• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Degradable Plastics Are Vulnerable to Cracks

    2021-09-24 06:47:20XuxuYngJsonSteckJiweiYngYechengWngZhigngSuo
    Engineering 2021年5期

    Xuxu Yng ,Json Steck ,Jiwei Yng ,Yecheng Wng ,Zhigng Suo ,*

    a John A.Paulson School of Engineering and Applied Sciences,Kavli Institute for Bionano Science and Technology,Harvard University,Cambridge,MA 02138,USA

    b State Key Laboratory of Fluid Power and Mechatronic System,Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province,Department of Engineering Mechanics&Center for X-Mechanics,Zhejiang University,Hangzhou 310027,China

    Keywords:

    ABSTRACT

    1.Introduction

    Degradable plastics were developed soon after the rise of the polymer industry,with applications including packaging[1],agriculture[2],and medicine[3,4].They are used to curtail plastic pollution by replacing nondegradable plastics[5].Degradable polymers gradually break down into low-molecular-weight polymer chains or small molecules in response to stimuli such as ozone[6],water[7],other molecules[8],pH[9],enzymes[10],mechanical load[11],and temperature[12].The kinetics of degradation must fulfill requirements—often conflicting ones—for function and degradation.

    Degradation kinetics have long been characterized by the loss of weight and strength over time[13].For example,when collagen suture fibers are placed in an enzyme solution at 37°C,the weight and strength decrease by 50%and 10%within one day[14].When poly(tetrafluoroethene)samples are placed in a heated air flow with the temperature increasing by about 10°C·min-1,the weight decreases gradually below 550°C but dramatically at about 600°C[15].These methods of characterization are useful,but their exclusive use is misleading when plastics degrade heterogeneously.In fact, heterogeneous degradation is commonly observed.For example,subject to a small mechanical load,crack-like flaws may outrun erosion in speed by orders of magnitude[16].Such cracks,often called corrosion cracks,have been studied extensively in metals,ceramics,and inorganic glasses[17,18].An extensive literature also exists on corrosion cracks in polymers,also referred to as environmental stress cracking[19,20].For elastomers,a salient example is ozone cracking in natural rubber[6,21].For plastics,theoretical and numerical modeling of corrosion cracks has been studied[22,23].However,experimental characterization of cracking in degradable polymers has commenced only recently,with a 2020 study of corrosion cracking in a polyester elastomer[16].Plastics present distinct fracture property from elastomers due to different dissipation mechanisms.It is urgent to ascertain whether similar crack growth takes place in degradable plastics.

    Of all degradable plastics,polyesters are the most widely used.Thus,we chose polylactic acid(PLA)as a model degradable plastic.We cut a crack using scissors in a PLA film,tore the film using an apparatus,and recorded the crack growth using a camera.We found that the crack velocity is insensitive to load in our testing range but is sensitive to humidity and pH.Because the surfaces of plastics inevitably contain crack-like flaws,and because many applications require plastics to carry loads,crack growth under the combined action of mechanics and chemistry is likely to be prevalent.We summarize the evidence of crack growth in various degradable polymers.These cracks can greatly affect the kinetics of degradation.When a degradable plastic is used inside the body of a patient,cracks may fragment the plastic into particles,which may cause medical complications—sometimes fatal ones.

    2.Material and methods

    PLA is a thermoplastic polyester,synthesized by the polycondensation of lactic acid or the ring-opening polymerization of lactide.PLA and its copolymers are biocompatible and bioabsorbable,and therefore stand at the forefront of medical and commercial use[24].A PLA chain consists of repeating units of condensed lactic acid,linked by ester bonds.Under no load and in the presence of water molecules,an ester bond in a PLA chain can react with a water molecule to form a carboxylic acid and an alcohol,resulting in two dangling PLA chains(Fig.1(a))[25–27].Such hydrolysis can cleave ester bonds at multiple sites,either in one chain or in several chains,subsequently creating more dangling chains as well as free-moving short chains.The dangling chains and freemoving short chains cannot sustain force and therefore weaken the mechanical properties of the PLA.When the free-moving chains leak out of the PLA,a loss of weight is measured.

    We hypothesize that hydrolysis takes place more rapidly at a crack front than elsewhere.Even when the PLA carries a small load,the sharp crack front concentrates stress.The ester bonds at the crack front react with water molecules from the environment to form two dangling chains,which lose the capacity to withstand stress.Thus,the crack advances(Fig.1(b)).

