羅曉芳,陳笑緣
偏纏繞模的Frobenius性質(zhì)
羅曉芳1,陳笑緣2*
(1.義烏工商職業(yè)技術(shù)學院,浙江 義烏 322000; 2.浙江商業(yè)職業(yè)技術(shù)學院,浙江 杭州 310053)
主要給出了偏纏繞模的Frobenius性質(zhì),推廣了纏繞模相應(yīng)的性質(zhì)。
偏纏繞結(jié)構(gòu);偏纏繞模; Frobenius性質(zhì)
EXEL[1]在研究算子代數(shù)時引入了偏群概念,隨之興起了對其純代數(shù)性質(zhì)的研究[2-5]。特別地,CAENEPEEL等[6]引入了偏纏繞模并給出了其Galois理論;CAENEPEEL等[7]將Doi-Hopf模的Frobenius性質(zhì)推廣至纏繞模。本文的目的是揭示Frobenius性質(zhì)不僅在纏繞模上成立,而且在結(jié)構(gòu)更廣泛的偏纏繞模上亦成立。
綜上,引理1得證。
綜上,定理1得證。
綜上,定理2得證。
[1]EXEL R. Twisted partial actions: A classification of regular*-algebra bundles [J]. Proceedings of the London Mathematical Society, 1997, 74(2): 417-443. DOI:10.1112/s0024611597000154
[2]DOKUCHAEV M, EXEL R, PICCIONE P. Partial representations and partial group algebras [J]. Algebra, 2000, 226: 251-268. DOI:10.1006/jabr. 1999.8204
[3]DOKUCHAEV M, EXEL R. Associativity of crossed products by partial actions, enveloping actions and partial representations [J]. Transactions of the American Mathematical Society, 2005, 357: 1931-1952. DOI:10.1090/s0002-9947-04-03519-6
[4]DOKUCHAEV M, FERRERO M, PACQUES A. Partial actions and Galois theory [J]. Journal of Pure and Applied Algebra, 2007, 208(1):77-87. DOI:10.1016/j.jpaa.2005.11.009
[5]DOKUCHAEV M, ZHUKAVETS N. On Finite degree partial representations of group[J]. Algebra, 2004, 274: 309-334. DOI:10.1016/s0021-8693(03)00533-7
[6]CAENEPEEL S, JASSEN K. Partial (co)actions of Hopf algebras and partial Hopf-Galois theory [J]. Communications in Algebra,2008,36(8): 2923-2946. DOI:10. 1080/00927870802110334
[7]CAENEPEEL S, MILITARU G, ZHU S. Doi-Hopf modules, Yetter-Drinfel'd modules and Frobenius type properties [J]. Transactions of the American Mathematical Society, 1997, 349:4311-4342. DOI:10.1090/s0002-9947-97-02004-7
Frobenius properties for partial entwined modules
LOU Xiaofang1, CHEN Xiaoyuan2
(1322000;2310053)
In the paper, we mainly show that the Frobenius properties still hold for partial entwined modules, which promotes the understanding of the entwined modules.
partial entwining structure; partial entwined module; Frobenius properties
10.3785/j.issn.1008-9497.2021.05.003
O 151
A
1008?9497(2021)05?540?04
2019?03?06.
羅曉芳(1964—),ORCID:https//orcid.org/0000-0002-5855-2890,女,碩士,教授,主要從事數(shù)學與教育研究.
,ORCID:https//orcid.org/0000-0003-2898-9976,E-mail:cxy5988@sina.com.