the Young–Laplace equation;that is,the internal pressure(Pin)of the bubbles balances the sum of the pressure from the surrounding fluid(Pout)and the pressure created by surface tension(γ),as illustrated in Fig.1(b).A time-series of TEM images of nanobubbles(Fig.1(a))exhibits the relative stabilities of the two different types of nanobubbles.The surface nanobubbles are generally larger and exhibit longer lifetimes than the bulk nanobubbles.In contrast,most of the bulk nanobubbles have a spherical shape,and small bulk nanobubbles continue to shrink over time,as shown in Fig.1(a).The average diameter of the shrinking bulk nanobubbles was measured to be~6 nm based on the time-series of the TEM images;it is also represented in the histogram of nanobubble diameters at 0 and 26 s(Figs.1(c)and(d)).The critical radius of stable nanobubbles in pure water has been reported to be(6.3±0.8)nm[35],which is approximately twice the value we observed in the aqueous CTAB solution.This result is probably due to the surface tension of the aqueous CTAB solution (33.59 mN·m-1)being significantly lower than that of pure water(72.8 mN·m-1)[29,32,38],implying that surfactants in the liquid media can form a layer between the gas-containing bubbles and the surrounding liquid,which stabilizes the gas–liquid interface of the nanobubbles[22,24].Moreover,the presence of a sufficient amount of CTAB molecules(cationic surfactants)is likely to cause the nanobubbles to be positively charged due to the adsorption layer of CTAB,possibly stabilizing the nanobubbles by electrostatic pressure[22].

    3.2.Gas transport via the interfacial region between nanobubbles

    We investigated the interactions and gas transport behavior of surfactant-laden nanobubbles when they were in close proximity.In a typical bubble system ranging from the micrometer to nanometer scale,two interacting bubbles either merge or repel each other depending on their relative approach velocity,contact time,and surrounding fluid viscosity[39,40].A merging event occurs via the destruction of the interfaces of the two bubbles,which results in the formation of a neck region through which gas migrates between the two bubbles.Such events,including gas transport followed by merging,have also been observed for nanobubbles in pure water[34,35].However,surfactant-laden nanobubbles exhibit different behavior.Instead of forming a neck for gas transport,the two nanobubbles(NB1 and NB2)we observed in this study remain in proximity with a narrow inter-bubble distance while active gas transport proceeds,as shown in Fig.2(a)and Appendix A Movie S2.The contours and projected area tracked for the two nanobubbles(Figs.2(b)and(c))indicate the rapid gas transport from NB1 to NB2 over a time interval of 6 s.The direction of gas transport is determined by the different Laplace pressures of the two nanobubbles,which are inversely proportional to the radius of their curvature.The gas moves from NB1,which has high internal pressure(smaller size),to NB2,which has low internal pressure(larger size).Due to this gas transport,NB1 shrinks and NB2 grows,which is similar to the Ostwald-ripening process.Meanwhile,the interfacial region between the two nanobubbles moves in the direction opposite to that of the gas transport(Fig.2(b)),which probably results from the destruction of the original solid–liquid–gas three-phase contact line pinning while transferring kinetic energy by means of the transported gas molecules.We also measured the circularity of the two nanobubbles from their two-dimensional(2D)projected images.While the sizes of the two nanobubbles change during the gas transport,their circularity values remain constant at~0.9,which means that their shapes remain spherical,as shown in Fig.2(d).Maintaining circularity during gas transport has also been observed for nanobubbles in pure water systems,in which gas transport proceeds through an ultrathin water membrane [35].The interesting feature of nanobubbles with surfactants present is that their surfaces are not fully in contact,with a spacing of(0.91±0.045)nm during the gas transport,as shown in Fig.2(e).The rigid structure of the surfactant molecules packed along the boundaries of the two nanobubbles and their positively charged surfaces presumably prohibit complete merging and maintain a narrow gap of less than 1 nm.It is difficult to preserve a bulk liquid structure in this narrow region,which results in local liquid media with a lowered density through which gas molecules can be transported.The gas transport eventually stops(after t0+20 s,where t0is the time when the inter-bubble distance is less than 1.5 nm)as the surfaces of the nanobubbles move apart.