    We adopted a tear test to study hydrolytic cracking.We cut a crack with a length of 10 mm using scissors along the centerline of a PLA film(Model GC3X5,ClearBags,Canada)with the dimensions 50 mm×100 mm×40μm.The PLA film was then transferred to a chamber,in which one arm was fixed horizontally on the top of the chamber using double-sided tape,and the other arm was loaded vertically by hanging a constant weight from it(Fig.2(a)).The humidity and pH inside the chamber were controlled by either immersing the specimen in a solution(deionized pure water for pH 7,0.01 mol·L-1hydrochloric acid for pH 2,0.01 mol·L-1sodium hydroxide for pH 12,and 10–5mol·L-1sodium hydroxide for pH 9)or dry air(dried by calcium oxide particles,relative humidity(RH)=5%).The applied weight gave an energy release rate of G=W/t,where W is the weight and t is the thickness of the PLA film(in our test,the thickness is fixed at 40μm).The toughness of the PLA film was found to be 1500 J·m-2,as measured by tear at a rate of 10 mm·min-1using a tensile machine(Instron 3342 Single Column universal testing system(UTS),100 N load cell,USA).At this high tear rate,the scission of polymer chains is entirely mechanical,unaffected by hydrolysis.To study the combined action of mechanics and chemistry,we kept the energy release rate lower than the toughness of the PLA film,so that the crack did not advance rapidly and ester bonds were cleaved by hydrolysis.The chamber was made to be transparent so that the crack extension could be clearly recorded from the top using an optical microscope(5 MP Handheld Digital Microscope Pro,Celestron,USA)(Fig.2(b)).The camera periodically took a photo of the crack front.In one test,the PLA film was immersed in an alkaline solution of pH 12,and the crack extended by 4.5 mm in 10 min(Fig.2(c)).

    3.Results and discussion

    We first studied the effect of an applied load on crack extension.We fixed the PLA films in the chamber,applied various loads,and immersed the films in a sodium hydroxide solution(pH 12).Under varied load,the crack extension was recorded as a function of time(Fig.3(a)).For all loads,the cracks extended with time,reaching 4–8 mm within 20 min.Applying a larger load did not seem to increase the crack extension in the same amount of time.We further calculated the crack velocity from the slope of the curves to be 7.59(±3.48)×10–6m·s-1,insensitive to the applied load.We also tested crack extension under other pHs and found that the crack velocities were insensitive to the applied load under a single fixed pH,but were lower with a lower pH(Fig.3(b)).The crack velocity at a low pH varies over a range of nearly one order of magnitude.This large range can be attributed to measurement errors arising from the very slow crack velocities in low pH solutions.A crack takes hours to propagate one pixel-distance and be detected,and the resultant error is potentially large.Therefore,it is possible that the crack velocity at pH<12 is sensitive to load with a magnitude of change less than one order of magnitude over the load range tested here.

    Fig.1.PLA hydrolysis.(a)An ester bond in the PLA polymer chain cleaves into carboxylic acid and alcohol end groups,resulting in two dangling polymer chains;(b)at the crack front of the PLA,hydrolysis of an ester bond advances the crack.

    Fig.2.Tear test.(a)Schematic of the tear test;(b)photograph of the tear test;(c)the crack extends 4.5 mm in 10 min in an alkaline solution of pH 12.The scale bars represent 1 cm in(b)and 1 mm in(c).

    We next studied the effect of humidity on crack extension.The number of water molecules available to react with the ester bonds at the crack tip may determine the kinetics of hydrolysis.To verify this,we tore PLA films by hanging a weight from the film(energy release rate of 1200 J·m-2)and placed the film and weight in either pure water or dry air with RH=5%.The crack extension was much slower in dry air than in pure water,advancing 0.2 mm in dry air after almost a week and about 0.25 mm in pure water after just two days(Fig.4).Note that the crack extension in air was not perfectly linear.The reason for this nonlinearity is unclear,but the deviation from linear trend line is comparable to the statistical scatter.We treat the crack extension as linear with time and calculate the average crack velocity as the slope of a linear fit.The average crack velocities were estimated to be 1.15×10–9m·s-1in pure water and 3.38×10–10m·s-1in dry air.This experiment confirmed that the hydrolysis of ester bonds governs the degradation of PLA.

    The degradation kinetics of PLA may depend on the pH[28,29].A higher pH provides abundant hydroxide,which acts as a catalyst to accelerate the hydrolytic reaction and thus the crack velocity.To verify this,we tested the PLA films in different pH solutions under an energy release rate ranging from 1100–1450 J·m-2,and recorded the crack extension as a function of time(Fig.5).The crack extension increased with a higher pH.For example,at pH 2,the crack extended 0.175 mm in 6 h,while at pH 12,the crack extended 7 mm in just 15 min.The crack velocity was calculated as the average crack extension divided by the time(Fig.3(b)).The crack velocities varied over several orders of magnitude with pH.For example,the crack velocity in the pH 2 solution was 4.1×10–10m·s-1,whereas the crack velocity in the pH 12 solution was 6.7×10–6m·s-1,approximately four orders of magnitude faster.

