王磊,張勇*,舒永錄
一類非線性混沌動力系統(tǒng)分析
王磊1,張勇1*,舒永錄2
(1.河南工業(yè)職業(yè)技術(shù)學(xué)院 基礎(chǔ)教學(xué)部,河南 南陽 473000; 2.重慶大學(xué)數(shù)學(xué)與統(tǒng)計學(xué)院,重慶 401331)
根據(jù)混沌動力系統(tǒng)的穩(wěn)定性理論,通過引入廣義李雅普諾夫函數(shù),研究了一類廣義大氣混沌動力系統(tǒng)的全局指數(shù)吸引集與最終界,并給出了相應(yīng)的Matlab仿真。研究結(jié)果可為研究大氣混沌動力系統(tǒng)的運(yùn)動提供理論依據(jù),也可用于研究該混沌動力系統(tǒng)的混沌控制和同步。
大氣混沌動力系統(tǒng);混沌吸引子;全局吸引集;混沌控制
1963年,LORENZ[1]發(fā)現(xiàn)了具有蝴蝶效應(yīng)的混沌吸引子,稱Lorenz混沌吸引子,其為研究混沌動力系統(tǒng)的第一個混沌模型。隨后眾多學(xué)者關(guān)注并研究Lorenz混沌系統(tǒng)的動力學(xué)特性[2-10],并引發(fā)了對其他新混沌系統(tǒng)的探索和研究熱潮[11-31]。高維混沌系統(tǒng)在混沌保密通信、自動控制理論等領(lǐng)域具有較好的應(yīng)用前景[20],因此,研究新型高維混沌系統(tǒng)的非線性動力學(xué)特性很有必要。
一類高維大氣混沌動力系統(tǒng)的數(shù)學(xué)模型為[21]
其中,為正參數(shù)。為描述大氣氣流旋轉(zhuǎn)的變量,為普朗特常數(shù),為瑞利常數(shù),為幾何參數(shù),為控制小參數(shù)。當(dāng)時,式(1)在三維空間上的混沌吸引子如圖1所示;在平面上的混沌吸引子如圖2所示。
圖2 式(1)在平面上的混沌吸引子
考慮自治動力系統(tǒng)
則稱式(2)存在全局指數(shù)吸引集
文獻(xiàn)[21]對式(1)的奇點(diǎn)穩(wěn)定性、奇點(diǎn)局部分岔、混沌控制和混沌同步等進(jìn)行研究,下面將根據(jù)動力系統(tǒng)穩(wěn)定性理論研究式(1)的最終界和全局指數(shù)吸引集。
引理1 定義
則有
證明 由對稱性,顯然有
求偏導(dǎo)數(shù),令
或
此時有
引理2[28]定義集合
則有
其為式(1)的最終有界集和不變集,且
證明 定義
有
定義
引入新變量
則有
由引理1,有
證畢。
其為式(1)軌線的最終有界集,其中,
因此,混沌吸引子在xoyz空間中的界估計如圖3所示。
為式(1)軌線的最終有界集,其中,
則有
定義
由引理2,可得
證畢。
此為式(1)的最終界,其在yoz平面上的混沌吸引子界估計如圖4所示。
雖然由定理1和定理2得到的混沌系統(tǒng)式(1)的最終解是有界的,但尚未知式(1)是否存在全局指數(shù)吸引集,為此,估計式(1)從吸引集外的軌線進(jìn)入吸引集軌線的速率,有
則式(1)有指數(shù)估計式:
從而有
其為式(1)的全局指數(shù)吸引集。
證明 定義
求導(dǎo)數(shù)
利用比較定理對上式兩邊積分,有
式(12)兩邊取上極限,有
因而
為式(1)的全局指數(shù)吸引集。
證畢。
為式(1)的全局指數(shù)吸引集,其中,
根據(jù)混沌動力系統(tǒng)穩(wěn)定性理論,研究了一類廣義大氣混沌動力系統(tǒng)的全局指數(shù)吸引集和最終界,并給出了相應(yīng)結(jié)果的Matlab仿真。
[1]LORENZ E N. Deterministic nonperiodic flow[J]. Journal of the Atmospheric Sciences,1963,20(2): 130-141. DOI:10.1175/1520-0469(1963)020〈0130:dnf〉2.0.co;2
[2]DOEDEL E J,KRAUSKOPF B,OSINGA H M. Global organization of phase space in the transition to chaos in the Lorenz system[J]. Nonlinearity,2015,28(11): 113-139. DOI:10.1088/0951-7715/28/11/r113
[3]SPARROW C. The Lorenz Equations: Bifurcations,Chaos,and Strange Attractors[M]. New York:Springer Science & Business Media,2012: 20-30.