    Fig.2.(a)Time-series of TEM images indicating direct gas transport between two nanobubbles(NB1 and NB2).(b)Temporal trajectories for the contours of the two nanobubble boundaries.(c)Area and(d)circularity changes in time for the two tracked nanobubbles.(e)Tracked spacing between the boundaries of the two nanobubbles.

    It was commonly observed that interacting surfactant-laden nanobubbles remain in close proximity with a narrow gap over an extended period of time.One more example that exhibited a similar interaction and gas transport between nanobubbles(NB1 and NB2)is shown in Fig.3(a)and Appendix A Movie S3.Interestingly,after a long period of stable gas transport,NB1 and NB2 undergo rapid merging when their boundaries come into physical contact(Fig.3(b)).The tracked contours and projected areas of the two nanobubbles(Figs.3(c)and(d))indicate that the gas is transmitted from the smaller NB1 to the larger NB2 for an initial 1.1 s(from NRF t0+12.6 s to t0+13.7 s).The small NB1 consistently shrinks,while the large NB2 grows,as the gas flows from the small to large nanobubble.During gas transport,the two nanobubbles maintain their spherical shape with a circularity of~0.9,as shown in Fig.3(e).When the spacing between the two nanobubbles is extremely close(below 0.5 nm),such that the effects of their interfacial fluctuations become significant,their gas–liquid interfaces are partially destroyed,and the nanobubbles begin to merge(Fig.3(b)).After merging,the gas–liquid interface of the merged nanobubble quickly relaxes(Fig.3(f)),and the nanobubble evolves into a spherical shape with a circularity of~0.9 within 1.5 s(Fig.3(e)).

    3.3.Gas–liquid interface deformation by the formation of a flat boundary

    The two nanobubbles shown in Fig.4 also maintain their stable gap for a prolonged period of 6 s,which is consistent with the cases shown in Figs.2 and 3 and Appendix A Movie S4.When the nanobubbles eventually merge,the merged nanobubble exhibits a non-spherical shape,having a concave surface.As the concave interface relaxes,an ellipsoidal-shaped nanobubble forms within a confined space,as shown in Fig.4(a)and Appendix A Movie S5[41].The merged gas nanobubble maintains a stable ellipsoidal shape.This nanobubble has a flat gas–liquid interface,which is easily deformed by the surrounding liquid flux.The fluctuation of the deformed liquid–gas interface is shown in Fig.4(c)as colored dashed lines.The time-series of TEM images in Fig.4(b)shows the generation of a large number of ultrasmall nanobubbles from the collapsing flat interface of the ellipsoidal nanobubble.When the interface curvature becomes convex at a certain moment,while the interface of the nanobubble fluctuates in the presence of small bubbles in the bulk phase,the gas–liquid interface is transiently stabilized,as shown in Fig.4(b).In the case of a nanobubble with a convex interface,because the radius of the interface curvature is on the nanometer scale,the internal pressure at the interface is high enough to balance the pressure from the surrounding liquid flow(Fig.4(d)).Conversely,the internal pressure of the flat interface is comparable to the pressure of the surrounding liquid flow,which can facilitate the deformation of the gas–liquid interface.At this moment,small nanobubbles can easily be produced from the unstable gas–liquid interface under electron-beam radiation,as illustrated in Fig.4(e).The sizes of the generated nanobubbles are mostly smaller than the critical size of stable nanobubbles;thus,the generated nanobubbles tend to rapidly lose their stability and dissolve.

    3.4.The effects of electron-beam and chemical conditions on nanobubbles

    During TEM observation,the radiolysis reaction of water induced by the electron beam can produce nanobubbles[31,42].The stability of the generated nanobubbles may be reduced due to the high scattering of the electron beam at the gas–liquid interfaces.However,we believe that the use of graphene windows may help to avoid unwanted effects on our observations,since graphene has a better ability to reduce the electron-beam effect or damage and to scavenge reactive radical species than other conventional liquid cells with SiNxwindows[43,44].Studies published recently by other groups have reported the poor stability of bulk nanobubbles in low-pH or salt solutions[45,46].The pH of the observed system was around 2.16,and various salts existing in the system may influence the stability of the nanobubbles.Nevertheless,as shown in Fig.1,the effect of surfactants on the stabilization of small nanobubbles seems to be predominant.