    Fig.3.The effect of applied load on crack extension.(a)PLA films are immersed in a solution with pH 12 under various loads(energy release rate:1100–1450 J·m-2);(b)the crack velocities as functions of energy release rate in different pH solutions.

    Fig.4.The effect of humidity on crack extension.Each data point represents the mean of 10–12 specimens and the error bars represent standard deviations.

    We note that under a modest load,below toughness,a crack in PLA greatly outruns erosion.It has been reported that,in the absence of a mechanical load,PLA degrades through either surface or bulk erosion[30].At high pH,PLA degrades through surface erosion;while at low pH,PLA degrades through bulk erosion.It was reported that a cylindrical PLA sample,12.5 mm height and 1.4 mm diameter,lost 55%mass after 50 h in pH>13[30].We use this observation to estimate the erosion velocity at high pH.The initial sample has a surface area of 58.06 mm2and a volume of 19.24 mm3.We take the loss of mass to correspond to a loss of volume of 10.58 mm3.This loss of volume corresponds to the erosion of a layer of thickness 0.18 mm.The data indicates that the erosion is approximately linear in time;therefore,we estimate the erosion velocity to be about 1.01×10-9m·s-1.The erosion velocity at low pHcan be represented by the specific surface degradation rates(SSDR)reported for degradation of PLA in environmental conditions[31].In marine environments,the SSDR has been reported to be 2.38×10-13m·s-1[32].Since typical marine pH values range from 7.6 to 8.4,we compare this SSDR to our crack velocities at pH 7 and 9.At pH 12,the crack velocity is more than 1000 times faster than the estimated erosion velocity at pH>13.At pH 7 and 9,the crack velocities are,respectively,four and five orders of magnitude greater than the SSDR in marine environments.Because of the large discrepancy between the crack velocity and the erosion velocity,we therefore expect that local degradation by crack extension follows a different mechanism than surface or bulk erosion.

    Here,we propose a possible reason for the discrepancy between bulk erosion and local degradation by crack extension.When the polymer chains on the PLA surface are cleaved by hydrolysis,the dangling chains—or polymer debris—are unable to sustain large mechanical loads,yet are still unable to dissolve[29,33].The polymer debris on a flat surface is behind the diffusion front and may inhibit water molecules from reaching the fresh PLA surface underneath(Fig.6(a)).However,under an applied load,a crack concentrates stress at the crack front,which breaks the debris layer and creates a path for water molecules to reach the fresh PLA surface underneath(Fig.6(b)).Once the load is large enough to break the debris,the local degradation rate by crack extension increases dramatically,much faster than the rate of bulk erosion.Increasing the load further can widen the path for water molecules to reach the crack tip and change the energy landscape of the hydrolysis reaction,but for the load range tested in this paper,the effect on the local degradation rate is negligible.During our tests,we observed that the PLA film,although fractured into two strips,remained in the form of bulk material.

    We note that the observed load insensitivity of crack velocity is limited to loads between 1100 and 1450 J·m-2.A load sensitive regime may exist for loads outside of this range.For example,it has been observed that a brief load-sensitive regime of crack growth exists in a degradable poly(glycerol sebacate)elastomer before transitioning to a load insensitive regime[16].Similarly,both regimes were observed in a hybrid organic and inorganic molecular network,where a process zone separated the crack tip from the environment when the crack velocity was insensitive to small loads[34].It is possible that the mechanism of stress corrosion cracking in PLA is related to,among other factors,the crystallinity of the polymer,the pH,and the magnitude of the applied load.However,a detailed characterization of this mechanism is beyond the scope of this work.

    Fig.5.Crack extension as a function of time at different pH:(a)pH 2;(b)pH 7;(c)pH 9;and(d)pH 12.Each data point represents the mean of 10–12 specimens and the error bars represent standard deviations.

    Fig.6.Bulk degradation versus local degradation.(a)A water molecule must pass through the debris layer to reach the fresh PLA surface;(b)at the crack tip,the debris breaks and a water molecule can easily reach the fresh PLA underneath.

    Aliphatic polyesters are the most widely used environmentally degradable plastics[35].They include plastics such as PLA,polycaprolactone(PCL),polyhydroxybutyrate(PHB),and polyglycolic acid(PGA).All polyesters can degrade through the hydrolysis of ester bonds.Therefore,we expect that,like PLA,other aliphatic polyesters will also suffer crack growth under the combined action of a small mechanical load and water molecules.Indeed,cracks normal to the loading direction have been observed in polyethylene terephthalate(PET)fibers after in vivo implantation,indicative of stress corrosion cracking[36].Furthermore,hydrolytic degradation has been widely observed in a variety of other plastics besides polyesters;examples include the hydrolysis of glycosidic bonds in polysaccharides[37,38]and urethane bonds in polyurethane[39,40].In addition,materials that are not classified as degradable,such as poly(dimethyl siloxane),have been shown to exhibit hydrolytic crack growth under a mechanical load[41].Different degradation chemistries can lead to different degradation kinetics.Moreover,since the crack velocity corresponds to the rate of bond cleavage,sub-critical crack growth can be used to characterize the energy landscape of degradation[41].