[4]STEWART I. The Lorenz attractor exists[J]. Nature,2000,406: 948-949. DOI:10.1038/35023206
[5]LEONID A B. Short-and long-term forecast for chaotic and random systems (50 years after Lorenz's paper)[J]. Nonlinearity,2014,27: 51-60. DOI:10.1088/0951-7715/27/9/r51
[6]POGROMSKY A Y,SANTOBONI G,NIJMEIJER H. An ultimate bound on the trajectories of the Lorenz systems and its applications[J]. Nonlinearity,2003,16:1597-1605. DOI:10.1088/0951-7715/16/5/303
[7]LIBRE J,ZHANG X. Invariant algebraic surfaces of the Lorenz system[J]. Journal of Mathematical Physics,2002,43: 1622-1645. DOI:10.1063/1. 1435078
[8]ZHANG F C,LIAO X F,ZHAGN G Y. Some new results for the generalized Lorenz system[J]. Qualitative Theory of Dynamical Systems,2017,16(3): 749-759. DOI:10.1007/s12346-016-0206-z
[9]ZHANG F C,ZHAGN G Y. Further results on ultimate bound on the trajectories of the Lorenz system[J]. Qualitative Theory of Dynamical Systems,2016,15(1): 221-235. DOI:10.1007/s12346-015-0137-0
[10]ZHANG F C,MU C L,ZHOU S M,et al. New results of the ultimate bound on the trajectories of the family of the Lorenz systems[J]. Discrete and Continuous Dynamical Systems(Series B),2015,20(4): 1261-1276. DOI:10.1016/j.cnsns.2010.05.032
[11]YANG T,YANG Q G. A 3D autonomous system with infinitely many chaotic attractors[J]. International Journal of Bifurcation and Chaos,2019,29(12): 1950166. DOI:10.1142/s021812 7419501669
[12]CHEN G R,UETA T. Yet another chaotic attractor[J]. International Journal of Bifurcation and Chaos,1999,9(7): 1465-1466.
[13]LU J H,CHEN G R. A new chaotic attractor coined[J]. International Journal of Bifurcation and Chaos,2002,12(3): 659-661. DOI:10.1142/s0218 127402004620
[14]LU J,CHEN G,CHENG D,et al. Bridge the gap between the Lorenz system and the Chen system[J]. International Journal of Bifurcation and Chaos,2002,12(12): 2917-2926. DOI:10.1142/s021812740200631x
[15]ZHANG F C,LIAO X F,MU C L,et al. On global boundedness of the Chen system[J]. Discrete and Continuous Dynamical Systems(Series B),2017,22(4): 1673-1681. DOI:10.3934/dcdsb.2017080
[16]ZHANG F C,LIAO X F,ZHAGN G Y. On the global boundedness of the Lü system[J]. Applied Mathematics and Computation,2016,284: 332-339. DOI:10.1016/j.amc.2016.03.017
[17]ZHANG F C,CHEN R,WANG X Y,et al. Dynamics of a new 5D hyperchaotic system of Lorenz type[J]. International Journal of Bifurcation and Chaos,2018,28(3): 1850036.