    Fig.3.Time-series of TEM images indicating(a)direct gas transport between two nanobubbles(NB1 and NB2)and(b)their merging process(NB3).(c)Contours of two nanobubble boundaries.(d)Change in area over time of two nanobubbles.(e)Tracked circularity of the nanobubbles before and after merging.(f)The local magnified contours of the merged nanobubble boundary.

    Fig.4.(a)Time-series of TEM images showing the nanobubble merging and interface relaxation process.(b)Time-series of TEM images showing gas–liquid interface deformation and nanobubble generation from the unstable interface.(c)Magnified contours of the fluctuations of deformed gas–liquid interfaces.Illustration of the interfacial stability of a nanobubble depending on its curvature:(d)convex interface and(e)flat interface of an ellipsoidal nanobubble.r:radius of curvature.

    4.Conclusions

    In summary,we performed TEM observations of surfactantladen nanobubbles in a liquid phase by using multi-chamber graphene liquid cells.We investigated the inter-nanobubble dynamics,including direct gas transport and merging processes.Our results indicate that a certain distance between interacting surfactant-laden nanobubbles is maintained over a prolonged period of time while stable gas transport occurs,rather than interfacial rupture followed by a merging process.Real-time TEM observations of nanobubbles also revealed that the stability of the interface of the nanobubbles degrades as the curvature decreases.Our studies based on in situ liquid-phase TEM provide physical insight into the fluid dynamics of bubbles at the nanoscale.The experimental method introduced in this report can be extended to other systems,including foam/emulsion stabilization,acoustic cavitation,sonochemistry,water treatment,and programmable drug/gene delivery,thereby providing physical perspectives that facilitate their applications.

    Acknowledgements

    Yuna Bae,Sungsu Kang,Byung Hyo Kim,and Jungwon Park acknowledge the financial support from the National Research Foundation of Korea(NRF)grant funded by the Korean government(Ministry of Science and ICT;NRF-2017R1A5A1015365),Creative-Pioneering Researchers Program through Seoul National University(2020),the Interdisciplinary Research Initiatives Programs by College of Engineering and College of Medicine,Seoul National University,and the POSCO Science Fellowship of POSCO TJ Park Foundation.Kitaek Lim,Sungho Jeon,and Won Chul Lee acknowledge the support from the NRF funded by the Ministry of Education(2019R1F1A1059099 and 2020R1F1A1065856)and the support from the research fund of Hanyang University(HY-2018-N).

    Compliance with ethics guidelines

    Yuna Bae,Sungsu Kang,Byung Hyo Kim,Kitaek Lim,Sungho Jeon,Sangdeok Shim,Won Chul Lee,and Jungwon Park declare that they have no conflict of interest or financial conflicts to disclose.

    Appendix A.Supplementary data

    Supplementary data to this article can be found online at https://doi.org/10.1016/j.eng.2021.02.006.