    4.Conclusions

    In summary,we studied hydrolytic crack growth in PLA.We have confirmed the hypothesis that,when a load is applied at a magnitude below that which causes fast fracture,a crack in PLA outruns bulk erosion.The crack velocity is insensitive to the magnitude of the load but is sensitive to humidity and pH.We propose a mechanism for the large difference between the crack velocity and the erosion velocity due to bulk degradation.Our results suggest that other plastics that degrade through hydrolysis will also be susceptible to hydrolytic crack growth,and thus solicit further study.Hydrolytic crack growth can lead to premature failure and fragmentation of the material.Applications in packaging and medicine require accurate control of the mechanical properties of a degradable plastic throughout its lifetime,and fragmentation can lead to microplastics in the environment and complications in medical applications(e.g.,aseptic loosening).Furthermore,recyclable and self-healing materials are being developed that do not degrade through hydrolysis,yet may still suffer stress corrosion,including materials with dynamic covalent disulfide bonds[42]and degradable silyl ether monomers[43].Since the crack velocity corresponds to the rate of bond cleavage,degradation kinetics can be quantified by the kinetic theory of bond cleavage.This study develops a new path for studying degradation by cracking.Prompted by these findings,we have started the development of degradable polymers that resist hydrolytic crack growth.Taken together,this series of work may aid the development of degradable polymers for medicine and sustainability,where functional groups and triggers for degradation are not restricted to ester bonds and water molecules.

    Acknowledgements

    The work at Harvard University,USA was supported by National Science Foundation (NSF)Materials Research Science and Engineering Centers(MRSEC)(DMR-2011754).X.Yang was a visiting student at Harvard University supported by the China Scholarship Council.J.Steck acknowledges support from the NSF Graduate Research Fellowship(DGE1745303).

    Compliance with ethics guidelines

    Xuxu Yang,Jason Steck,Jiawei Yang,Yecheng Wang,and Zhigang Suo declare that they have no conflict of interest or financial conflicts to disclose.