[18]ZHANG F C,LIAO X F,ZHAGN G Y,et al. Dynamical analysis of the generalized Lorenz systems[J]. Journal of Dynamical and Control Systems,2017,23(2): 349-362. DOI:10.1007/s10883-016-9325-8
[19]ZHANG F C,LIAO X F,ZHAGN G Y,et al. Dynamical behaviors of a generalized Lorenz family[J]. Discrete and Continuous Dynamical Systems(Series B),2017,22(10): 3707-3720. DOI:10. 3934/dcdsb.2017184
[20]FOWLER A C,GIBBON J D,MCGUINNESS M J. The complex Lorenz equations[J]. Physica D,1982(4): 139-163. DOI:10.1016/0167-2789(82)90057-4
[21]WANG H J,LI X Y. Infinitely many heteroclinic orbits of a complex Lorenz system[J]. International Journal of Bifurcation and Chaos,2017,27: 1750110. DOI:10.1142/s0218127417501103
[22]LIU Z L,WANG C N,JIN W Y,et al. Capacitor coupling induces synchronization between neural circuits[J]. Nonlinear Dynamics,2019,97: 2661-2673. DOI:10.1007/s11071-019-05155-7
[23]ZHAO Y,MA J,YAO Y G,et al. Synchronization realization between two nonlinear circuits via an induction coil coupling[J]. Nonlinear Dynamics,2019,96: 205-217. DOI:10.1007/s11071-019-04784-2
[24]ZHAO Y,ZHOU P,ALSAEDI A,et al. Energy flow-guided synchronization between chaotic circuits[J]. Applied Mathematics and Computation,2020,374: 124998. DOI:10.1016/j.amc.2019.124998
[25]MA J,WU F Q,JIN W Y,et al. Calculation of Hamilton energy and control of dynamical systems with different types of attractors[J]. Chaos,2017,27(5): 053108. DOI:10.1063/1.4983469
[26]WANG X Y,F(xiàn)ENG L,LI R,et al. A fast image encryption algorithm based on non-adjacent dynamically coupled map lattice model[J]. Nonlinear Dynamics,2019,95: 2797-2824. DOI:10.1007/s11071-018-4723-y
[27]WANG X Y,ZHAGN J J,ZHANG F C,et al. New chaotical image encryption algorithm based on Fisher-Yatess scrambling and DNA coding[J]. Chinese Physics B,2019,28(4): 040504. DOI:10.1088/1674-1056/28/4/040504
[28]ZHANG F C,LI Y H,MU C L. Bounds of solutions of a kind of hyper-chaotic systems and application[J]. Journal of Mathematical Research with Applications,2013,33(3): 345-352.
[29]LI D M,WU X Q,LU J A. Estimating the ultimate bound and positively invariant set for the hyperchaotic Lorenz-Haken system[J]. Chaos,Solitons & Fractals,2009,39: 1290-1296. DOI:10.1016/j.chaos.2007.06.038
[30]LIAO X X,F(xiàn)U Y L,XIE S L,et al. Globally exponentially attractive sets of the family of Lorenz systems[J]. Science in China (Series F): Information Sciences,2008,51:283-292. DOI:10. 1007/s11432-008-0024-2
[31]ZHANG F C. Analysis of a Lorenz-like chaotic system by Lyapunov functions[J]. Complexity,2019,2019: 7812769. DOI:10.1155/2019/7812769
Analysis on a nonlinear chaos dynamical system
WANG Lei1, ZHANG Yong1, SHU Yonglu2
(1473000;2401331)
Based on the stability theory of chaotic dynamical system, the global attractive sets and the ultimate bound set of a class of a generalized atmospheric chaotic system are studied by introducing the generalized Lyapunov function. The corresponding Matlab simulation is demonstrated. Our results provide a theoretical basis for studying the motion of the atmospheric chaotic system and can also be used to study chaos control and chaos synchronization of this chaotic system.
atmospheric chaotic dynamical system; chaotic attractors; globally attractive set; chaos control
10.3785/j.issn.1008-9497.2021.05.005
O 241.84
A
1008?9497(2021)05?550?07
2020?05?17.
國家自然科學(xué)基金資助項目(11171360).
王磊(1982—),ORCID:https://orcid. org /0000-0002-2197-7844,男,碩士,副教授,主要從事應(yīng)用數(shù)學(xué)研究,E-mail:wangleibaas@163.com.
,ORCID:https://orcid. org /0000-0001-6973-4529,E-mail:zhangyongzhang2013@163.com.