    无遮挡黄片免费观看| 大陆偷拍与自拍| 亚洲一区二区三区不卡视频| av有码第一页| 国产精品电影一区二区三区| 久久九九热精品免费| 在线免费观看的www视频| 9191精品国产免费久久| 电影成人av| 精品不卡国产一区二区三区| 桃色一区二区三区在线观看| 欧美老熟妇乱子伦牲交| 成年版毛片免费区| 精品卡一卡二卡四卡免费| 后天国语完整版免费观看| 国产亚洲av高清不卡| 在线av久久热| 在线免费观看的www视频| 欧美日韩黄片免| 熟女少妇亚洲综合色aaa.| 国产成人精品在线电影| 亚洲欧美精品综合一区二区三区| 欧美人与性动交α欧美精品济南到| 欧美黑人精品巨大| 黄色成人免费大全| 亚洲精品国产色婷婷电影| 国产精品九九99| 欧美不卡视频在线免费观看 | 麻豆一二三区av精品| 国产精品久久视频播放| 嫩草影院精品99| 国产精品自产拍在线观看55亚洲| 两个人视频免费观看高清| 日韩av在线大香蕉| 中亚洲国语对白在线视频| 最近最新免费中文字幕在线| 香蕉国产在线看| 一个人观看的视频www高清免费观看 | 一个人免费在线观看的高清视频| 免费高清视频大片| av有码第一页| 99精品欧美一区二区三区四区| 午夜福利欧美成人| 老熟妇仑乱视频hdxx| 亚洲成人免费电影在线观看| 国产成+人综合+亚洲专区| 脱女人内裤的视频| 国产在线精品亚洲第一网站| 欧美中文综合在线视频| 香蕉国产在线看| 狠狠狠狠99中文字幕| 国产欧美日韩精品亚洲av| 啦啦啦 在线观看视频| 久久中文字幕一级| 久久精品成人免费网站| 中国美女看黄片| 亚洲成av人片免费观看| 国产欧美日韩一区二区精品| 免费不卡黄色视频| 高清在线国产一区| 色播在线永久视频| 窝窝影院91人妻| 啦啦啦观看免费观看视频高清 | 色老头精品视频在线观看| 亚洲一区中文字幕在线| 亚洲精品在线观看二区| 欧美午夜高清在线| 亚洲激情在线av| 亚洲精品中文字幕在线视频| 成人av一区二区三区在线看| 国产亚洲精品第一综合不卡| 人人妻人人爽人人添夜夜欢视频| 天堂√8在线中文| 日韩欧美免费精品| 18禁裸乳无遮挡免费网站照片 | 色哟哟哟哟哟哟| 久久精品亚洲精品国产色婷小说| 看免费av毛片| 两性午夜刺激爽爽歪歪视频在线观看 | 日韩 欧美 亚洲 中文字幕| av在线播放免费不卡| 精品乱码久久久久久99久播| 视频区欧美日本亚洲| 黄片大片在线免费观看| 中文字幕人妻熟女乱码| 美女扒开内裤让男人捅视频| 看免费av毛片| 成人国产综合亚洲| 少妇 在线观看| 麻豆成人av在线观看| 每晚都被弄得嗷嗷叫到高潮| 一级a爱片免费观看的视频| 日韩精品免费视频一区二区三区| 久久精品aⅴ一区二区三区四区| 亚洲片人在线观看| 国产精品日韩av在线免费观看 | 国产伦一二天堂av在线观看| 欧美在线黄色| 久久九九热精品免费| 日韩大尺度精品在线看网址 | 久久精品成人免费网站| 在线观看免费午夜福利视频| 成人国语在线视频| 亚洲第一电影网av| 成人精品一区二区免费| 搞女人的毛片| 真人做人爱边吃奶动态| 又黄又粗又硬又大视频| 国产成+人综合+亚洲专区| 国产亚洲av高清不卡| 亚洲三区欧美一区| 婷婷精品国产亚洲av在线| 亚洲专区字幕在线| 又黄又粗又硬又大视频| 国产精品野战在线观看| 夜夜夜夜夜久久久久| 性少妇av在线| 国产欧美日韩综合在线一区二区| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲av成人av| 深夜精品福利| 