    久久久精品国产亚洲av高清涩受| 欧美国产精品va在线观看不卡| 777久久人妻少妇嫩草av网站| 波多野结衣高清无吗| 欧美黄色片欧美黄色片| 1024视频免费在线观看| 色尼玛亚洲综合影院| 久久久久国产精品人妻aⅴ院| 此物有八面人人有两片| or卡值多少钱| 免费在线观看黄色视频的| 亚洲在线自拍视频| 亚洲成人久久性| 日韩 欧美 亚洲 中文字幕| 丝袜美腿诱惑在线| 女警被强在线播放| 可以在线观看毛片的网站| 国产午夜福利久久久久久| 在线永久观看黄色视频| 男人的好看免费观看在线视频 | 看免费av毛片| 亚洲精品国产区一区二| 在线天堂中文资源库| 高清毛片免费观看视频网站| 午夜久久久久精精品| 成年版毛片免费区| 久久精品国产清高在天天线| 18禁裸乳无遮挡免费网站照片 | 2021天堂中文幕一二区在线观 | 曰老女人黄片| 亚洲精品久久成人aⅴ小说| 满18在线观看网站| svipshipincom国产片| 白带黄色成豆腐渣| 日本 av在线| 69av精品久久久久久| www国产在线视频色| 国产伦在线观看视频一区| 人人妻,人人澡人人爽秒播| 女生性感内裤真人,穿戴方法视频| 亚洲成av人片免费观看| 看免费av毛片| 国产男靠女视频免费网站| a级毛片a级免费在线| 国产成人av教育| 99国产精品99久久久久| 日本免费一区二区三区高清不卡| 国产精品爽爽va在线观看网站 | 一区二区三区激情视频| 亚洲熟妇中文字幕五十中出| 国产麻豆成人av免费视频| 真人做人爱边吃奶动态| 亚洲精品在线观看二区| 午夜亚洲福利在线播放| 国产精品久久电影中文字幕| 日本黄色视频三级网站网址| 国产精品日韩av在线免费观看| 在线观看日韩欧美| 欧美乱色亚洲激情| www日本黄色视频网| 亚洲av熟女| 亚洲avbb在线观看| 亚洲中文字幕日韩| 国产成年人精品一区二区| 香蕉国产在线看| 91老司机精品| 少妇粗大呻吟视频| 成人免费观看视频高清| 精品欧美一区二区三区在线| 欧美日韩精品网址| 美女高潮喷水抽搐中文字幕| 人人妻人人澡人人看| 看黄色毛片网站| 成人国产一区最新在线观看| 一夜夜www| 亚洲avbb在线观看| 亚洲中文字幕日韩| 亚洲人成77777在线视频| 中文字幕精品亚洲无线码一区 | 黄片小视频在线播放| 日韩高清综合在线| 国内精品久久久久精免费| 黄色 视频免费看| 国产三级黄色录像| 免费看日本二区| www日本在线高清视频| 精华霜和精华液先用哪个| 亚洲欧美一区二区三区黑人| 欧美大码av| 亚洲三区欧美一区| 十八禁网站免费在线| 麻豆国产av国片精品| 久久 成人 亚洲| 嫩草影视91久久| 叶爱在线成人免费视频播放| 久久精品91无色码中文字幕| 日韩欧美在线二视频| av免费在线观看网站| 国产91精品成人一区二区三区| 久久久久九九精品影院| 亚洲精品av麻豆狂野| 国产精品影院久久| 欧美日韩中文字幕国产精品一区二区三区| 18禁黄网站禁片午夜丰满| 黑人操中国人逼视频| 久久久国产欧美日韩av| 久久精品成人免费网站| 久久国产亚洲av麻豆专区| 此物有八面人人有两片| 亚洲av第一区精品v没综合| 国产成人欧美在线观看| 欧美三级亚洲精品| 国产精品爽爽va在线观看网站 | 老汉色∧v一级毛片| 长腿黑丝高跟| 一级作爱视频免费观看| 久久久久久久久免费视频了| 99国产精品一区二区三区| 精品国产国语对白av| 无限看片的www在线观看| 手机成人av网站| 神马国产精品三级电影在线观看 | 日韩三级视频一区二区三区| 成人午夜高清在线视频 | 亚洲全国av大片| 久久天堂一区二区三区四区| 日本免费a在线| 免费在线观看黄色视频的| 久久人妻av系列| 国产乱人伦免费视频| 亚洲精品一区av在线观看| av有码第一页| 一本一本综合久久| 日韩欧美国产在线观看| 亚洲最大成人中文| 亚洲男人天堂网一区| 一进一出抽搐动态| 侵犯人妻中文字幕一二三四区| 亚洲精品色激情综合| 99热6这里只有精品| 搞女人的毛片| 丰满的人妻完整版| 国内精品久久久久久久电影| 免费在线观看视频国产中文字幕亚洲| www.999成人在线观看| 国产成人一区二区三区免费视频网站| 欧美日韩精品网址| 欧美激情极品国产一区二区三区| 亚洲国产中文字幕在线视频| 成人国产一区最新在线观看| 日日干狠狠操夜夜爽| 亚洲欧洲精品一区二区精品久久久| 日韩欧美 国产精品| 精品国产乱码久久久久久男人| 