亚洲成人久久性| 九色亚洲精品在线播放| 欧美绝顶高潮抽搐喷水| 日本三级黄在线观看| 制服诱惑二区| 香蕉国产在线看| 亚洲无线在线观看| av在线播放免费不卡| 国产精品香港三级国产av潘金莲| 麻豆成人av在线观看| 欧美一级a爱片免费观看看 | 成人特级黄色片久久久久久久| 精品久久久久久久久久免费视频| 国产精品98久久久久久宅男小说| 国产在线观看jvid| 大陆偷拍与自拍| 国产精华一区二区三区| 亚洲男人的天堂狠狠| 色综合婷婷激情| 黑人巨大精品欧美一区二区mp4| 国产三级在线视频| 欧美不卡视频在线免费观看 | 最近最新中文字幕大全电影3 | 在线天堂中文资源库| av免费在线观看网站| 啦啦啦免费观看视频1| 91成年电影在线观看| 99精品久久久久人妻精品| 精品午夜福利视频在线观看一区| 久久久久国产一级毛片高清牌| 91精品国产国语对白视频| 亚洲精品中文字幕在线视频| 免费在线观看影片大全网站| 悠悠久久av| 亚洲中文字幕日韩| 午夜福利高清视频| 美女高潮喷水抽搐中文字幕| 欧美成人一区二区免费高清观看 | 午夜老司机福利片| 午夜精品久久久久久毛片777| 超碰成人久久| 亚洲欧洲精品一区二区精品久久久| 正在播放国产对白刺激| 国产国语露脸激情在线看| 最近最新中文字幕大全免费视频| 国产午夜精品久久久久久| 成人三级黄色视频| 亚洲 欧美 日韩 在线 免费| 久久国产精品影院| 亚洲国产欧美网| 制服人妻中文乱码| 精品日产1卡2卡| 成年人黄色毛片网站| 免费看十八禁软件| 久久中文字幕人妻熟女| 91麻豆精品激情在线观看国产| 国产精品二区激情视频| 亚洲欧美日韩无卡精品| 亚洲精品在线美女| 村上凉子中文字幕在线| 女同久久另类99精品国产91| 国产精品免费视频内射| 韩国av一区二区三区四区| 亚洲精品av麻豆狂野| 国产99白浆流出| 国产成人系列免费观看| 嫩草影视91久久| 欧美精品亚洲一区二区| 国产高清视频在线播放一区| 香蕉久久夜色| 一区二区三区国产精品乱码| 丁香六月欧美| 日韩欧美在线二视频| 亚洲欧美日韩高清在线视频| 狂野欧美激情性xxxx| 18禁黄网站禁片午夜丰满| 国产单亲对白刺激| 99精品久久久久人妻精品| 国产极品粉嫩免费观看在线| 十八禁人妻一区二区| 久久中文字幕人妻熟女| 亚洲国产精品成人综合色| 变态另类丝袜制服| 国产高清激情床上av| 在线天堂中文资源库| 午夜福利一区二区在线看| 午夜福利一区二区在线看| 国产野战对白在线观看| 18禁观看日本| 亚洲片人在线观看| 欧美日本亚洲视频在线播放| 午夜福利一区二区在线看| 欧美av亚洲av综合av国产av| 不卡一级毛片| 色在线成人网| 黑人巨大精品欧美一区二区蜜桃| 日韩精品免费视频一区二区三区| 国产av在哪里看| 亚洲精品在线观看二区| 女人高潮潮喷娇喘18禁视频| 亚洲精品在线美女| 搡老岳熟女国产| 97碰自拍视频| 亚洲全国av大片| 亚洲全国av大片| 丝袜在线中文字幕| 午夜福利欧美成人| 村上凉子中文字幕在线| 亚洲自拍偷在线| 久久人人精品亚洲av| 亚洲av成人不卡在线观看播放网| 久久国产精品男人的天堂亚洲| 精品人妻1区二区| 女人高潮潮喷娇喘18禁视频| 变态另类成人亚洲欧美熟女 | 女人被躁到高潮嗷嗷叫费观| 亚洲激情在线av| 丁香欧美五月| 国产私拍福利视频在线观看| 成人三级黄色视频| 久久香蕉精品热| 亚洲av成人不卡在线观看播放网| 国产精品综合久久久久久久免费 | 丁香欧美五月| 丰满的人妻完整版| 日韩欧美一区二区三区在线观看| 国产xxxxx性猛交| 长腿黑丝高跟| 老汉色av国产亚洲站长工具| 欧美激情高清一区二区三区| 精品久久久久久久毛片微露脸| 色综合站精品国产| 中文字幕另类日韩欧美亚洲嫩草| 亚洲精品粉嫩美女一区| 久久午夜亚洲精品久久| 久久性视频一级片| 久久伊人香网站| www.精华液| 男男h啪啪无遮挡| 男男h啪啪无遮挡| 国产免费男女视频| 成年版毛片免费区| 九色亚洲精品在线播放| 人人妻,人人澡人人爽秒播| 久久欧美精品欧美久久欧美| 欧美黄色片欧美黄色片| 欧美激情 高清一区二区三区| 中文字幕人妻丝袜一区二区| 国产精品久久久人人做人人爽| 丰满的人妻完整版| www.999成人在线观看| 国产精品久久久人人做人人爽| 免费看美女性在线毛片视频| 叶爱在线成人免费视频播放| 久久精品国产亚洲av高清一级| 亚洲精华国产精华精| 亚洲欧美一区二区三区黑人| 性少妇av在线| 中文字幕色久视频| 久久精品国产综合久久久| 中文字幕精品免费在线观看视频| 国产av在哪里看| 国产精品久久久av美女十八| 变态另类丝袜制服| 久9热在线精品视频| 女人被狂操c到高潮| 国产亚洲欧美精品永久| 中文字幕最新亚洲高清| 中文字幕高清在线视频| 又黄又粗又硬又大视频| 老汉色∧v一级毛片| 国产高清视频在线播放一区| 午夜免费观看网址| 亚洲熟妇中文字幕五十中出| 国产精品久久视频播放| 午夜精品在线福利| 欧美日韩一级在线毛片| 桃色一区二区三区在线观看| 亚洲男人的天堂狠狠| 9191精品国产免费久久| 不卡av一区二区三区| 亚洲精品在线观看二区| 欧美在线黄色| 高清黄色对白视频在线免费看| 母亲3免费完整高清在线观看| 熟女少妇亚洲综合色aaa.| 国产av一区在线观看免费| 亚洲一区二区三区不卡视频| 国语自产精品视频在线第100页| 国产精品久久久人人做人人爽| 99国产精品免费福利视频| 两性夫妻黄色片| 国产麻豆69| 国产亚洲精品综合一区在线观看 | 国产精品久久久久久精品电影 | 在线观看免费视频网站a站| 亚洲精品美女久久av网站| 日韩欧美免费精品| 一区二区三区精品91| 亚洲欧美精品综合久久99| 欧美大码av| 777久久人妻少妇嫩草av网站| 麻豆久久精品国产亚洲av| 88av欧美| 午夜亚洲福利在线播放| 狂野欧美激情性xxxx| 亚洲精品国产色婷婷电影| 久久国产精品影院| 12—13女人毛片做爰片一| 免费高清视频大片| 搡老妇女老女人老熟妇| 最新在线观看一区二区三区| 国内久久婷婷六月综合欲色啪| 欧美不卡视频在线免费观看 | 免费女性裸体啪啪无遮挡网站| 欧美中文日本在线观看视频| 国产精品 欧美亚洲| 国产精品98久久久久久宅男小说| 一进一出抽搐gif免费好疼| 日本精品一区二区三区蜜桃| 欧美成人午夜精品| 男女下面进入的视频免费午夜 | 一二三四在线观看免费中文在| 一区二区三区高清视频在线| 乱人伦中国视频| 国产主播在线观看一区二区| 啦啦啦 在线观看视频| 欧美色视频一区免费| 成人三级做爰电影| 老司机深夜福利视频在线观看| 91精品三级在线观看| 少妇的丰满在线观看| 成人特级黄色片久久久久久久| 99国产综合亚洲精品| 欧美久久黑人一区二区| 亚洲中文字幕日韩| 91精品三级在线观看| 成年人黄色毛片网站| 搡老熟女国产l中国老女人| 神马国产精品三级电影在线观看 | 欧美最黄视频在线播放免费| 激情视频va一区二区三区| www.999成人在线观看| 极品人妻少妇av视频| 老熟妇乱子伦视频在线观看| 999久久久国产精品视频| 