法律面前人人平等表现在哪些方面| 欧美三级亚洲精品| 亚洲av熟女| 亚洲在线自拍视频| 国产精品香港三级国产av潘金莲| 亚洲成人久久爱视频| 欧美 亚洲 国产 日韩一| 久久99热这里只有精品18| 精品欧美国产一区二区三| 亚洲av片天天在线观看| 国产精品,欧美在线| 久99久视频精品免费| 日本熟妇午夜| 亚洲av成人av| 美女扒开内裤让男人捅视频| 嫩草影视91久久| 日韩av在线大香蕉| 亚洲中文日韩欧美视频| 亚洲第一青青草原| 特大巨黑吊av在线直播 | 99久久国产精品久久久| 一二三四在线观看免费中文在| 国产午夜精品久久久久久| 久久久国产成人精品二区| 久热爱精品视频在线9| 韩国av一区二区三区四区| 国产三级在线视频| 两性夫妻黄色片| 国产精品亚洲美女久久久| 国产精品久久久人人做人人爽| 久久香蕉激情| 亚洲色图av天堂| 久久精品影院6| 国产精品亚洲av一区麻豆| 午夜两性在线视频| 国产精品av久久久久免费| 亚洲天堂国产精品一区在线| 亚洲第一av免费看| 国产国语露脸激情在线看| 手机成人av网站| 19禁男女啪啪无遮挡网站| 老司机午夜福利在线观看视频| 动漫黄色视频在线观看| 欧美日韩乱码在线| 欧美最黄视频在线播放免费| 国产蜜桃级精品一区二区三区| 国产国语露脸激情在线看| 国产乱人伦免费视频| 国产一区二区激情短视频| 欧美另类亚洲清纯唯美| 久久精品人妻少妇| 国产色视频综合| 欧美绝顶高潮抽搐喷水| 成人亚洲精品一区在线观看| 亚洲人成网站高清观看| av欧美777| 国产国语露脸激情在线看| 午夜激情av网站| videosex国产| 亚洲在线自拍视频| 国产一区在线观看成人免费| 日本一区二区免费在线视频| 妹子高潮喷水视频| 亚洲av熟女| 中文字幕av电影在线播放| 日韩精品免费视频一区二区三区| 日本一区二区免费在线视频| 国产一级毛片七仙女欲春2 | 丝袜在线中文字幕| 午夜福利在线观看吧| 9191精品国产免费久久| 国产黄a三级三级三级人| 美女扒开内裤让男人捅视频| 久久国产乱子伦精品免费另类| 男人的好看免费观看在线视频 | 美女免费视频网站| 精品一区二区三区四区五区乱码| 亚洲中文字幕一区二区三区有码在线看 | 国产亚洲av高清不卡| 嫩草影院精品99| 国产极品粉嫩免费观看在线| 热re99久久国产66热| 亚洲国产毛片av蜜桃av| 国产欧美日韩一区二区精品| 熟女电影av网| 人成视频在线观看免费观看| 亚洲自偷自拍图片 自拍| 日本精品一区二区三区蜜桃| 伦理电影免费视频| 国产主播在线观看一区二区| 在线av久久热| 午夜福利在线在线| 女警被强在线播放| 免费在线观看影片大全网站| 亚洲五月婷婷丁香| 久久国产精品影院| 成在线人永久免费视频| 黄片播放在线免费| 男人舔女人下体高潮全视频| 首页视频小说图片口味搜索| 自线自在国产av| 在线观看午夜福利视频| 亚洲色图av天堂| 国产精品精品国产色婷婷| 高潮久久久久久久久久久不卡| av在线播放免费不卡| 非洲黑人性xxxx精品又粗又长| 国产黄片美女视频| 狠狠狠狠99中文字幕| www.熟女人妻精品国产| 国语自产精品视频在线第100页| 国产av在哪里看| 国产三级黄色录像| 国产日本99.免费观看| 婷婷精品国产亚洲av| 丝袜美腿诱惑在线| 色综合婷婷激情| 欧美黄色片欧美黄色片| 中文在线观看免费www的网站 | 国产亚洲精品久久久久5区| 我的亚洲天堂| 99热只有精品国产| 黄色丝袜av网址大全| av中文乱码字幕在线| 麻豆成人午夜福利视频| 日本黄色视频三级网站网址| 国产成人影院久久av| 两性午夜刺激爽爽歪歪视频在线观看 | 久久久精品欧美日韩精品| xxx96com| 1024香蕉在线观看| 国产av一区在线观看免费| 欧美日本亚洲视频在线播放| 日本撒尿小便嘘嘘汇集6| 国产成人欧美| 后天国语完整版免费观看| 久久国产精品影院| 中国美女看黄片| 欧美日韩瑟瑟在线播放| 国产黄色小视频在线观看| 精品高清国产在线一区| 日韩三级视频一区二区三区| 欧美最黄视频在线播放免费| 国产欧美日韩精品亚洲av| 国产人伦9x9x在线观看| 国产蜜桃级精品一区二区三区| 亚洲第一欧美日韩一区二区三区| 国产精品影院久久| 老司机午夜十八禁免费视频| 99国产极品粉嫩在线观看| 欧美日韩福利视频一区二区| 久久久久久免费高清国产稀缺| 麻豆av在线久日| 久久久久国产精品人妻aⅴ院| 