久久精品影院6| av超薄肉色丝袜交足视频| 一卡2卡三卡四卡精品乱码亚洲| 久久影院123| 不卡一级毛片| 亚洲片人在线观看| 久久精品国产亚洲av高清一级| 国产极品粉嫩免费观看在线| 看黄色毛片网站| 国产午夜福利久久久久久| 岛国视频午夜一区免费看| 国产成人精品无人区| 色av中文字幕| 色综合婷婷激情| 亚洲精品一区av在线观看| 亚洲av成人av| 亚洲人成电影免费在线| 久久久久精品国产欧美久久久| 黑人巨大精品欧美一区二区mp4| 老司机靠b影院| 亚洲av日韩精品久久久久久密| 久久天躁狠狠躁夜夜2o2o| 制服人妻中文乱码| 天天一区二区日本电影三级 | 亚洲五月天丁香| 久久伊人香网站| 欧美精品啪啪一区二区三区| 国产精品影院久久| 在线天堂中文资源库| 亚洲国产精品久久男人天堂| netflix在线观看网站| 亚洲国产高清在线一区二区三 | 级片在线观看| 亚洲av五月六月丁香网| 日韩成人在线观看一区二区三区| 琪琪午夜伦伦电影理论片6080| 大香蕉久久成人网| 精品欧美一区二区三区在线| 波多野结衣巨乳人妻| 香蕉久久夜色| 一进一出抽搐gif免费好疼| 黑人巨大精品欧美一区二区蜜桃| 日韩欧美一区二区三区在线观看| 母亲3免费完整高清在线观看| 亚洲欧美精品综合久久99| 国产精品亚洲美女久久久| 欧美乱色亚洲激情| 亚洲精品久久成人aⅴ小说| а√天堂www在线а√下载| 99久久综合精品五月天人人| 国产亚洲精品一区二区www| 成人国产一区最新在线观看| 天堂动漫精品| 久久香蕉激情| 啦啦啦观看免费观看视频高清 | 免费女性裸体啪啪无遮挡网站| 91成年电影在线观看| 国产麻豆成人av免费视频| 亚洲精品av麻豆狂野| 12—13女人毛片做爰片一| 亚洲熟妇中文字幕五十中出| 亚洲av熟女| 成人三级做爰电影| 两性午夜刺激爽爽歪歪视频在线观看 | 欧美 亚洲 国产 日韩一| 人人妻,人人澡人人爽秒播| 天天添夜夜摸| 亚洲成a人片在线一区二区| 精品福利观看| 日韩精品免费视频一区二区三区| 两性夫妻黄色片| 50天的宝宝边吃奶边哭怎么回事| 亚洲中文字幕一区二区三区有码在线看 | 色尼玛亚洲综合影院| 成年版毛片免费区| 91麻豆精品激情在线观看国产| 免费看十八禁软件| 国产人伦9x9x在线观看| 啪啪无遮挡十八禁网站| 国产麻豆成人av免费视频| 午夜久久久久精精品| 色综合婷婷激情| 999久久久精品免费观看国产| 波多野结衣av一区二区av| 免费在线观看完整版高清| 亚洲五月婷婷丁香| 啦啦啦观看免费观看视频高清 | 亚洲精华国产精华精| 黄色丝袜av网址大全| 纯流量卡能插随身wifi吗| 变态另类丝袜制服| 国产麻豆成人av免费视频| 精品国产国语对白av| 精品久久久久久,| 亚洲av熟女| 成人亚洲精品一区在线观看| 老司机午夜福利在线观看视频| 少妇熟女aⅴ在线视频| 一a级毛片在线观看| 国产精品 国内视频| 91大片在线观看| 国产成人欧美| 久久久久久大精品| 国产区一区二久久| 少妇熟女aⅴ在线视频| 免费高清视频大片| 在线观看免费午夜福利视频| 亚洲中文日韩欧美视频| 无遮挡黄片免费观看| 免费搜索国产男女视频| 亚洲在线自拍视频| 欧美亚洲日本最大视频资源| 亚洲av第一区精品v没综合| 亚洲avbb在线观看| 亚洲成人免费电影在线观看| 1024香蕉在线观看| 久9热在线精品视频| 欧美日本视频| 在线观看一区二区三区| 禁无遮挡网站| 波多野结衣巨乳人妻| 久热这里只有精品99| a级毛片在线看网站| 高潮久久久久久久久久久不卡| 