叶爱在线成人免费视频播放| 精品高清国产在线一区| 91成年电影在线观看| 国产精品电影一区二区三区| 亚洲精品美女久久av网站| 欧美久久黑人一区二区| 免费电影在线观看免费观看| 国产高清videossex| 一a级毛片在线观看| 国产精品亚洲av一区麻豆| 人人妻,人人澡人人爽秒播| 亚洲成人久久爱视频| 老司机靠b影院| 桃红色精品国产亚洲av| 亚洲精品在线美女| 制服诱惑二区| 日韩欧美 国产精品| 一本一本综合久久| 亚洲成人久久性| 久久午夜亚洲精品久久| 亚洲中文字幕一区二区三区有码在线看 | 国产精品久久久人人做人人爽| 色综合欧美亚洲国产小说| 国产男靠女视频免费网站| 非洲黑人性xxxx精品又粗又长| 国产精品综合久久久久久久免费| 午夜精品久久久久久毛片777| 亚洲中文字幕日韩| www.www免费av| 亚洲欧美精品综合一区二区三区| 免费看十八禁软件| 亚洲国产高清在线一区二区三 | 757午夜福利合集在线观看| 国内毛片毛片毛片毛片毛片| 亚洲自偷自拍图片 自拍| 叶爱在线成人免费视频播放| av电影中文网址| 久久久精品欧美日韩精品| 久久久久久久久中文| 久久久久久久午夜电影| 91在线观看av| 免费女性裸体啪啪无遮挡网站| 国产成+人综合+亚洲专区| 国产精品av久久久久免费| 国产亚洲精品综合一区在线观看 | 两人在一起打扑克的视频| 亚洲av成人不卡在线观看播放网| av片东京热男人的天堂| 欧美av亚洲av综合av国产av| 99久久综合精品五月天人人| 久久亚洲精品不卡| 欧美大码av| 国产精品,欧美在线| 久久国产精品人妻蜜桃| 国产私拍福利视频在线观看| 久久人妻av系列| 在线免费观看的www视频| 久久国产精品人妻蜜桃| 亚洲精品美女久久av网站| 脱女人内裤的视频| 淫秽高清视频在线观看| 中文字幕精品免费在线观看视频| 少妇裸体淫交视频免费看高清 | 欧美三级亚洲精品| 99精品久久久久人妻精品| 久久热精品热| 中文字幕精品亚洲无线码一区| 国产精品久久久久久亚洲av鲁大| 欧美3d第一页| 午夜a级毛片| 亚洲不卡免费看| 久久99热这里只有精品18| 精品久久久久久久久久久久久| 亚洲av.av天堂| 国产大屁股一区二区在线视频| 日日撸夜夜添| 免费观看精品视频网站| 露出奶头的视频| 国产精品不卡视频一区二区| 日本免费a在线| 人妻制服诱惑在线中文字幕| 国产精品久久视频播放| 永久网站在线| 午夜激情欧美在线| 亚洲乱码一区二区免费版| 中出人妻视频一区二区| 国产不卡一卡二| 国产91av在线免费观看| 国产精品免费一区二区三区在线| 免费观看精品视频网站| 舔av片在线| 亚洲国产日韩欧美精品在线观看| 日本a在线网址| 伦理电影大哥的女人| 欧美xxxx黑人xx丫x性爽| 你懂的网址亚洲精品在线观看 | 午夜老司机福利剧场| 在线天堂最新版资源| 日本欧美国产在线视频| 国产免费一级a男人的天堂| 国产成人aa在线观看| 亚洲真实伦在线观看| 免费看av在线观看网站| 久久婷婷人人爽人人干人人爱| 亚洲天堂国产精品一区在线| 国产成人福利小说| av在线亚洲专区| av视频在线观看入口| .国产精品久久| 午夜亚洲福利在线播放| 亚洲色图av天堂| 99riav亚洲国产免费| 国产精品一区二区性色av| 欧美xxxx性猛交bbbb| 欧美日本亚洲视频在线播放| 成年av动漫网址| 精品一区二区免费观看| 99热精品在线国产| 免费看美女性在线毛片视频| 亚洲经典国产精华液单| 久久午夜亚洲精品久久| 99国产极品粉嫩在线观看| 久久草成人影院| 婷婷六月久久综合丁香| 免费观看精品视频网站| 久久综合国产亚洲精品| 国产探花极品一区二区| 18禁在线无遮挡免费观看视频 | 最近2019中文字幕mv第一页| 深夜a级毛片| 亚洲国产精品久久男人天堂| 亚洲av成人av| 国产成人一区二区在线| 久久午夜福利片| 国产精品一区二区性色av| 精品无人区乱码1区二区| 一级a爱片免费观看的视频| 日本三级黄在线观看| 五月玫瑰六月丁香| 黄色欧美视频在线观看| 99九九线精品视频在线观看视频| 精品少妇黑人巨大在线播放 | 国产精品精品国产色婷婷| 亚洲中文日韩欧美视频| АⅤ资源中文在线天堂| 亚洲天堂国产精品一区在线| 最好的美女福利视频网| 给我免费播放毛片高清在线观看| 色哟哟哟哟哟哟| 三级毛片av免费| 国产国拍精品亚洲av在线观看| 精品久久久久久久人妻蜜臀av| 