男人舔女人的私密视频| 午夜亚洲福利在线播放| 成人18禁高潮啪啪吃奶动态图| 少妇粗大呻吟视频| 国产精品 国内视频| 亚洲欧美日韩高清在线视频| 午夜免费成人在线视频| 亚洲黑人精品在线| 久久久久久久久免费视频了| 国产av在哪里看| av在线天堂中文字幕| 正在播放国产对白刺激| 夜夜看夜夜爽夜夜摸| 淫秽高清视频在线观看| 中文字幕久久专区| 精品人妻在线不人妻| 久久香蕉激情| 美国免费a级毛片| 国产精品二区激情视频| 操美女的视频在线观看| 国产精品1区2区在线观看.| 久久久久久大精品| 欧洲精品卡2卡3卡4卡5卡区| 亚洲全国av大片| 久久人妻熟女aⅴ| 91麻豆av在线| 亚洲中文字幕一区二区三区有码在线看 | 国产精品久久电影中文字幕| 国产午夜福利久久久久久| 日日干狠狠操夜夜爽| 国产精品一区二区免费欧美| 婷婷精品国产亚洲av在线| 欧美在线一区亚洲| 人妻丰满熟妇av一区二区三区| 一级a爱片免费观看的视频| 日韩大码丰满熟妇| 中文字幕精品免费在线观看视频| 18禁国产床啪视频网站| 国产亚洲欧美98| 色哟哟哟哟哟哟| 日日干狠狠操夜夜爽| 免费观看精品视频网站| 国产男靠女视频免费网站| 18禁裸乳无遮挡免费网站照片 | 亚洲色图 男人天堂 中文字幕| 国产成+人综合+亚洲专区| 亚洲男人天堂网一区| 成人亚洲精品av一区二区| ponron亚洲| 一级,二级,三级黄色视频| 精品国产国语对白av| 久久久久久国产a免费观看| 欧美日本视频| 黄频高清免费视频| 色婷婷久久久亚洲欧美| 免费人成视频x8x8入口观看| 欧美精品亚洲一区二区| 国产一区二区三区在线臀色熟女| 淫妇啪啪啪对白视频| 日本欧美视频一区| 免费在线观看黄色视频的| 老汉色∧v一级毛片| 亚洲黑人精品在线| 色播在线永久视频| 老汉色av国产亚洲站长工具| 免费久久久久久久精品成人欧美视频| 男人舔女人的私密视频| 亚洲人成电影观看| 欧美激情久久久久久爽电影 | 欧美久久黑人一区二区| 美女免费视频网站| 最新在线观看一区二区三区| 国产成人欧美| www.www免费av| 欧美日韩精品网址| 丝袜美腿诱惑在线| 亚洲精品av麻豆狂野| 日本精品一区二区三区蜜桃| 欧美日韩亚洲国产一区二区在线观看| 日韩欧美国产一区二区入口| 好男人在线观看高清免费视频 | 国产成人精品久久二区二区免费| 丰满的人妻完整版| 日韩欧美在线二视频| 色在线成人网| 青草久久国产| 亚洲精品美女久久久久99蜜臀| 老司机午夜十八禁免费视频| 变态另类成人亚洲欧美熟女 | 亚洲精品美女久久av网站| 91大片在线观看| 日本 av在线| 精品欧美一区二区三区在线| 亚洲自拍偷在线| 很黄的视频免费| 亚洲专区中文字幕在线| 亚洲人成电影免费在线| 亚洲电影在线观看av| 一边摸一边抽搐一进一小说| av免费在线观看网站| 欧美成人性av电影在线观看| 香蕉久久夜色| 欧美日韩乱码在线| 久久国产亚洲av麻豆专区| 免费高清视频大片| 可以在线观看毛片的网站| 日本精品一区二区三区蜜桃| 国产人伦9x9x在线观看| 91麻豆精品激情在线观看国产| 亚洲avbb在线观看| 啦啦啦免费观看视频1| 91麻豆av在线| 国产成人系列免费观看| 欧美黄色淫秽网站| 免费看a级黄色片| 性少妇av在线| 国产精品影院久久| 日韩一卡2卡3卡4卡2021年| 欧美+亚洲+日韩+国产| 在线观看免费午夜福利视频| 12—13女人毛片做爰片一| 久久香蕉激情| 一区二区三区高清视频在线| 给我免费播放毛片高清在线观看|