99九九线精品视频在线观看视频| 波野结衣二区三区在线| 午夜免费激情av| 天天躁夜夜躁狠狠久久av| 久久久国产成人精品二区| 日韩制服骚丝袜av| 啦啦啦韩国在线观看视频| 免费看美女性在线毛片视频| 亚洲成人av在线免费| 亚洲欧美中文字幕日韩二区| 国产 一区精品| 国产在视频线在精品| 亚洲国产欧美人成| 欧美激情久久久久久爽电影| 男人和女人高潮做爰伦理| av天堂在线播放| 中文字幕免费在线视频6| 国产一区亚洲一区在线观看| 中文资源天堂在线| 国模一区二区三区四区视频| 欧美一区二区精品小视频在线| 久久久国产成人精品二区| 亚洲综合色惰| 亚洲人成网站在线观看播放| 女人十人毛片免费观看3o分钟| 日本黄色视频三级网站网址| 99热这里只有是精品在线观看| 婷婷六月久久综合丁香| 国产激情偷乱视频一区二区| 日韩av在线大香蕉| 成人毛片a级毛片在线播放| 最新在线观看一区二区三区| av免费在线看不卡| 97超碰精品成人国产| 国产精品久久久久久av不卡| 国内少妇人妻偷人精品xxx网站| 极品教师在线视频| 欧美精品国产亚洲| 天天一区二区日本电影三级| 精品欧美国产一区二区三| 日本与韩国留学比较| 亚洲图色成人| 欧美一区二区国产精品久久精品| 看十八女毛片水多多多| 精品人妻熟女av久视频| 日韩精品有码人妻一区| 国产伦精品一区二区三区四那| av视频在线观看入口| 精品一区二区三区人妻视频| 干丝袜人妻中文字幕| 久久中文看片网| 久久亚洲国产成人精品v| 国模一区二区三区四区视频| 神马国产精品三级电影在线观看| 直男gayav资源| 女生性感内裤真人,穿戴方法视频| 久久久久国产网址| 亚洲欧美中文字幕日韩二区| 男人舔女人下体高潮全视频| 国产欧美日韩精品一区二区| 99久久无色码亚洲精品果冻| 男女啪啪激烈高潮av片| 欧美国产日韩亚洲一区| 91久久精品国产一区二区三区| 成年版毛片免费区| 最近2019中文字幕mv第一页| 国产伦精品一区二区三区视频9| 99精品在免费线老司机午夜| 亚洲av熟女| 日韩欧美 国产精品| 色av中文字幕| 国国产精品蜜臀av免费| 亚洲精品一卡2卡三卡4卡5卡| 51国产日韩欧美| 久久99热这里只有精品18| 久久久久久久久中文| 久久午夜福利片| 99国产极品粉嫩在线观看| av黄色大香蕉| 欧美一区二区亚洲| 亚洲国产高清在线一区二区三| 啦啦啦啦在线视频资源| 国产精品人妻久久久影院| 不卡视频在线观看欧美| 别揉我奶头~嗯~啊~动态视频| 搡老岳熟女国产| 精品国内亚洲2022精品成人| 色播亚洲综合网| 久久久久久九九精品二区国产| 人妻久久中文字幕网| 色哟哟·www| 亚洲精品一卡2卡三卡4卡5卡| 久久人人爽人人片av| 色吧在线观看| 国产探花极品一区二区| 国产人妻一区二区三区在| 成人国产麻豆网| 午夜免费男女啪啪视频观看 | 国产乱人视频| 国产在视频线在精品| 一级毛片久久久久久久久女| av在线蜜桃| 校园春色视频在线观看| 亚洲无线在线观看| 国产精品久久久久久久电影| 久久草成人影院| 国产精品三级大全| 亚洲成人av在线免费| 干丝袜人妻中文字幕| 长腿黑丝高跟| 人人妻人人澡人人爽人人夜夜 | 久久久久久九九精品二区国产| 高清毛片免费看| 我要看日韩黄色一级片| 国产一级毛片七仙女欲春2| 午夜福利成人在线免费观看| 男女边吃奶边做爰视频| 欧美日韩综合久久久久久| 成人二区视频| 国产一区二区激情短视频| 成人亚洲欧美一区二区av| 干丝袜人妻中文字幕| 变态另类丝袜制服| av天堂中文字幕网| 性欧美人与动物交配| 麻豆国产97在线/欧美| 亚洲成人av在线免费| 一级av片app| 成年女人永久免费观看视频| 99视频精品全部免费 在线| 91精品国产九色| 国国产精品蜜臀av免费| 熟女电影av网| 色av中文字幕| 中国国产av一级| 亚洲第一区二区三区不卡| 晚上一个人看的免费电影| 精品久久国产蜜桃| 在线观看免费视频日本深夜| 女人被狂操c到高潮| 国产精品三级大全| 高清午夜精品一区二区三区 | 看十八女毛片水多多多| 桃色一区二区三区在线观看| 哪里可以看免费的av片| 精品不卡国产一区二区三区| 中出人妻视频一区二区| 久久久久久大精品| 亚洲第一区二区三区不卡| 亚洲久久久久久中文字幕| 欧美性猛交╳xxx乱大交人| 12—13女人毛片做爰片一| 久久精品国产亚洲av天美| 日韩成人av中文字幕在线观看 | 色av中文字幕|